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Abstract: Optimal experimental design (OED) is of great significance in efficient Bayesian inversion.
A popular choice of OED methods is based on maximizing the expected information gain (EIG),
where expensive likelihood functions are typically involved. To reduce the computational cost,
in this work, a novel double-loop Bayesian Monte Carlo (DLBMC) method is developed to efficiently
compute the EIG, and a Bayesian optimization (BO) strategy is proposed to obtain its maximizer
only using a small number of samples. For Bayesian Monte Carlo posed on uniform and normal
distributions, our analysis provides explicit expressions for the mean estimates and the bounds of
their variances. The accuracy and the efficiency of our DLBMC and BO based optimal design are
validated and demonstrated with numerical experiments.
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1. Introduction

As acquiring data in experiments is generally computationally demanding and time-consuming,
maximizing the informativeness of experimental data is of crucial importance. For example, in the area
of climate science, a complex system with various stochastic inputs is integrated to represent the
real climate situation. Usually, the locations and the time of putting sensors to collect climate
observations are optional. With limited resources, careful selections of sensor placements are required
(see Reference [1] for a detailed discussion). Many works focus on finding experimental data carrying
more information, and this topic is usually referred to as optimal experimental design (OED) [2].
In this paper, we consider the OED problem in the context of the Bayesian inverse problem.
Given a forward problem, the inverse problem is to infer parameters inherent of the forward model
through a set of design points and the corresponding responses. In the Bayesian setting, the parameters
of interest are viewed as random variables, and hence the posterior distribution of the parameters can
be obtained via the Bayes’ rules [3–6]. In linear cases, the OED problem includes various criteria such
as the D-optimal design criterion and the A-optimal design criterion. The D-optimal design criterion
seeks to maximize the determinant of the information matrix of the design, whereas the A-optimal
design criterion considers minimizing the trace of the inverse of the information matrix which results
in minimizing the average variance [7–9].

We focus on the decision theoretic approach that considers maximizing the expectation of
Kullback-Leibler (KL) divergence from the posterior distribution to the prior distribution [10].
This decision theoretic approach is a nonlinear generalization of the Bayesian D-optimal criterion [11].
The objective function we want to maximize, the expectation of KL divergence, is also referred to
as the expected information gain (EIG) over parameters. Computing EIG is usually a challenging
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problem, since it does not have an analytical form for nonlinear problems in general. In the literature,
the following attempts have been made for this problem. Efficient surrogates for the forward models
are introduced to make the problem tractable [1,12–15]. Recently, as the rise of novel computational
methods, new approaches are actively developed to evaluate the EIG, including the quasi-Monte Carlo
method [16] and the layered importance sampling [17] in the context of the focused optimal design.
As the goal of this kind of optimal design is to find the maximizer of EIG, it is crucial to apply efficient
optimization strategies. In Reference [12], a curve fitting surrogate of Monte Carlo experiments is
proposed to result in an efficient optimization scheme. For the Bayesian optimal design problem
focusing on the risk from an optimal terminal decision, the Bayesian optimization (BO) approach is
proposed to find the minimizer of the risk [9]. We note that, while BO is proposed for the Bayesian
optimal design problem for minimizing the risk in Reference [9], BO is considered for maximizing the
EIG in this work. In addition, efficient approximate coordinate exchange strategies are proposed for
Bayesian design in Reference [18]. For intractable likelihood models, Gaussian process (GP) models are
built to emulate the likelihood function in Reference [19]. Gradient-based optimization methods are
proposed to compute the maximizer of EIG in References [13,14]. Review of modern computational
methods for decision theoretic optimal experimental design is provided in Reference [20].

The main purpose of this work is to propose an efficient Gaussian process (GP) based Bayesian
optimal design strategy, where Bayesian Monte Carlo (BMC) and Bayesian optimization (BO) which
are both based on GP are used [21–23]. As the Monte Carlo simulation for EIG involves an inner layer
simulation and an outer layer simulation (see Reference [14]), we develop a novel efficient double-loop
Bayesian Monte Carlo (DLBMC) method, which employs BMC [24–26] for both layers. However,
the EIG is generally computationally expensive and its gradient information is typically not given
explicitly. We propose a BO method [27–29] to compute the maximizer of EIG, where the gradient
information of EIG is not required. To summarize, the contributions of this work are three-fold: first
we develop a novel DLBMC to efficiently compute EIG; second we analyze the BMC for the normal
and the uniform distributions; third we propose BO to obtain the maximizer of EIG.

This paper is organized as follows. In Section 2, we review the Bayesian optimal experimental
design problem and formulate the expected information gain (EIG) criterion. In Section 3, we derive
a double-loop Bayesian Monte Carlo estimator for the EIG and propose a Bayesian optimization
approach to obtain the maximizer of the approximated EIG. Detailed analysis of BMC for the normal
and the uniform distributions are conducted in this section. In Section 4, we demonstrate the efficiency
of our GP based Bayesian optimal design with three test problems. Section 5 concludes the paper and
provides discussions of the advantages and disadvantages of our algorithm.

2. Formulation of Experimental Design

In this section, we review the setting of the Bayesian optimal design problem following the
presentation in [14]. In the Bayesian setting, the unknown parameters are viewed as random variables.
Let (Ω,F ,P) be a probability space, where Ω is a sample space, F is a σ-field, and P is the probability
measure on (Ω,F ). Let θ : Ω → Rnθ denote the parameters of interest, where nθ is the dimension
of the unknown parameters. Assume that θ is associated with a prior measure µ on Rnθ satisfying
µ(A) = P(θ−1(A)) for A ∈ Rnθ . Throughout this paper, we assume that all the random variables
have densities with respect to the Lebesgue measure. Let d ∈ D ⊂ Rnd denotes the design variable,
where nd is the number of design variables and D denotes the design space. Let y ∈ Rny denote the
response associated with d where ny is the dimension of response. The inference of θ can be obtained
based on the prior distribution and observations via Bayes’ rule,

p(θ|d, y)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p(y|θ, d)

Prior︷ ︸︸ ︷
p(θ|d)

p(y|d)︸ ︷︷ ︸
Evidence

. (1)
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The likelihood function is often determined by a deterministic forward model and a statistical
model for measurement of model noises. Here we model the relation of the design variable and the
observation by a deterministic model G(θ, d) and additive Gaussian noises ε,

y = G(θ, d) + ε , ε ∼ N (0, σ2 I) , (2)

where G is the forward model. In many practical problems, the forward model is computationally
expensive, and its explicit form is not given. So we can just view it as a black box whose internal
structure is unknown, whereas we can generate noisy responses given fixed design variables
and parameters.

