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Abstract: We discuss a phase transition in spin glass models that have been rarely considered in
the past, namely, the phase transition that may take place when two real replicas are forced to be
at a larger distance (i.e., at a smaller overlap) than the typical one. In the first part of the work,
by solving analytically the Sherrington-Kirkpatrick model in a field close to its critical point, we show
that, even in a paramagnetic phase, the forcing of two real replicas to an overlap small enough
leads the model to a phase transition where the symmetry between replicas is spontaneously broken.
More importantly, this phase transition is related to the de Almeida-Thouless (dAT) critical line. In the
second part of the work, we exploit the phase transition in the overlap between two real replicas to
identify the critical line in a field in finite dimensional spin glasses. This is a notoriously difficult
computational problem, because of considerable finite size corrections. We introduce a new method
of analysis of Monte Carlo data for disordered systems, where the overlap between two real replicas
is used as a conditioning variate. We apply this analysis to equilibrium measurements collected in the
paramagnetic phase in a field, h > 0 and Tc(h) < T < Tc(h = 0), of the d = 1 spin glass model with
long range interactions decaying fast enough to be outside the regime of validity of the mean field
theory. We thus provide very reliable estimates for the thermodynamic critical temperature in a field.

Keywords: disordered systems; spin glasses; mean field; phase transitions; numerical simulations

1. Introduction

The study of spin glass models in an external field started more than 40 years ago [1], but has
demonstrated to be an extremely challenging problem. The results of the many numerical simulations
performed over the last three decades [2–21] have been inconclusive and often interpreted in
contradicting ways. The main reason for this difficulty seems to rely on the large finite size corrections
that spin glasses have in the presence of an external magnetic field,which make it very difficult to
extract the thermodynamic behavior.

The presence of strong finite size corrections has been known since the very first numerical
simulations [2–5]. However, only recently has it been possible to obtain a quantitative measure of it
by running Monte Carlo simulations in a model whose critical behavior is known analytically [22].
Indeed, by using the cavity method [23], spin glass models on random graphs can be analytically
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solved in the paramagnetic phase, and the critical dAT line separating the paramagnetic and the spin
glass phases can be computed exactly. However, a standard analysis of Monte Carlo measurements
taken from a spin glass model in a field defined on a random graph fail to correctly identify the critical
temperature [22]. A possible explanation of this surprising finding comes from the observation made
in [24]: that mean values of the observables used in the Monte Carlo analysis are dominated by a
minority of atypical measurements (e.g., atypical in the value of the mean overlap q). A better analysis
focusing on typical measurements can correctly identify the critical point predicted analytically.

A similar problem in the analysis of Monte Carlo data measured from a spin glass model in a
field was found in [16], where it was found that a standard finite size scaling analysis was unable to
identify the correct critical point in the presence of a field, while the same analysis works perfectly
in the absence of the external field. The main source of fluctuations, leading to the dominance of
atypical measurements, was identified in the value of the 4-points correlation at a large distance, i.e., q2,
where q = ∑i siti/N is the overlap between the two simulated real replicas s and t. This value enters
in the Fourier transform of the correlation function at zero wavelength (k = 0). By performing a new
analysis that avoids the use of the k = 0 component, and restricts to k ∈ {2π/L, 4π/L}, it was possible
to clearly identify a phase transition in a field [16].

Subsequent works [17,18,21] confirmed with more statistics and in a broader class of spin glass
models in a field that the main source of these considerable finite size corrections is in the behavior of
atypical samples and/or atypical measurements. In summary, what seems to happen in spin glass
models under the effect of an external field is the following. Even for the largest systems that can be
simulated with present computer facilities, the probability distribution of the overlap is very broad
and shows an exponential tail extending in the region of small and even negative overlaps. This tail is
clearly a finite size effect, that must disappear in the thermodynamic limit. However, the measurements
corresponding to these atypically small values of the overlap tend to dominate the average in samples
of finite size and to hide the behavior of the vast majority of measurements.

In order to extract the typical behavior, in [21], all the measurements have been divided in
10 deciles according to a conditioning variate, i.e., essentially the overlap among the simulated replicas.
The results clearly show that the behavior of the first (or the last) decile is definitely different from the
median behavior. Moreover, the behavior of the median decile is the one showing the least finite size
effects; therefore, it is likely to approach the thermodynamic behavior faster in N. From measurements
based on data relative to this median decile in q, one can observe a clear phase transition that was
impossible to identify taking the unconditional average on all the measurements.

Thus, the general picture that emerges from several different analyses carried out until now
is that the behavior of spin glasses in a field may strongly depend on the specific value of the
overlap between the real replicas simulated. This seems to be true even in the paramagnetic phase,
T > Tc(h), where asymptotically, in the large N limit, the overlap takes a unique value, q = qEA,
with high probability.