Following the decision theoretic approach [10], we set the utility function as the KL divergence
from the posterior distribution to the prior distribution,

u(d, y, θ) = DKL(p(θ|d, y‖p(θ))) = u(d, y) . (3)

This term is actually independent of θ. Noting that u(d, y) is a function of both d and y, therefore we
further take expectation of u over y to define the expected information gain (EIG):

U(d) =
∫
Y

u(d, y)p(y|d)dy =
∫
Y

∫
Θ

p(θ|d, y) log

[
p(θ|d, y)

p(θ)

]
dθp(y|d)dy .

Then the optimal experimental design is to find a design point which maximizes the expected utility,
that is,

d? = arg max
d∈D

U(d) . (4)

A double-loop Monte Carlo (DLMC) estimator of EIG is proposed in [30]. Rewrite U(d) as

U(d) =
∫
Y

∫
Θ

p(θ|d, y) log

[
p(θ|d, y)

p(θ)

]
dθp(y|d)dy

=
∫
Y

∫
Θ
{log[p(y|θ, d)]− log[p(y|d)]}p(y, θ|d)dθ dy ,

and note that p(θ|d) = p(θ), since the specification of d does not provide further information about
inference of θ . Then, the DLMC method approximates U(d) as

U(d) ≈ 1
nout

nout

∑
i=1

[
log(p(y(i)|θ(i), d))− log(p(y(i)|d))

]
, (5)

where θ(i) are drawn from the prior p(θ), and y(i) are drawn from the conditional distribution
p(y|θ = θ(i), d) (i.e., the likelihood), and hence p(y(i)|d) can be estimated via the importance
sampling technique,

p(y(i)|d) =
∫

Θ
p(y(i)|θ, d)p(θ)dθ ≈ 1

nin

nin

∑
j=1

p(y(i)|θ(i,j), d) . (6)

Combining (6) and (5) yields a biased estimator Ũ(d) of U(d). However, if we sample {θ(i,j)}nin
j=1 for

every y(i) (i = 1, . . . , nout), the complexity of this method is O(noutnin). To reduce the computational
cost, a sample reuse technique is employed in [14]. That is, for every d, we drawn a fresh batch
from the prior {θ(k)}nout

k=1 and use this set for both the outer Monte Carlo and the inner Monte Carlo
(i.e., θ(·,j) = θ(k)). Consequently, the complexity is reduced to O(nout).
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3. GP Based Framework for Bayesian Optimal Design

Our main framework for Bayesian optimal design is based on two powerful tools according to
Gaussian processes: the Bayesian Monte Carlo (BMC) method and the Bayesian optimization (BO)
method. In this section, we first review BMC and conduct the analysis of BMC for the normal and the
uniform distributions, and then present our novel double loop Bayesian Monte Carlo (DLBMC) for
EIG. After that, we propose BO to find the maximizer of the approximated EIG. Finally, we review the
classical Markov chain Monte Carlo (MCMC) method for Bayesian parameter inference.

3.1. Bayesian Monte Carlo

Consider the integral problem I :=
∫
X f (x)p(x)dx , where p(x) is the density of x, f (x) : Rn → R

is the integrand, and X is the support of x, that is, the integration domain. The idea of BMC is to
formulate an integral problem into a Bayesian inference problem by placing a prior over the integrand
f and to obtain the posterior distribution of f conditioning on the data collected. A natural way
of putting a prior over function is through a Gaussian process, which is completely characterized
by its mean function µ(x) and kernel function k(x, x′), that is, f ∼ GP(µ(·), k(·, ·)). A commonly
used choice for the kernel function is the Gaussian kernel (or known as squared exponential kernel),
k(x, x′) = σ2

f exp(−‖x− x′‖2
2/(2l2)), where both σf and l are hyperparameters of the kernel function.

The choice of hyperparameters affects the result to a large extent. Therefore the hyperparameters
need to be determined carefully. Having collected noisy observations D = {x(i), f (i)}N

i=1, where f (i) =
f (x(i))+ ε(i) with Gaussian noises ε(i) ∼ N (0, σ2) , a Gaussian process provides a posterior distribution
for an arbitrary new point x?, f (x?)|D, x? ∼ N (µN(x?), σN(x?)) , with mean function µN(x?) and
variance function σN(x?) given by

µN(x?) := kN(x?)T(KN + σ2 I)−1 fN ,

σN(x?) := k(x?, x?)− kN(x?)T(KN + σ2 I)−1kN(x?) ,

where kN(x?) = [k(x?, x(i))]N×1, KN = [k(x(i), x(j))]N×N , and fN = [ f (i)]N×1 . In some special cases
(For example, when x is distributed with Gaussian and the kernel is a Gaussian kernel [25]), GP allows
us to estimate the integration in a closed form, of which the posterior mean is given by,

E f |D[I] =
∫∫
X

f (x)p(x)dxp( f |D)d f =
∫
X

[∫
f (x)p( f |D)d f

]
p(x)dx

=
∫
X
E f |D( f )p(x)dx =

∫
X

µN(x)p(x)dx =
∫
X

kN(x)T(KN + σ2 I)−1 fN p(x)dx

=
∫
X

kN(x)T p(x)dx(KN + σ2 I)−1 fN = zT(KN + σ2 I)−1 fN , (7)

where z :=
∫
X kN(x)T p(x)dx, and the posterior variance is given by

V f |D[I] = E f |D{[I −E f |D(I)]2} =
∫ [∫

X
f (x)p(x)dx−

∫
X

µN(x′)p(x′)dx′
]2

p( f |D)d f

=
∫∫
X×X

∫
[ f (x)− µN(x′)]2 p( f |D)d f p(x)p(x′)dx dx′ =

∫∫
X×X

V( f (x))p(x)p(x′)dx dx′

=
∫∫
X×X

k(x, x′)p(x)p(x′)dx dx′ − zT(KN + σ2 I)−1z . (8)

Note that in the above analytical expression of posterior mean and variance, when the hyperparameters
and the kernel function are given, z and K are determined by {x(i)}N

i=1 and they are independent of the
observations { f (i)}N

i=1. Therefore, the computation procedure for the posterior mean and variance of
the BMC estimator proceeds the following two steps: first, an input sample set {x(i)}N

i=1 is generated,
and z and K are computed; second, the corresponding observation set { f (i)}N

i=1 is collected, and the
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posterior mean and variance are computed through (7) and (8) respectively. Next, when x is an uniform
or Gaussian random vector, we provide detailed derivations for the posterior mean and variance of
BMC estimators.