Therefore, it is seems natural to us to consider a spin glass model in a field with two real replicas
constrained to take an overlap equal to q, and check how much the behavior of the model depends on
the value of q. Moreover, fixing the overlap between the two real replicas to q, one has the advantage
that fluctuations in q are suppressed, and this might only produce a better signal-to-noise ratio in the
analysis of numerical data.

In the following, we provide detailed information on the above points. In Section 2, we solve a
mean field model for spin glasses in a field and show indeed that a phase transition takes place if the
overlap between the real replicas is made small enough, and this can be connected to the critical dAT
line. In Section 3, we analyze numerical data for a finite-dimensional spin glass in a field conditioning
on the overlap between the two simulated replicas, finding, indeed, a phase transition towards a spin
glass phase. This conditioned analysis provides reliable estimates for the location of the critical dAT
line Tc(h).
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2. Phase Transition Varying the Overlap between Two Real Replicas in a Solvable Mean
Field Model

Our interest is in understanding what happens to the paramagnetic phase of a disordered model
when two real replicas are coupled and forced to be at an atypical overlap value. In order to be
consistent with previous literature [25], in this Section, we call pd the overlap at which the two real
replicas are forced to be. In particular, we would like to uncover possible phase transitions upon
changing pd and connect these with the phase transition on the dAT line.

In order to work with a solvable mean field model, we consider the so-called truncated model that
describes correctly the Sherrington-Kirkpatrick (SK) model close to its critical point (T = Tc = 1, h = 0).
The equations of two replicas constrained to be at overlap pd were already considered in [26]. However,
in that work, the authors focused mainly on the Replica Symmetry Breaking (RSB) solutions, while we
are mostly interested in identifying eventual phase transitions taking place in the paramagnetic phase
when pd < qEA.

2.1. The Truncated Model

The truncated model is an expansion of the free energy of the SK model in powers of the Q
matrix up to the fourth order term, which is responsible for the breaking of the replica symmetry [27].
Under this “truncated” approximation, the free energy reads

F = τ〈q2〉 − 1
3

[
2〈q〉〈q2〉+

∫ 1

0
dx q(x)

∫ x

0
dz [q(x)− q(z)]2

]
+

1
4

y〈q4〉+ h2〈q〉 , (1)

where 〈qk〉 ≡
∫ 1

0 q(x)kdx, being q(x) the Parisi order parameter, τ = 1− T/Tc(h = 0) = 1− T, and
y = 2/3 for the SK model. The function q(x) extremizing the truncated free energy has been computed
in [27] and reads

q(x) = qEA(τ, h) for τ ≤ τc(h) , (2)

q(x) =


qmin(h, y) 0 ≤ x ≤ 3yqmin ,
x

3y 3yqmin < x < 3yqmax ,
qmax(τ, y) 3yqmax ≤ x ≤ 1 ,

for τ > τc(h) , (3)

where

qmin(h, y) =
(

h2

2y

)1/3

, qmax(τ, y) =
1−

√
1− 6yτ

3y
, (4)

and qEA(τ, h, y) satisfies
h2 + 2τqEA − 2q2

EA + yq3
EA = 0 . (5)

The dAT line signaling the onset of the RSB phase can be obtained by imposing the condition
qmin(h, y) = qmax(τ, y) and, to leading order, is given by τc(h, y) = (h2/(2y))1/3 or hc(τ, y) =√

2y τ3/2. It is worth noticing that, in the paramagnetic phase, i.e., for τ < τc(h, y) or h > hc(τ, y), the
order of the three overlaps just defined is qmax(τ, y) < qEA(τ, h, y) < qmin(h, y).

2.2. The Model with Constrained Replicas

The case of two real replicas constrained to have overlap pd has been considered in [26]. A more
complex order parameter that involves two matrices Q and P is required, where Q (resp. P) describes
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the overlaps between copies of the same (resp. different) real replica(s). Matrices Q and P are
parametrized as usual via the Parisi functions q(x) and p(x), thus obtaining the following free energy

F =τ
[
〈q2〉+ 〈p2〉 − p2

d

]
− 1

3

[
2〈q〉〈q2〉+

∫ 1

0
dx q(x)

∫ x

0
dz [q(x)− q(z)]2 + 6〈pq〉(〈p〉 − pd)

+ 3
∫ 1

0
dx q(x)

∫ x

0
dz [p(x)− p(z)]2

]
+

y
4
[〈q4〉+ 〈p4〉 − p4

d] + h2[〈q〉+ 〈p〉 − pd] . (6)

We consider pd as a free parameter that we want to change in order to test for eventual phase
transitions when pd becomes small. Thus, the free energy needs to be extremized only with respect to
q(x) and p(x). The corresponding equations are the following

δF
δq(x)

= 2(τ − 〈q〉)q(x) + 2(pd − 〈p〉)p(x)−
∫ x

0
dz [q(x)− q(z)]2 −

∫ x

0
dz [p(x)− p(z)]2 + yq3(x) + h2 = 0 ,

δF
δp(x)

= 2(τ − 〈q〉)p(x) + 2(pd − 〈p〉)q(x)− 2
∫ x

0
dz [q(x)− q(z)][p(x)− p(z)] + yp3(x) + h2 = 0 .

(7)

Taking some derivatives and doing a little bit of algebra, one can prove in general the following
statements [26]:

• If q′(x) = 0, then p′(x) = 0.
• If q′(x) 6= 0 and p′(x) = 0, then q(x) = x

3y .

• If p(z) = q(z) ∀z ≤ x, then either q′(x) = 0 or q(x) = 2x
3y .

We will investigate different quite general ansatz for q(x) and p(x) compatible with these
conditions, but we do not find useful to write down the most general ansatz compatible with the
constraints because it is rather cumbersome. We prefer to add complexity to the solution step by step.

2.3. Replica Symmetry (RS) Solutions

We start with the RS solution q(x) = q and p(x) = p, which certainly holds above the dAT line,
when the constraining overlap pd is close to the typical value for the overlap qEA(τ, h, y). The equations
to be solved are

h2 + 2pdq + 2τp− 4qp + yp3 = 0 , (8)

h2 + 2τq + 2pd p− 2q2 − 2p2 + yq3 = 0 . (9)

These equations admit a symmetric solution p = q = qEA(pd, τ, h, y) with the latter defined by

h2 + 2(τ + pd)qEA − 4q2
EA + yq3

EA = 0 . (10)

The qEA overlap in the model with two constrained replicas is related to the one in the model
with a single replica through the following transformation of parameters: τ → τ+pd

2 , h→ h√
2
, y→ y

2 .
In other words,

qEA(pd, τ, h, y) = qEA

(
τ + pd

2
,

h√
2

,
y
2

)
. (11)

From this observation, it is easy to obtain the condition under which the RS symmetric solution
q = p = qEA(pd, τ, h, y) is stable with respect to a solution still symmetric, q(x) = p(x), but breaking
the replica symmetry:

qmax

(
τ + pd

2
,

y
2

)
< qmin

(
h√
2

,
y
2

)
. (12)

This equation defines an upper bound on pd, because qmax(τ, y) is monotonously increasing in τ.
Hereafter, we will always work in the range of pd satisfying Equation (12). For example, for τ = 0.1,
h = 0.1, and y = 2/3, the bound reads pd < 0.253171 (these values for τ, h, and y define a point in the



Entropy 2020, 22, 250 5 of 16

paramagnetic phase of the SK model and will be used as an example in the rest of this section). In the
paramagnetic phase, fixing pd = qEA(τ, h, y), that is constraining the real replicas to the typical value,
the bound in Equation (12) is always satisfied.

Lowering enough the value of pd, the symmetry p(x) = q(x) can spontaneously break down.
At the RS level, this actually corresponds to the free energy being extremized by a solution with p 6= q.
Such a phase transition takes place at pd = p∗d where p∗d(τ, h, y) can be obtained from the linearization
of Equations (8)–(9) around the solution p = q = qEA(pd, τ, h, y) and solves the following equation:

p∗d = τ +
3y
2
(
qEA(p∗d , τ, h, y)

)2 . (13)

For pd ≥ p∗d, we have p = q = qEA(pd, τ, h, y), while for pd < p∗d we have p < q (see Figure 1 for
an example in the case τ = h = 0.1 and y = 2/3).

0.05 0.10 0.15 0.20 0.25
pd

0.05

0.10

0.15

0.20

0.25

qEA(pd)

q for pd<pd
*

p for pd<pd
*

pd

Figure 1. Parameters of the RS solutions versus pd in the case of τ = h = 0.1 and y = 2/3. The merging
of the three curves takes place at pd = p∗d(τ, h, y) = 0.117033, while the crossing between the two
curves takes place at qEA(τ, h, y) = 0.141942.

The inequality p∗d(τ, h, y) < qEA(τ, h, y) that we can easily check in Figure 1 for τ = h = 0.1 and
y = 2/3 is a general feature of the paramagnetic phase. In Figure 2, we show qEA(τ, h, y) and p∗d(τ, h, y)
for y = 2/3, and we notice that the dAT line separating the paramagnetic and spin glass phases
corresponds exactly to the locus where qEA and p∗d coincide. Below the blue surface in the paramagnetic
phase, the p(x) = q(x) symmetry is broken.

�������
qEA
pd*

paramagnetic
phase

spin glass
phase

Figure 2. Values of qEA(τ, h, y) and p∗d(τ, h, y) plotted in the (h, T = 1− τ) plane for y = 2/3. The red
bold curve is the dAT line, separating the paramagnetic and the spin glass phases. qEA and p∗d merge
on the dAT line, while their values in the spin glass phase have no physical meaning. Below the blue
surface in the paramagnetic phase, the p(x) = q(x) symmetry is broken.