Theorem 1 (Bayesian Monte Carlo for the standard Gaussian distribution). Consider the integral
I =

∫
X f (x)p(x)dx, where x is the standard Gaussian random variable vector in X = Rn. The prior

mean function is assumed to be a zero function, and the kernel is assumed to be the Gaussian kernel
k(x, x′) = σ2

f exp(−‖x − x′‖2
2/(2l2)) with predetermined hyperparameters σf and l. Having collected

noisy observations D = {x(i), f (i)}N
i=1 where f (i) = f (x(i)) + ε(i) and ε(i) ∼ N (0, σ2), the posterior mean

and variance of BMC are given by

E f |D[I] = zT(KN + σ2 I)−1 fN ,

V f |D[I] = σ2
f

(
l2

l2 + 2

)n/2

− zT(KN + σ2 I)−1z ,

where KN = [k(x(i), x(j))]N×N , fN = [ f (1), . . . , f (N)]N×1, and the components of z are

zi = σ2
f

(
l2

l2 + 1

)n/2

exp

(
− ‖x

(i)‖2

2(l2 + 1)

)
, (9)

for i = 1, . . . , N .

Proof. The components of z can be computed analytically, for i = 1, . . . , N ,

zi =
∫
X

σ2
f exp

(
−
‖x− x(i)‖2

2
2l2

)
1√
(2π)n

exp

(
− xTx

2

)
dx

=
σ2

f√
(2π)n

∫
X

exp

[
−1

2
xT (l

2 + 1)I
l2 x +

xTx(i)

l2 − ‖x
(i)‖2

2l2

]
dx

= σ2
f

∣∣∣∣∣ l2

l2 + 1
I

∣∣∣∣∣
1/2

exp

[
−‖x

(i)‖2

2l2 −
‖x(i)‖2

2
2l2(l2 + 1)

]

= σ2
f

(
l2

l2 + 1

)n/2

exp

(
−
‖x(i)‖2

2
2(l2 + 1)

)
.

Moreover, the variance of BMC is

V f |D[I] =
∫∫
X×X

k(x, x′)p(x)dxp(x′)dx′ − zTK−1
N z

=
∫
X

σ2
f

(2π)n/2 (2π)n/2

∣∣∣∣∣ l2

l2 + 1
I

∣∣∣∣∣
1/2

exp

(
−
‖x′‖2

2
2l2 +

‖x′‖2
2

2l2(l2 + 1)

)
p(x′)dx− zTK−1

N z

= σ2
f

(
l2

l2 + 1

)n/2 ∫
X

1
(2π)n/2 exp

(
− l2 + 2

2(l2 + 1)
‖x′‖2

2

)
dx− zTK−1

N z

= σ2
f

(
l2

l2 + 1

)n/2
1

(2π)n/2 (2π)n/2

(
l2 + 1
l2 + 2

)n/2

− zTK−1
N z

= σ2
f

(
l2

l2 + 2

)n/2

− zTK−1
N z .
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We note that Theorem 1 is presented in References [22,25], but we give the above detailed proof
for completeness.

Theorem 2 (Bayesian Monte Carlo for the uniform distribution). Consider the integral I =∫
X f (x)p(x)dx, where x is a random vector uniformly distributed in the hypercube X = [l1, r1]× · · · × [ln, rn].

The prior mean function is assumed to be a zero function, and the kernel is assumed to be the Gaussian kernel
k(x, x′) = σ2

f exp(−‖x− x′‖2
2/(2l2)) with predetermined hyperparameters σf and l. Having collected noisy

observations D = {x(i), f (i)}N
i=1 where f (i) = f (x(i)) + ε(i) and ε(i) ∼ N (0, σ2), the posterior mean of BMC

and the upper bound of variance of BMC are given by

E f |D[I] = zT(KN + σ2 I) f ,

V f |D[I] <
σ2

f

√
(2πl2)n

|X | − zT(KN + σ2 I)z ,

where KN = [k(x(i), x(j))]N×N , fN = [ f (1), . . . , f (N)]N×1, and the components of z are given by

zi =
σ2

f

|X |
n

∏
j=1

(Φ(xj; x(i)j , l, rj)−Φ(xj; x(i)j , l, lj)) , (10)

for i = 1, . . . , N , with Φ(x; µ, σ, t) being the cumulative distribution function (CDF) of the Gaussian
distribution N (µ, σ2).

Proof. The components of z can be computed analytically, for i = 1, . . . , N ,

zi =
∫
X

k(x, x(i))p(x)dx =
σ2

f

|X |

∫
X

exp

(
−‖x− x(i)|‖2

2l2

)
dx

=
σ2

f

|X |

∫
X

exp

−∑n
j=1(xj − x(i)j )2

2l2

dx =
σ2

f

|X |
n

∏
j=1

∫ rj

lj

exp

− (xj − x(i)j )2

2l2

dxj

=
σ2

f

|X |
n

∏
j=1

(Φ(xj; x(i)j , l, rj)−Φ(xj; x(i)j , l, lj)) ,

where Φ(x; µ, σ, t) =
∫ t

∞
1

σ
√

2π
exp

(
− (x−µ)2

2σ2

)
dx is the CDF of the Gaussian distributionN (µ, σ2) and

vj denotes the j-th component of the vector v. However, since the double integral of the Gaussian
density function has no analytical form, the variance of the estimator cannot be obtained, and we give
an upper bound of the variance,

V f |D[I] =
∫
X

∫
X

k(x, x′)p(x)dxp(x′)dx′ − zTK−1
N z <

∫
X

∫
Rn

k(x, x′)p(x)dxp(x′)dx′ − zTK−1
N z

=
σ2

f

√
(2πl2)n

|X |

∫
X

p(x′)dx′ − zTK−1
N z =

σ2
f

√
(2πl2)n

|X | − zTK−1
N z .
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3.2. Estimating the Expected Information Gain Using Double-Loop BMC

In general, the value of the EIG has no closed form and has to be approximated via numerical
methods. Based on the idea of BMC for efficiently evaluating integrals, we develop a double-loop
BMC (DLBMC) scheme to approximate the EIG.

Letting e(y, d) = p(y|d), g(d, y, θ) = {ln[p(y|θ, d)] − ln[p(y|d)]}p(y|θ, d) = {ln[p(y|θ, d)] −
ln[e(y, d)]}p(y|θ, d), and h(d, y) =

∫
Θ g(d, y, θ)p(θ)dθ, it is known that U(d) can be rewritten as

U(d) =
∫
Y

∫
Θ
{ln[p(y|θ, d)]− ln[e(y, d)]}p(y|θ, d)p(θ)dθ dy

=
∫
Y

∫
Θ

g(d, y, θ)p(θ)dθ dy =
∫
Y

h(d, y)dy .