In Figure 3, we show for τ = h = 0.1 and y = 2/3 the free energies of the p = q and p 6= q
solutions. Below p∗d = 0.117033, the free energy of the p 6= q solution is higher, and such a solution
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dominates over the symmetric one (left panel). The free energy difference behaves as (p∗d − pd)
3, as can

be seen from the right panel, where the black dot marks the value of p∗d .

0.02 0.04 0.06 0.08 0.10 0.12 0.14
pd

0.00155

0.00160

0.00165

0.00170

FRS(p≠q)

FRS(p=q)

0.02 0.04 0.06 0.08 0.10 0.12 0.14
pd

0.01

0.02

0.03

0.04

0.05

0.06

FRS (p ≠ q) - FRS (p = q)
3

Figure 3. Free energies of the p = q and p 6= q RS solutions for τ = h = 0.1 and y = 2/3.
Below p∗d = 0.117033, the free energy of the p 6= q solution is higher, and such a solution dominates
over the symmetric one (left panel). The free energy difference goes as (p∗d − pd)

3, as can be seen in
the (right panel), where the black dot marks the value of p∗d .

2.4. Replica Symmetry Breaking (RSB) Solutions in the Paramagnetic Phase

The next step is to show that, at p∗d, where the p(x) = q(x) symmetry is spontaneously broken,
and the replica symmetry spontaneously breaks. In order to show this, we have to search for solutions
to the saddle point equations in Equation (7) with an RSB order parameter. We assume a single
breaking point for both p(x) and q(x); i.e., we use the following ansatz:

p(x) =

{
p0 0 ≤ x < m
p1 m < x ≤ 1

q(x) =

{
q0 0 ≤ x < m
q1 m < x ≤ 1

(14)

We now have five saddle point equations to fix p0, p1, q0, q1, and m. We looked numerically to
their solutions, and we found that, beyond the RS solution p0 = p1 = p and q0 = q1 = q, two other
solutions exist:

1. a solution with p0 & p1 ' p and q0 . q1 ' q, i.e. with the p(x) and q(x), respectively, very close
to the RS corresponding overlaps p and q,

2. a solution with p1 ' p < p0 = q0 < q1 ' q, i.e. where p1 and q1 are close to the RS overlaps and
at a small x, a mean overlap is roughly found p0 = q0 ' p+q

2 .

We observe that, in both of these solutions, p(x) is a non-increasing function, since p0 > p1.
This may seem at odds with the standard interpretation of the hierarchical structure of states in the
SK model, where q(x) is required to be a non-decreasing function. However, what is required for a

correct physical interpretation of the states is the positivity of the matrix

(
Q P
P Q

)
, which can be

ensured if a decrease in the function p(x) is compensated by a larger increase in the function q(x),
i.e., if q1 − q0 > p0 − p1. We have checked that all the solutions found satisfy this criterion.

We found that these one-step RSB (1RSB) solutions have a slightly better free energy with respect
to the RS solution with p 6= q. In Figure 4, we show for τ = h = 0.1, y = 2/3, and pd = 0.05 the
difference between the 1RSB free energies and FRS for the two solutions listed above. We notice that
the difference is very small, but clearly non-zero. Moreover, the maximum is achieved for a rather
small value of m, thus limiting the difference with respect to the RS solution to very small values of x
(remember that, in both the 1RSB solutions, p1 ' p and q1 ' q).
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0.02 0.04 0.06 0.08 0.10
m

5.×10-9

1.×10-8

1.5×10-8

2.×10-8
FRSB-FRS

p1≲p0 < q0≲q1

p1 < p0=q0 < q1

Figure 4. Difference between the one-step RSB (1RSB) free energies and FRS for the two solutions with
τ = h = 0.1, y = 2/3, and pd = 0.05. We notice that the difference is very small, but clearly non-zero.
Moreover, the maximum is achieved for a rather small value of m, thus limiting the difference with
respect to the RS solution to very small values of x (we remind the reader that, in both 1RSB solutions,
p1 ' p and q1 ' q).

Although the free energy difference between the two RSB solutions found is extremely small,
the first one is to be preferred, where p(x) ' p and q(x) ' q (see Figure 4). We studied how the free
energy difference between this solution and the RS one changes as the value of pd is varied. The results
are shown in the left panel of Figure 5: the location of the maximum of FRSB slightly decreases when
pd grows, but the main effect is that, for any m value, FRSB tends to move toward FRS when pd → p∗d
from below.