First, we consider the straightforward detailed calculation of U(d) for any fixed d. To compute
U(d) =

∫
Y h(d, y)dy, we need samples {y(i), h(i) := h(d, y(i))}nout

i=1 , where y(i) ∼ U (Y)
for i = 1, . . . , nout, nout denotes the sample size of the outer layer. To compute h(i) :=∫

Θ g(d, y(i), θ)p(θ)dθ, samples {θ(i,j), g(i,j) := g(d, y(i), θ(i,j))}nin
j=1 are needed, where nin denotes

the sample size of the inner layer. Again, g(i,j) = {ln[p(y(i)|θ(i,j), d)] − ln[p(y(i)|d)]}p(y(i)|θ(i,j), d)
also involves another integration p(y(i)|d) =

∫
Θ p(y(i)|d, θ)p(θ)dθ, and therefore samples

{θ(i,j), p(y(i)|d, θ(i,j))}nin
j=1 are needed and θ(i,j) are generated from the prior. We propose using

the BMC method to evaluate integrals {e(i)}nout
i=1 , {h(i)}nout

i=1 , and U. So far, there are two problems.
First, the computation complexity for the forward model is O(ninnout), which grows fast with the
increase of the problem dimension. Second, since we usually have no prior knowledge of the support
Y of y, we can not uniformly sample {y(i)}nout

i=1 .
To overcome these obstacles, we employ the sample reuse technique [14] that sets θ(·,j) =

θ(j), and the computational complexity is reduced to O(nin). Besides, it allows us to generate
samples {θ(j)}nin

j=1 in advance, and we can use the corresponding forward model outputs to estimate

Y—suppose the corresponding forward model values are given by {G(j) = G(d, θ(j))}nin
j=1, and then

Y can be approximated by Ỹ := [min(G)− σ, max(G) + σ] where G = [G(1), . . . , Gnin ]T . In this way,
we can sample {y(i)}nin

i=1 ∼ U (Ỹ). Intuitively speaking, the approximated Ỹ is slightly smaller than
the actual field Y , and consequently, bias is induced in the estimator. With increased sample size nin,
Ỹ can be captured more accurately and the bias can be reduced.

In the process of estimating U, we propose using the BMC method to compute e, h and U.
Since two layers of integration are involved, let the hyperparameters of BMC for the inner layer
and the outer layer be {lin, (σf )in} and {lout, (σf )out} respectively. In our previous discussion about
BMC in (7)–(8), z and K can be computed, once the input sample set {x(i)}N

i=1 is given. Therefore,
for computational simplicity, after {θ(j)}nin

j=1 and {y(i)}nout
i=1 are generated, we can compute {zin, Kin}

and {zout, Kout} ahead. Taking the prior being the standard normal distribution for example, zin and
Kin are given by,

(zin)j = (σf )
2
in

(
l2
in

l2
in + 1

)nθ /2

exp

(
−
‖θ(j)‖2

2
2(l2

in + 1)

)
, for j = 1, . . . , nin ,

Kin = [(σf )
2
in exp(−‖θ(i) − θ(j)‖2

2/(2l2
in))]nin×nin .

Details of our DLBMC method for estimating U are summarized in Algorithm 1. Note that we only use
the mean estimates of the DLBMC estimator in the following. The variance of DLBMC is potentially
useful, but as discussed in Section 3.1, the variance of BMC typically does not have a closed form,
and we are not able to derive a closed form for the variance of DLBMC in this work. We will consider
the variance of DLBMC in our future work. It is also possible to consider other numerical integration
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methods to compute EIG, for example, the sparse grid quadrature rules [31,32] and their combination
with physical model reduction techniques [33], but they are out of the scope of this paper.

Algorithm 1 Double-Loop Bayesian Monte Carlo (DLBMC) for estimating EIG

1: Input: Design points d, prior p(θ), standard deviation of noise σ, hyperparameters {lin, (σf )in}
and {lout, (σf )out}.

2: Data preparation: Sample {θ(j)}nin
j=1 ∼ p(θ) and compute G(j) = G(d, θ(j)) for j = 1, . . . , nin.

3: Sample {y(i)}nout
i=1 ∼ U (min(G)− σ, max(G) + σ).

4: Compute {zin, Kin} and {zout, Kout}.
5: for i = 1, . . . , nout do
6: for j = 1, . . . , nin do
7: Compute the likelihood f (i,j) = p(y(i)|θ(j), d).
8: end for
9: Let f (i) = [ f (i,1), . . . , f (i,nin)]T .

10: Compute the evidence e(i) = zT
inK−1

in f (i).
11: for j = 1, . . . , nin do
12: g(i,j) = [log( f (i,j))− log(e(i))] f (i,j) .
13: end for
14: Let g(i) = [g(i,1), . . . , g(i,nin)]T .
15: Compute h(i) = zT

inKing(i).
16: end for
17: Let h = [h(1), . . . , h(nout)]T .
18: Compute Û(d) = zT

outK
−1
outh .

19: Output: the estimated EIG Û(d).

3.3. Bayesian Optimization

The ultimate goal of the optimal experimental design problem is to find the optimizer d? in (4).
In this problem, since the computing of the function value U(d) and the gradient ∇U is prohibitively
expensive, it is challenging to apply function-value-based or gradient-based optimization methods.
As the Bayesian optimization (BO) method [27,28,34,35] typically only requires a low objective function
evaluation budget [36] and does not require any gradient information, it can be suitable for this problem.
In this section, we give a brief review of BO and apply it to obtain the maximizer of EIG (4).

To compute the maximizer of EIG U : Rnd → R (see (4)), for a given maximum number of
iterations tmax, that is, the evaluation budget, Bayesian optimization begins with putting a GP prior on
U ∼ GP(µ0(d), k(d, d′)), and then randomly chooses an initial point d1 and collects the corresponding
response U1 = U(d1). Next, the posterior mean function µ1(d) and variance σ1(d) are updated
via collected data set S1 = {d1, U1}. Usually d1 alone is inadequate to find the maximum and
therefore we need a strategy to choose the next design point. Typically, the next point is determined
through maximizing an acquisition function A, that is, at t-th iteration, dt+1 = arg maxd A(d|S1:t).
After the next point d2 is obtained, we sample the objective function U2. The collected data set is
then augmented as S1:2 = S1 ∪ {d2, U2} = {di, Ui}i=1,2, and the posterior mean function µ2(d) and
the variance function σt(d) are also updated. The above procedure repeats until the given maximum
budget tmax is reached.

In the case that D is infinite, the process of finding the next design point dt+1 =

arg maxd∈D A(d|S1:t) is demanding. However, performing global search over the discretized space
is usually effective [27,37], since we assume that evaluating U is more costly than computing the
GP surrogate. Therefore, the design space D is discretized over equidistant grids and we denote the
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discretized design space as D. Supposing we have collected data set S1:t, the posterior of U is a GP
distribution with mean µt(d), kernel k(d, d′) and variance σ2

t (d),

µt(d) = kt(d)T(Kt + σ2 I)−1U1:t , (11)

σt(d) = k(d, d)− Kt(d)T(Kt + σ2 I)−1kt(d) , (12)

where kt(d) = [k(d, di)]t×1, Kt = [k(di, dj)]t×t and U1:t = [Ui]t×1. We note the design space considered
in this paper is assumed to be bounded, such that it can be directly discretized. For unbounded design
spaces, an unbounded Bayesian optimization approach is developed through gradually extending
regions with regularization in [38].

Choosing a proper acquisition function is crucial for the Bayesian optimization algorithm since it
guides the search for the optimum. Popular choices of acquisition function include maximizing the
probability of improvement (PI) [39,40], and maximizing the expected improvement (EI) in the efficient
global optimization (EGO) algorithm [41,42]. A review for the selection of acquisition functions is
in [27]. Suggested by [37], we apply the GP-UCB algorithm to choose the next point—the acquisition
function is set to a linear combination of the posterior mean function and the posterior variance
function,

dt = arg max
d∈D

µt−1(d) +
√

βt−1σt−1(d) ,

where µt−1(d) +
√

βt−1σt−1(d) can be considered as the upper confidence bound of the current
Gaussian process. It is clear that maximizing the acquisition function µt−1(d) +

√
βt−1σt−1(d) shows

a trade-off between exploring the point with potential high function value and exploiting the point
with high uncertainty. Here, βt−1 is the parameter balancing exploring and exploiting. Details of our
BO strategy for optimal design are shown in Algorithm 2.

We set the prior mean function to µ0(d) = 0, and set the kernel to be the Gaussian kernel given
by k(d, d′) = σ2

f exp(−‖d− d′‖2/(2l2)) . The design space D is discretized over equidistant grids and

we denote the discretized design space as D . In the step of maximizing the acquisition function,
dt is located through a grid search over D.

A natural measure in performance of the Bayesian optimization method is defined through
average cumulative regret. Supposing the maximum U(d?) is known, the instantaneous regret for
iteration t is defined as rt = U(d?)−U(dt) and the cumulative regret RT after T iterations is defined
as the sum of the instantaneous regrets RT = ∑T

t=1 rt. Then the average cumulative regret RT/T is
defined as RT/T = ∑T

t=1 rt/T. It should be noted that neither rt nor RT can be obtained directly
from the Algorithm 2. In [37], it is proven that, for finite design space D, setting δ ∈ (0, 1) and
βt = 2 log(|D|t2π2/6δ), the Bayesian optimization method is no-regret with high probability, that is,
limT→∞ RT/T = 0 .

Algorithm 2 Bayesian optimization (BO) for optimal design

1: Input: Design space D and its discretized design space D, prior µ0(d) = 0, hyperparameters
l, σf of the Gaussian kernel, hyperparameter δ, and maximum number of iterations tmax.

2: for t = 1, . . . , tmax do
3: Find the maximizer of the acquisition function: dt = arg maxd∈D µt−1(d) +

√
βt−1σt−1(d).

4: Sample the objective function Ut = Û(dt) using Algorithm 1.
5: Augment the data set S1:t = {di, Ui}t

i=1.
6: Perform Bayesian update to obtain µt and σt over D using (11) and (12) respectively.
7: Update βt .
8: end for
9: Output: Optimal design: d? = arg maxt=1,...,tmax Ut
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3.4. Bayesian Parameter Inference

After the optimal design points are selected and the corresponding noisy observations
D = {d(i), y(i)}N

i=1 are collected, we can conduct Bayesian inference for the system parameters,
that is, to assess the posterior distribution p(θ|D). The posterior p(θ|D) can be calculated via Bayes’
rule (1). However, as there is no closed-form for the evidence in (1) in many practical problems,
the Markov chain Monte Carlo (MCMC) method is often used to generate samples of the posterior
distribution. Next, we give a brief review of the MCMC algorithm.

The basic idea of MCMC is to construct a Markov chain over the state space until the chain
has reached a stationary distribution, which is assumed to be a target distribution. Here our target
distribution is set to be the posterior distribution p(θ|D). Although there are many variants of
MCMC, we focus on the Metropolis-Hastings MCMC (MH-MCMC) method [43–45]. The basic
idea of constructing the Markov chain in MH-MCMC algorithm is that at each step, given current
state θ, a candidate state θcand is proposed with probability q(θcand|θ), where q(·|·) is referred to as
the proposal distribution. Note that proposal distribution can be arbitrary. A commonly used proposal
is the symmetric Gaussian distribution, that is, q(θcand|θ) = N (θ, λI), where λ denotes the stepsize.
Whether to accept the candidate state is determined by the acceptance probability α, given by the
following formula,

α = min

{
1,

p(θcand|D)/q(θcand|θ)
p(θ|D)/q(θ|θcand)

=
p(θcand|D)

p(θ|D)

}
.

Note that the equation holds only when the proposal distribution is symmetric.
If p(θcand|D)/p(θ|D) > 1, it means that θcand is more possible than the current state θ, we accept the
proposal with probability α = 1. Otherwise, we accept the proposal with probability α. The detailed
MH-MCMC algorithm is summarized in Appendix B.

4. Numerical Experiments

In this section, we consider three numerical examples: a standard linear Gaussian model,
a nonlinear simple model, and a partial differential equation (PDE) model. Since the first problem has
analytical expressions, we examine the performance of our method by comparing the numerical result
with the exact solution. The second problem is a commonly-used test problem, and we demonstrate
the efficiency of our method through it. In the third test problem, a physical system governed by the
diffusion equation is considered, in which a contaminant source inversion problem is studied.

4.1. Test Problem 1: Linear Gaussian Problem

We consider the standard linear Gaussian problem in the following form,

G(θ, d) = θTd , y = G(θ, d) + ε ,

where the noise and the prior are assumed to be Gaussian, ε ∼ N (0, σ2) , θ ∼ N (0, Inθ×nθ
) and

nθ = nd. The posterior distribution is a multivariate Gaussian distribution

θ|d, y ∼ N (θ, Σ),

where the mean and the covariance are

θ =
y
σ2 Σd , Σ =

(
ddT

σ2 + I

)−1

.
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The expected information gain (EIG) for θ can then be given in a closed form. (The detailed deduction
is shown in Appendix A.),

U(d) = −1
2

log
[

det
(

Σ
)]

. (13)

Note that maximizing EIG is equivalent to minimizing the determinant of the posterior covariance
matrix [11] (the Bayesian D-optimal design).