0.02 0.04 0.06 0.08 0.10 0.12 0.14
pd

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

(FRSB-FRS)1/3

m=0.01
m=0.001
m=0.0001

0.02 0.04 0.06 0.08 0.10 0.12 0.14
pd

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

(FRSB-FRS)1/3

m=0.01
m=0.001
m=0.0001

0.1 0.2 0.3 0.4 0.5 0.6 0.7
m0

1.×10-8

2.×10-8

3.×10-8

4.×10-8

5.×10-8

6.×10-8

FRSB-FRS

pd=0.02
pd=0.03
pd=0.04
pd=0.05
pd=0.06
pd=0.07

0.1 0.2 0.3 0.4 0.5 0.6 0.7
m0

1.×10-8

2.×10-8

3.×10-8

4.×10-8

5.×10-8

6.×10-8

FRSB-FRS

pd=0.02
pd=0.03
pd=0.04
pd=0.05
pd=0.06
pd=0.07

Figure 5. Difference between the dominating 1RSB free energy and FRS as a function of m (left) and
pd (right). The left panel shows that the location of the maximum of FRSB slightly decreases when pd
grows, but the main effect is that, for any m value, FRSB tends to move toward FRS when pd grows.
The right panel shows that, for different m values, the free energy difference becomes zero very close to
p∗d , marked with a black dot. Note that data in the region close to p∗d may have some uncertainty due to
the extremely small free energy differences,which are of the order O(10−12).

In order to better estimate the pd value where FRSB and FRS become equal, we plotted in the right
panel of Figure 5 (FRSB − FRS)

1/3 as a function of pd. This choice was dictated by the expectation that
free energy differences are cubic as in the RS case above and in previous studies [26]. Since the location
of the maximum in the left panel slightly changes with pd, we show in the right panel three different
values of m. We observe that all three curves extrapolate linearly to zero at a pd value very close to p∗d ,
marked with a black dot. Note that data in the region close to p∗d may have some uncertainty due to
the extremely small free energies difference, which are of the order O(10−12).

We have verified that the same analysis also holds for other values of τ and h. We conclude that,
in the paramagnetic phase of the SK model, when lowering the relative overlap between two real
replicas, the system undergoes at p∗d a phase transition, where the main effect is the breaking of the
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p(x) = q(x) symmetry. Additionally, at the same critical point, or very close to it, the replica symmetry
is broken.

The identification of the location p∗d of this phase transition in the paramagnetic phase is very
useful in order to locate the dAT line given that the latter coincides with the condition p∗d = qEA,
which can be checked in numerical simulations. This is our aim in the next section.

3. Numerical Results in a Finite-Dimensional Spin Glass Model Varying the Overlap between
Two Real Replicas

According to the analytical results derived in the previous section, a spin glass model in a
paramagnetic phase with a non-zero field, i.e. with h > 0 and Tc(h) < T < Tc(h = 0), is expected
to undergo a phase transition to a spin glass phase as the overlap pd between two real replicas is
decreased to a value p∗d . Moreover, on the dAT line, the equality p∗d = qEA holds.

In this section, we analyze the numerical data collected in the paramagnetic phase of a spin glass
model with a non-zero field with the aim of identifying p∗d and qEA. Given that we prefer to keep a
different notation for the analytical critical point p∗d and the numerical estimate of the phase transition
in q, we call the latter qc (but the reader should keep in mind that qc is the best numerical estimate
for p∗d).

3.1. Model and Numerical Simulations

Being interested in finite-dimensional spin glass models in a magnetic field, whose Hamiltonian
is given by

H(s) = −∑
i,j

Jijsisj − h ∑
i

si , (15)

we study a d = 1 diluted spin glass model with long range interactions introduced in [15]. In this model,
each spin interacts on average with six neighbors and the interactions are present with a probability
depending on the distance, i.e., Jij = ±1 with probability P[Jij 6= 0] ∝ |i − j|−ρ. Changing the
exponent ρ, the effective dimension of the model varies [15], and for ρ > ρU = 4/3 the model is
outside the range of validity of the mean field theory and thus presents a non-trivial critical behavior
(as in a finite-dimensional spin glass model). The advantage of this model, with respect to the fully
connected version [28,29] is that the finite connectivity allows one to simulate very large sizes, up to
L ∼ O(104), even close to the upper critical dimension, ρU = 4/3. Indeed, the model has been used
intensively in recent years for the study of the low temperature spin glass phase outside the mean field
theory [16,17,19,30].

A very interesting, and still debated, question regards the existence of a spin glass phase
transition in the non-mean field region, ρU < ρ < 2, when the external magnetic field is present.
Standard methods of analysis, used up to now, have provided inconclusive results, often interpreted
in opposite ways [19].