We consider the one-dimensional case where nθ = 1, d ∈ [0, 1], and set the standard deviation
of the noise to σ = 0.1. The hyperparameters of DLBMC are set to lin = 0.5, (σf )in = 1, and lout =

0.2, (σf )out = 1. Figure 1 shows the exact EIG, the estimated EIG using DLMC with 300 samples,
and the estimated EIG using DLBMC with 300 samples. It can be seen that the estimated EIG of
DLBMC is more accurate and more stable than that of DLMC. Besides, for d = 0.3, the relationship
between the sample size and the bias of the DLMC and DLBMC estimators is studied. As the sample
size increases, we compute the bias of the DLBMC estimator and the DLMC estimator averaging
20 trails respectively. Figure 2(Left) shows the results of the bias, where it can be seen that the DLBMC
estimator converges to the true value faster than the DLMC estimator, and DLBMC is more accurate
than DLMC.

As discussed in Section 3.2, the variance of the BMC estimator for the uniform distribution is
not explicitly given. We use the sample variance as an alternative to compare the discrepancy of the
DLMC estimator and the DLBMC estimator. Fixing the design point d = 0.5, for different sample
sizes of DLMC and DLBMC, we repeatedly compute the estimator Û(d) n times, and denote them by
{Û(i)}n

i=1. Let U(d) denote the mean estimator, U(d) := 1
n ∑n

i=1 Û(i)(d), and then the sample variance
estimator is defined as

s2 :=
∑n

i=1(Û
(i)(d)−U(d))
n− 1

.

As the number of repeat times n increases, we compare the sample variance of two estimators with
different sample sizes for DLMC and DLBMC in Figure 2(Right). It is clear that the DLBMC estimator
outperforms the DLMC estimator.

0 0.5 1
0

0.5

1

1.5

2
DLBMC

DLMC

Exact

0.4 0.45 0.5
1.4

1.5

1.6

(a) Estimated EIG Û(d) with 300 samples

0 0.5 1
0

0.5

1

1.5

2
DLBMC

DLMC

Exact

(b) Estimated EIG Û(d) with 300 samples (one
realization)

Figure 1. Estimated expected information gain (EIG) profile over the design space for test problem 1.
(a) Pink and gray shaded areas represent the interval containing 80% of 20 independent estimates of
two estimators at each d respectively. Blue line and red line indicates the means of estimates. (b) One
set of realizations of the two estimators.
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Figure 2. (Left) Error averaging over n = 20 trails versus the sample size of DLMC and DLBMC.
(Right) Sample variance versus the repeat times for different sample sizes of double-loop Monte Carlo
(DLMC) and double-loop Bayesian Monte Carlo (DLBMC) (numbers in the parenthesis indicate the
sample sizes).

4.2. Test Problem 2: Nonlinear Simple Problem

In this section, a simple nonlinear model is tested, which is also studied in [14]. This model is
written as

G(θ, d) = θ3d2 + θ exp(−|0.2− d|) ,

the prior is set to θ ∼ U (0, 1), and the standard deviation of the observation noise is set to σ = 0.01.
The hyperparameters of DLBMC are set to lin = 0.01, (σf )in = 0.2, and lout = 0.05, (σf )out = 0.2.

Figure 3a,b show the estimated EIG using DLMC and DLBMC with 300 and 500 samples
respectively. A reference solution using DLMC with 105 samples is also compared in Figure 3a,b.
Here, 20 trails of the DLMC estimator and the DLBMC estimator are generated, and Figure 3 shows
the mean estimates and the intervals containing 80% of the trails. It is clear that, compared to DLMC,
our DLBMC estimator has smaller variances. Compared to the reference solution, DLBMC gives biased
estimation. With the increasing sample size, the extent of bias is reduced as we expect.

0 0.2 0.4 0.6 0.8 1
2.9

3

3.1

3.2

3.3

3.4

DLBMC

DLMC

Reference

(a) Estimated EIG Û(d) with 300 samples

0 0.2 0.4 0.6 0.8 1
2.9

3

3.1

3.2

3.3

3.4

DLBMC

DLMC

Reference

(b) Estimated EIG Û(d) with 500 samples

Figure 3. Estimated EIG profile over the design space for test problem 2. Pink and gray shaded areas
represent the interval containing 80% of 20 independent estimates of EIG at each d for DLBMC and
DLMC respectively. Blue line and red line denotes the means of these estimators. Green line denotes
the reference solution given by DLMC with 105 samples.

To illustrate the effect of optimal design, we compare the posterior distribution given by three
design points. Let design A = 1 be the optimal design point, let design B = 0.2 be the local maximizer
of the EIG, and let design C = 0 which has the least information since it has the least EIG value.
The MH-MCMC algorithm (Algorithm A1) with Niter = 1000 and γ = 0.2 is used to generate samples
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of the posterior distribution, and kernel density estimation is used to obtain the posterior density
functions from these samples. For this test problem, the ground-truth is set to 0.75. From Figure 4,
it can be seen that the posterior distribution obtained through design A is the most accurate, and it has
the smallest variance.

0.7 0.75 0.8
0

20

40

60

80

100 Design A

Design B

Design C

True Value

Figure 4. Posterior density functions given by different designs.

4.3. Test Problem 3: Source Inversion for the Diffusion Problem

Letting D ⊂ R2 be a bounded and connected domain with a polygonal boundary ∂D,
the governing equation of the diffusion problem studied in this test problem is: find a random
function u(x, ω) ∈ D×Ω→ R, such that P-a.e. in Ω,

−∇2u(x, ω) = f (x, ω) , in D , (14)

u(x, ω) = 0 , on ∂D , (15)

where (Ω,F ,P) is a probability space. We consider a square physical domain D = [−1, 1]× [−1, 1] ⊂
R2, and u(x, ω) in (14)–(15) denotes the concentration of a contaminant at the point x ∈ D.
Let f (x, ω) denote the field of contaminant source. As f is usually strictly positive following the
setting in [13,46–48], we set the prior distribution of f (x, ω) to a log-normal random field, that is,
f (x, ω) = exp(a(x, ω)) where a(x, ω) is a normal random field. In this study, the experimental goal
is to infer the underlying contaminant field f given several observations {xi, yi}K

i=1, where design
variable xi denotes i-th sensor placement, the response is the corresponding numerical PDE solution
u(xi) with additional noise, that is, yi = u(xi) + εi, εi ∼ N (0, σ2), and K is the number of
sensors. In this test problem, the hyperparameters of DLBMC are set to lin = 0.02, (σf )in = 0.01,
and lout = 0.005, (σf )out = 0.005.

We parameterize the permeability field log[ f (x, ω)] by a truncated Karhunen-Loève (KL)
expansion. Consider the random field a(x, ω) = log[ f (x, ω)] with mean function a0(x), standard
deviation σ and covariance function C(x, y),

C(x, y) = σ exp

(
−|x1 − y1|

c
− |x2 − y2|

c

)
, (16)

where c is the correlation length. Then the truncated KL expansion of f is expressed as

f (x, ω) ≈ exp

(
a0(x) +

M

∑
n=0

√
λnξnan(x)

)
, (17)

where an(x) and λn are the eigenfunctions and eigenvalues of (16) and {ξn}M
n=1 are uncorrelated

random variables. The prior of {ξn}M
n=1 are set to be independent standard normal distributions,

ξn ∼ N (0, 1) for n = 1, . . . , M.
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In the numerical experiment, we set a0(x) = 1, c = 2 and σ = 1. Fixing the hyperparameters in
the truncated KL expansion, the response depends on the random variables {ξi}M

i=1. Therefore we
define the parameter of interest as θ := [ξ1, . . . , ξM], and rewrite the governing diffusion equation as,

−∇2u(x, θ) = f (x, θ) , in D × Γ , (18)

u(x, θ) = 0 , on ∂D × Γ . (19)

We use the bilinear finite element method (FEM) to discretize the diffusion equation over a 17× 17
square grid and let the standard deviation of noise be 1% of the mean observed value. Supposing K
sensors are placed over the design space, generally, we can perform a batch design, and write the
following altered forward model

y1
...

yi
...

yK


=



G(d1, θ)
...

G(di, θ)
...

G(dK, θ)


+



ε1
...

εi
...

εK


= G(d1:K, θ) + ε ,

where the subscript i denotes the i-th design variable for i = 1, . . . , K. Directly maximing over the EIG
with altered forward model can give optimal design in the context of batch design.

Let ftruth denote the underlying true permeability field. Suppose we have collected data on K
sensors, and then we perform MCMC to get samples {θ(i)}Niter

i=1 of the posterior distribution using
Algorithm A1. In this test problem, we set Niter = 4000. Two useful statistics can be obtained from the
samples—the maximum a posterior (MAP) estimate θMAP and the mean estimate θMEAN. Let fMAP

and fMEAN be the source fields generated by θMAP and θMEAN respectively. To test the accuracy of the
inversion, we introduce the following relative errors

EMAP =
‖ fMAP − ftruth‖2

‖ ftruth‖2
,

EMEAN =
‖ fMEAN − ftruth‖2

‖ ftruth‖2
,

where ftruth, fMAP and fMEAN are discretized over the FEM grids for computational simplicity and
‖ · ‖2 denotes the l2 vector norm.

Noting that performing grid search over (17× 17)K grid is computationally expensive, we utilize
Bayesian optimization method to efficiently find the optimal designs within a few iterations.
Three cases of K are considered in the following, which are K = 1, 2, 3.

First, for K = 1, we first perform Bayesian optimization over a 17× 17 grid. The performance of
Bayesian optimization is shown in Figure 5. In Figure 5(Left), we can see that, Bayesian optimization
can find the maximum of the EIG within a few iterations. The optimal design found by Bayesian
optimization is [0, 0], which is expected due to the symmetry of the forward model. In this case, as the
number of gird points (289 points) is not too large, we can verify that the optimal design is [0, 0]
through grid search. Figure 5(Right) shows that the average cumulative regret is convergent to zero.
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Figure 5. (Left) Maximum EIG value at iteration t of Bayesian optimization. (Right) Average
cumulative regret at iteration t of Bayesian optimization. K = 1, test problem 3.

For comparison, we randomly generate 20 different design points and use the MH-MCMC
algorithm to generate 4000 samples of the posterior distribution. Figure 6 shows the locations of the
optimal design and the 20 random designs. Figure 7a,b show the relative errors of MAP and mean
estimates of the source field (averaged over 20 trails) versus the values of EIG, where it is clear that
as the value of EIG becomes larger, the errors of both MAP and mean estimates reduce. In addition,
the optimal design point gives large EIG values and relatively small errors. Although the errors
associated with the optimal design point are typically smaller than the errors associated with the
random design points. They are still large, and the estimated source fields are not accurate enough.
Therefore, we next consider more design points.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Opt design

Random design

Figure 6. Sensor locations for K = 1, test problem 3.
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Figure 7. Value of EIG versus the relative errors averaged over 20 trails, K = 1, test problem 3.



Entropy 2020, 22, 258 16 of 24

For the multiple design cases (K = 2, 3), given the fact that the computational cost of batch design
increases exponentially as K increases, we perform Bayesian optimization over a uniform 9× 9 coarse
grid. For K ≥ 2, it can be seen that the optimal solution is not unique due to the symmetry of the
forward model, for example, [x1; x2] and [−x1;−x2] share the same EIG value. After performing
Bayesian optimization several times with BO budget tmax = 100, the sets of optimal designs for K = 2
case are shown in Figure 8, where each line connecting blue circle and red circle represents a pair of
optimal design. The numerical result shows that, compared with a pair of two design points that are
symmetric with respect to [0; 0], a pair of slightly skewed design points can provide more information.

-1 -0.5 0 0.5 1
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-0.5

0

0.5

1

Figure 8. Optimal design (each line connecting blue circle and red circle represents a pair of optimal
design points), K = 2, test problem 3.

Again, we randomly generate 20 sets of design points, and compare them with the optimal design
(we choose [0.5, 0.5;−0.5,−0.25]). Figure 9 shows the errors of MAP and mean estimates (averaged
over 20 trails) of the source field versus the values of EIG, where it is clear that the optimal design
leads to the largest EIG value and the smallest error. Besides, the comparison of true source field and
the fields generated by MAP and mean estimates are presented in Figure 10. It can be seen that the
estimated source field associated with the optimal design matches the true source field well.
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Figure 9. Value of EIG versus the relative errors averaged over 20 trails, K = 2, test problem 3.

For K = 3, let the BO budget tmax = 100, the set of optimal design that found by Algorithm 2
is [0.75, 0.25; 0.5,−0.25;−0.75,−0.25]. Figure 11 shows the values of EIG and the relative errors in
MAP and mean estimates (averaged over 20 trails) for the optimal design and twenty random designs,
where it can be seen that the optimal design has the largest EIG value and the smallest errors which
are consistent with the results for K = 1, 2. Figure 12 shows that the estimated source fields generated
by the MAP and the mean estimates match the true source field well.
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Figure 10. Comparison of the true source field and estimated source fields by MAP and mean estimates
for K = 2, test problem 3.

To further quantify the performance of optimal designs, we compute the ratio of EMAP of random

designs and EMAP of optimal designs (denoted as E(random)
MAP and E(opt)

MAP respectively) for K = 1, 2, 3 cases.

Figure 13 presents the histograms of ratio of relative errors (i.e., E(random)
MAP /E(opt)

MAP), where the green
lines are the corresponding kernel smoothing function estimates. We can see that, in all three cases,
with high probability, the optimal design can give better posterior performance than the random
designs. Especially, from Figure 13c, the error of random designs can be ten times greater than that of
the optimal design.
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Figure 11. Value of EIG versus the relative errors averaged over 20 trails, K = 3, test problem 3.
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Figure 12. Comparison of the true source field and estimated source fields by MAP and mean estimates
for K = 3, test problem 3.