We simulated the above model for two values of the long range exponent: ρ = 1.2, which
lies in the mean field region, and ρ = 1.4, which lies in the non-mean field region. The zero-field
critical temperatures are Tc(h = 0) = 2.34(3) for ρ = 1.2 and Tc(h = 0) = 1.970(2) for ρ = 1.4 [16].
We simulated the equilibrium dynamics of systems of sizes L ≤ 213 with field values h = 0.1, 0.2, 0.3
using the parallel tempering method [31,32]. For each value of ρ and L, we simulated O(105) different
disordered samples.
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3.2. A New Tool of Analysis Conditioning on the Overlap

Let s and t be the configurations of two real replicas evolved by Glauber dynamics, and suppose
M independent measurements, taken over many different samples. We define the conditional average
of the overlap-overlap correlation function (or 4-point correlation function) as

G(r|q) = 〈q0qr|q〉 ≡
∑i,j:|i−j|=r E[sitisjtj δqN,s·t]

∑i,j:|i−j|=r E[δqN,s·t]
, (16)

where E[(· · · )] stands for the empirical average over the M measurements, δ is the Kronecker delta, and
s · t ≡ ∑N

k=1 sktk (here the system size N = L because we have a d = 1 model). G(r|q) actually depends
also on the system size L and the temperature T, but we avoid making this explicit to keep notation
lighter. The standard correlation function is obtained taking the average over the conditioning variate

G(r) =
∫

dq P(q) G(r|q) , (17)

where P(q) = E[δqN,s·t] is the probability distribution of the overlap.
More precisely the correlation function, G(r), defined above is the total correlation function and

can be expressed as a linear combination of the usual connected correlation functions defined in the
replicon and longitudinal sectors: G(r) = 2GSG(r)− GL(r) [33]. In order to obtain the two connected
correlations separately, we should simulate four replicas instead of two, and the analysis would
become much more bothersome. However, this is not really needed since an eventual spin glass phase
transition makes both G(r) and GSG(r) decay critically.

The rationale beyond this conditional averaging is in the observation [21,24] that measurements
of a spin glass model in a field may have very large fluctuations, even in the paramagnetic phase.
These large fluctuations are associated with very atypical overlap values: in the samples that one can
simulate with presently available computer resources, the distribution of the overlap, P(q), has a tail in
the region of small and even negative overlaps; this tail will eventually disappear in the thermodynamic
limit, but is responsible for the large finite size corrections. Conditioning on the overlap, we expect
G(r|q) to have much weaker fluctuations, so its estimate in the thermodynamic limit should be less
problematic. Indeed, we expect that, under the hypothesis of replica equivalence [34,35], the conditional
correlation G(r|q) should be self-averaging. The main source of fluctuations would remain in the P(q),
which is, however, very much studied in the literature; moreover, in the paramagnetic phase and in
the thermodynamic limit P(q) = δ(q− qEA), and we just need to estimate qEA.

According to what we discussed in Section 2, we expect that, even in the paramagnetic phase,
the model may have a spin glass phase transition lowering the value of the conditioning overlap q.
In order to detect this phase transition, we can look for a critical overlap value, qc, such that critical
scaling holds in the conditioned susceptibility χ(q) at q = qc. To obtain the latter, we Fourier transform
the conditioned correlation function

Ĝ(k|q) =
∫

dr eikrG(r|q) . (18)

By definition Ĝ(0|q) = q2 and so the best way to extract the large distance behavior of G(r|q) is to
look at Ĝ(kmin|q), with kmin = 2π/L. Thus, we define the susceptibility as

χ(q) ≡ Ĝ(kmin|q) . (19)

The model under study has power-law decaying interactions, and this leads to the free
propagator [29]

Ĝ(k)−1 ∝ m2 + kρ−1 . (20)
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The η exponent is not renormalized in the non-mean field region (ρU < ρ < 2) and takes the
value η = 3− ρ, so 2− η = ρ− 1. Therefore, at criticality (q = qc), we expect

χ(qc) ∝

{
Lρ−1 for ρ > ρU = 4/3 (non-mean field) ,
L1/3 for ρ ≤ ρU = 4/3 (mean field) .

(21)

With the exponent η known, the value of qc can be obtained from the crossing of the curves
χ(q)/L2−η (or χ(q)/L1/3 in the mean field regime) plotted as a function of q. Notice that, for q < qc,
we expect a power law divergence of χ(q) as a function of the lattice size, maybe with another power,
and for q > qc, the susceptibility χ(q) becomes a constant.

The approach of finding the phase transition varying q is equivalent, via a Legendre transform,
to studying a Hamiltonian with a coupling term,H+ ε qN, and to characterizing the possible phase
transitions in the extended three-dimensional parameter space (T, h, ε). Notice that, via the Legendre
transform, there is a relation at the phase transition between the critical values εc(T, h) and qc(T, h).
Our assumption that η = ρ− 1 relies on the assumption that the renormalization group transformation
has only two fixed points, controlling the phase transitions with h = 0 and with h 6= 0, respectively.
Under this hypothesis, the entire critical surface (except the critical point at h = 0) belongs to the same
universality class.

We recall that, in the one-dimensional long range order model, there is no renormalization of
the wave function; thus, the η exponent is known exactly, even in the presence of a magnetic field:
η = ρ− 1.