(a) K = 1 case (b) K = 2 case

(c) K = 3 case

Figure 13. Histograms of E(random)
MAP /E(opt)

MAP. Green lines denotes the kernel smoothing function estimates.

5. Conclusions and Discussion

Efficiently using a small number of samples to reduce the cost of computing the expected
information gain (EIG) is a fundamental concept to solve the challenging Bayesian optimal
experimental design problem. Based on the Bayesian Monte Carlo (BMC) method, a novel double-loop
Bayesian Monte Carlo (DLBMC) estimator is proposed for evaluating the EIG in this work. To result in
an efficient overall optimization procedure to find the maximizer of the EIG, a Bayesian optimization
(BO) procedure for EIG is developed. In addition, our analysis gives explicit expressions of the
mean estimate of the BMC estimator and the bounds of its variance for the uniform and the normal
distributions. Detailed numerical studies show that our DLBMC method can provide accurate mean
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estimates with small variances, and the overall BO procedure leads to optimal designs which give
efficient Bayesian inference results.

As our novel DLBMC estimator for EIG is based on Gaussian process, it is currently limited to
low-dimensional problems where the number of design variables is not large. In this work, the classical
BO and MCMC approaches are used, and it is not straight forward to apply them for high-dimensional
problems. For high-dimensional Bayesian optimal design problems with a large number of design
variables, a possible solution is to conduct a sequential design procedure, and apply DLBMC at each
step in the sequential procedure. Conducting a systematic DLBMC based on the sequential design will
be the focus of our future work.

Author Contributions: Conceptualization, Z.X. and Q.L.; methodology, Q.L.; software, Z.X.; validation, Z.X.;
formal analysis, Z.X.; investigation, Z.X.; resources, Z.X.; data curation, Z.X.; writing—original draft preparation,
Z.X.; writing—review and editing, Q.L.; visualization, Z.X.; supervision, Q.L.; project administration, Q.L.;
funding acquisition, Q.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (No. 11601329).

Acknowledgments: The authors thank Jinglai Li for helpful discussions, and the anonymous reviewers for their
thoughtful comments and suggestions that helped us improve our work and article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Deduction of Linear Gaussian Model

We consider the standard linear Gaussian model,

G(θ, d) = θTd , y = G(θ, d) + ε ,

where the noise and prior are assumed to be Gaussian, ε ∼ N (0, σ2
n) , and θ ∼ N (0, In×n).

p(θ) =
1

(2π)n/2 exp
(
−1

2
θTθ

)
.

then the likelihood is given by

p(y|d, θ) =
1√

2πσn
exp

(
− (y− G(d, θ))2

2σ2
n

)

=
1√

2πσn
exp

(
− (y− θTd)2

2σ2
n

)
.

The posterior is given by

p(θ|y, d) =
p(y|θ, d)p(θ)

p(y|d) ∝ p(y|θ, d)p(θ)

∝ exp

[
− (y− θTd)2

2σ2
n

− θTθ

2

]

= exp

−1
2

θT

(
ddT

σ2
n

+ I

)
θ +

y
σ2

n
θTd +

y2

2σ2
n


∝ exp

−1
2
(θ − θ)T

(
ddT

σ2
n

+ I

)
(θ − θ)

 ,

where

θ =
y
σ2

n

(
ddT

σ2
n

+ I

)−1

d , Σ =

(
ddT

σ2
n

+ I

)−1

.
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By the definition of expected information gain,

U(d) =
∫
Y

∫
Θ

log

[
p(θ|y, d)

p(θ)

]
p(θ|y, d)dθ dy .

Supposing θ|y, d ∼ N (θ, Σ), then we have

p(θ|y, d)
p(θ)

=
1

(det Σ)1/2
exp(− (θ − θ)Σ−1(θ − θ)

2
+

θTθ

2
) .

Thus,

log
p(θ|y, d)

p(θ)
= −1

2
ln(det Σ)− (θ − θ)Σ−1(θ − θ)

2
+

θTθ

2
.

Below, we show that

∫
y

∫
Θ

(θ − θ)Σ−1(θ − θ)

2
p(θ|y, d)dθp(y|d)dy

=
∫

y

∫
Θ

θTθ

2
p(θ|y, d)dθp(y|d)dy.

Let z = Σ−1/2θ, which can be viewed as a linear transformation of a random vector. We have that
z = Σ−1/2θ, and the covariance of z is

V(z) = E[(z− z)(z− z)T ]

= Σ−1/2E[(θ − θ)(θ − θ)T ]Σ−1/2 = I. (A1)

Taking (A1) at hand, the following equation can be obtained

∫
Θ

(θ − θ)Σ−1(θ − θ)

2
p(θ|y, d)dθ =

∫
Z

(z− z)T(z− z)
2

p(z|y, d)dz

=
n

∑
i=1

E[(zi − zi)
2]/2 = n/2.

Then we also have ∫
y

∫
Θ

(θ − θ)Σ−1(θ − θ)

2
p(θ|y, d)dθp(y|d)dy = n/2.

Next, we consider the integration
∫

y

∫
Θ

θTθ
2 p(θ|y, d)dθp(y|d)dy. Since p(θ|y, d)p(y|d) =

p(θ)p(y|θ, d),

∫
y

∫
Θ

θTθ

2
p(θ|y, d)dθp(y|d)dy =

∫
y

∫
Θ

θTθ

2
p(θ)dθp(y|θ, d)dy

=
∫

Θ

θTθ

2
p(θ)

∫
y

p(y|θ, d)dy dθ =
∫

Θ

θTθ

2
p(θ)dθ = n/2.

Therefore we have the analytical form of EIG,

U(d) = −1
2

log
[

det
(

Σ
)]

. (A2)
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Appendix B. Metropolis-Hastings MCMC Algorithm

Algorithm A1 The Metropolis-Hastings Markov chain Monte Carlo (MH-MCMC) algorithm

1: Input: Prior p(θ), stepsize γ, maximum number of iterations Niter.
2: Initialize: θ(0) ∼ p(θ).
3: for i = 1, 2, . . . , Niter do
4: Propose: θcand = θ(i−1) + γN (0, I) .
5: Acceptance Probability:

6: α(θcand|θ(i−1)) = min
{

1, p(θcand|D)

p(θ(i−1) |D)

}
.

7: Draw u ∼ U (0, 1).
8: if u < α then
9: Accept the proposal: θ(i) ← θcand.

10: else
11: Reject the proposoal: θ(i) ← θ(i−1).
12: end if
13: end for
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