Finally, we remark that this phase transition in q (or equivalently in ε) was characterized in [36]
for the three-dimensional Edwards-Anderson model with binary couplings and a zero magnetic field,
and below the critical temperature: in that case, qc = qEA for all T < Tc, according to the analytical
study presented in this paper.

3.3. Numerical Results

We present some results for ρ = 1.2 (which belong to the mean field region) for comparison and
the main results for ρ = 1.4, which are in the interesting non-mean field region and far from the lower
critical dimension. The lower critical dimension of the model is ρL = 2 in the absence of a field [30],
but ρL could decrease in a field [37].

In Figure 6, we plot the scaled susceptibilities, χ(q)/L2−η , as a function of the conditioning
overlap q. The two plots are for ρ = 1.4, h = 0.2, and T = 1.7 (top) and T = 1.2 (bottom). We remind
the reader that Tc(h = 0) ' 1.97 for ρ = 1.4 [16]. All the curves, corresponding to sizes from L = 28 to
L = 213, do intersect at well defined values of qc, obtained by means of an analysis based on the fit
of the data to a cubic spline polynomial taking into account the statistical errors. It is worth noting
that the higher temperature, T = 1.7, is certainly in the paramagnetic phase, according to the previous
estimate of Tc = 1.2(2) for h = 0.2 [16]. Nonetheless, lowering the overlap to atypical values, smaller
than the thermodynamically dominant value qEA, clearly leads to a phase transition at qc, in agreement
with the solution of the SK model.

We remind the reader that all the measurements have been taken during a standard Monte Carlo
simulation, with no condition at all on the overlap among the two replicas. The conditioning on the
overlap is imposed only during off-line analysis. The fact that curves in Figure 6 have good statistics in
a broad q range and become noisy only at the boundaries is a consequence of the very broad support of
P(q). Therefore, in some sense, the present analysis is exploiting in a positive way the large fluctuations
in the overlap that are present in spin glass models in a field. One may complain that, if the P(q)
would become narrow, then the present analysis would fail. But in that case, fluctuations are tiny and
the standard analysis (without the conditioning) would provide a reliable answer.
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Figure 6. χ(q)/L2−η versus q for ρ = 1.4 (non-mean field region) and six different lattice sizes. Data in
the upper panels have been measured with T = 1.7 and h = 0.2 and belong to the paramagnetic
phase [16], thus showing that a transition to a spin glass phase can be induced merely by decreasing
the overlap between the replicas. In the bottom panels, near or inside the thermodynamic spin glass
phase, T = 1.2 and h = 0.2. The crossing point of the curves for different lattice sizes is always very
neat, as can be appreciated from the panels on the right that zoom in on the crossing region.

From the crossing point of the scaled susceptibilities shown in Figure 6, we obtain reliable
estimates for qc. The estimate of qEA can be obtained in two different ways as long as T ≥ Tc(h)

• from the peak location in P(q), and
• from the crossing points of the cumulative functions x(q) ≡

∫ q
−1 dq′ P(q′).

We found that the second method presents much weaker finite size corrections; thus, we used
it to estimate qEA (see Figure 7). It is worth noting that this second method, although much more
accurate as long as T ≥ Tc(h), does not return the correct result for T < Tc(h). Indeed, in the latter
case, the median value estimated from the crossing of the cumulative functions x(q) is slightly lower
than the location of the peak in the P(q). Nonetheless, for the purpose of locating an eventual critical
temperature Tc(h), a reliable estimate of qEA in the region T ≥ Tc(h) is enough.

We show in Figure 8 the estimates of qc and qEA obtained for ρ = 1.4 (left panels) and ρ = 1.2 (right
panels) with different values of the magnetic field and the largest sizes (L = 212 and L = 213). As long
as qEA > qc in the thermodynamic limit, the model is not critical and belongs to the paramagnetic
phase. Exactly when qEA = qc, the model satisfies critical scaling in the thermodynamic limit; i.e., it
belongs to the critical dAT line Tc(h). For qEA < qc, we are below Tc(h); thus, the estimate of qEA is no
longer correct (most probably the correct estimate of qEA is qc itself).
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Figure 7. The cumulative probability distribution x(q) versus q for ρ = 1.4 (non-mean field region),
h = 0.2, and two values of the temperature: T = 1.7 (left panel) and T = 1.2 (right panel). The estimate
for qEA comes from the crossing of these curves.
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Figure 8. Behavior of qc(T) and qEA(T) for ρ = 1.4 (top-left panel with h = 0.3, middle-left panel
with h = 0.2 and bottom-left with h = 0.1) in the non.mean field regime and ρ = 1.2 (top-right panel
with h = 0.3 and bottom-right panel with h = 0.2) in the mean field regime. The crossing (or merging)
of the curves identifies the thermodynamic phase transition to the spin glass phase (dAT line) because
qc < qEA holds in the paramagnetic phase. Data shown are for the largest sizes (L = 212 and L = 213).
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With the aim of estimating the critical dAT line Tc(h), one should compute the crossing points
between the qEA(T) and qc(T) curves shown in Figure 8. For fields large enough (e.g., h ≥ 0.2 for
ρ = 1.4), the crossing of the qEA(T) and qc(T) curves is very clear; thus, the identification of the critical
dAT temperature Tc(h) is highly reliable. On the contrary, for very small fields (e.g., h = 0.1 for
ρ = 1.4), the qEA(T) and qc(T) curves tend to merge, rather than cross each other; thus, the estimate
of Tc(h) is noisy. This comes with no surprises given that we expect the two curves to coincide in
the h = 0 limit. In this case, we adopt the rule of estimating the critical temperature as the highest
temperature at which the difference is compatible with zero within one standard deviation (and this
may provide a bias towards too large values).

We observe also that the analysis works much better for ρ = 1.4 than for ρ = 1.2, and this is
good news, given that we are mainly interested in locating the dAT line in the non-mean field regime;
the data for ρ = 1.2 are shown mainly for comparison purposes, but the actual estimates of the critical
point in this case are very noisy, as already noted in [16].

In order to highlight how stable the analysis is and to check for finite size corrections, we computed
the curves qEA(T) and qc(T) from the data of only two sizes, namely L and 2L. In practice, qEA is obtained
from xL(qEA) = x2L(qEA), while qc satisfies χL(qc)/L2−η = χ2L(qc)/(2L)2−η . The finite size estimate of
the critical temperature corresponds to the crossing of qEA(T) and qc(T), obtained from sizes L and 2L.
We report these estimates in Table 1. Finite size corrections are smooth and under control, except for
the smallest fields (but this is expected given the observation that, at small fields, estimates of Tc(h)
are much more noisy).

Table 1. Values of the critical temperature obtained from the crossing points of the curves qEA(T) and
qc(T), which have been computed using data from lattices L and 2L. The left table is for ρ = 1.4
(non-mean field regime), and the right table is for ρ = 1.2 (mean field regime). In the row labeled FSSA,
we report the critical temperatures obtained in [16] using finite size scaling analysis.

ρ = 1.4 ρ = 1.2

log2 L
h = 0.1 h = 0.2 h = 0.3

log2 L
h = 0.2 h = 0.3

Tc Tc Tc Tc Tc

8 1.88(1) 1.56(6) 1.31(4) 8 1.47(10)
9 1.89(3) 1.44(6) 1.39(3) 9 1.36(5) 1.38(5)

10 1.85(1) 1.47(2) 1.40(1) 10 1.4(1) 1.43(4)
11 1.40(3) 1.53(1) 1.39(3) 11 1.48(5) 1.47(3)
12 1.57(9) 1.51(1) 1.37(1) 12 1.51(5) 1.53(2)

FSSA 1.67(7) 1.2(2) FSSA 1.4(2) 1.5(4)

4. Conclusions

In this work, we studied, both analytically and numerically, the phase transition from the
paramagnetic to the spin glass phase that takes place in a spin glass model when two real replicas are
forced to have an overlap smaller than the equilibrium one.

We have solved the SK model close to its critical point (under the so-called truncated
approximation) and have shown analytically that, in the paramagnetic phase in a field (h > 0 and
Tc(h) < T < Tc(0)), lowering the overlap pd between two real replicas leads to a phase transition at
p∗d where the symmetry between replicas is spontaneously broken. In the whole paramagnetic phase,
the inequality p∗d < qEA holds, while p∗d = qEA identifies the critical dAT line.

We have also performed an analysis of data from Monte Carlo simulations of a proxy of a
finite-dimensional spin glass model conditioning on the value of the overlap between the two simulated
replicas. We have cleanly estimated a value qc of the overlap where the model undergoes a phase
transition and it is natural to identify the numerically estimated qc with the analytically predicted p∗d .
The comparison of qc with the typical overlap qEA turned out to be a very reliable way of estimating the
critical dAT line Tc(h).
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The technique presented in this paper to characterize the dAT line relies on the fact that the phase
transition is continuous. Hence, if other kinds of phase transitions (dynamical, first order, etc.) were
present (as suggested by Höller and Read [38]), we could miss them. We consider this new scenario
very interesting, and we are considering studying it, but with a different numerical approach.

As far as we know, this phase transition is only present in spin glasses. The same computation
presented in this paper on the Curie-Weiss model shows no phase transition on ε for temperatures in
the paramagnetic phase.

In conclusion, we have provided solid evidence for the existence of a critical dAT line in a
finite-dimensional spin glass model in a field by using a new tool of analysis inspired by the presence
of a phase transition in the overlap between two real replicas.
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