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Abstract: In the process of digital micromirror device (DMD) digital mask projection lithography,
the lithography efficiency will be enhanced greatly by path planning of pattern transfer. This paper
proposes a new dual operator and dual population ant colony (DODPACO) algorithm. Firstly,
load operators and feedback operators are used to update the local and global pheromones in
the white ant colony, and the feedback operator is used in the yellow ant colony. The concept of
information entropy is used to regulate the number of yellow and white ant colonies adaptively.
Secondly, take eight groups of large-scale data in TSPLIB as examples to compare with two classical
ACO and six improved ACO algorithms; the results show that the DODPACO algorithm is superior
in solving large-scale events in terms of solution quality and convergence speed. Thirdly, take PCB
production as an example to verify the time saved after path planning; the DODPACO algorithm is
used for path planning, which saves 34.3% of time compared with no path planning, and is about 1%
shorter than the suboptimal algorithm. The DODPACO algorithm is applicable to the path planning
of pattern transfer in DMD digital mask projection lithography and other digital mask lithography.

Keywords: path planning; dual-operator and dual-population ant colony algorithm; adaptive algorithm;
pattern transfer; DMD

1. Introduction

Lithography plays a leading role in micro-nano manufacturing and many other industrial
applications. The traditional lithography technology is to convert the light to the substrate through the
physical mask. After converting, the photoresist on the substrate is exposed to complete the pattern
transfer. Then, lithography was achieved through the subsequent process. However, the high cost,
time consuming nature, and lack of flexibility of mask manufacturing have become the bottlenecks
of lithography [1]. In recent years, electron beam [2], laser direct writing [3], laser interference
lithography [4], focused ion beam [5], and DMD projection lithography [6] are employed to solve
this problem. These lithographic methods are mostly single-spot exposure, and even the area array
multi-point projection exposure of DMD has a small exposure area at high resolution. Compared with
the physical mask, digital mask lithography has a lower pattern transfer efficiency. When performing
micron lithography on large-area patterns, the principle of projection lithography system based on
DMD [7] is shown in Figure 1a. The system is composed of light source, DMD, optical system
(Fourier lens, Fourier filter, reduction lens), software system, 3D mobile platform, etc. In the process
of digital mask exposure, DMD has the advantages of large exposure area, high resolution, high
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production efficiency, and low cost [8–10], which is widely used in MEMS production [11], micro
optical device processing [12–14], 3D micro-nano structure processing [15–17], pattern transfer of
printed circuit board (PCB) [18], etc. The output beam from the light source is irradiated onto the
DMD after passing through the reflector. According to the designed digital pattern, the computer
controls the DMD micromirror to modulate the light to generate a digital mask. After the modulated
beam is reduced by the optical system, the photoresist on the substrate is exposed to realize the pattern
transfer. For some large-area pattern transfer applications, such as transferring conductive patterns on
a PCB [18], the DMD projection area is much smaller than the substrate area. The substrate is divided
into multiple cells by the software, each cell representing the area where the DMD is projected once,
as shown in Figure 1b. The conductive pattern of the PCB does not completely cover the substrate.
Green represents cells with conductive patterns, and white represents cells without conductive patterns.
When the DMD is projected to a certain cell and a pattern transfer is completed, the 3D mobile platform
moves to the next cell for the next pattern transfer. If DMD projection exposure traverses every cell
to transfer patterns, the exposure staying in the white cells will greatly reduce the DMD pattern
transfer efficiency. If we use some algorithms to plan the walking path of the 3D mobile platform
and make it move as shown by the arrow in Figure 1b, the walking distance of 3D mobile platform
will be greatly shortened and the efficiency of pattern transfer will be effectively improved. In the
literature [1,13,19–22], multi-DMD exposure head, exposure dose enhancement, light source uniform,
Wobulation technology, and other technologies were used to improve the exposure efficiency and
resolution. However, the production efficiency was reduced without the optimization of invalid stay
and exposure at the nonconductive part of the transfer pattern. Figure 1b shows an enlarged image of
a substrate by path planning after pattern transfer. Move the 3D platform so that the DMD is projected
onto each green cell. The 3D mobile platform is required to have the shortest moving path, and the
DMD cannot repeatedly project a certain green cell—for example, the motion path shown by the
arrow in Figure 1b, and this path planning is similar to the traveling salesman problem (TSP) [23].
Yang et al. [24] used a genetic algorithm to plan the path of small area silicon wafer pattern transfer
lithography, and the exposure efficiency of the lithography machine to the silicon wafers was increased
by about 6%. However, this method does not provide a solution to the problem of large-area and no
patterns to be transferred on the substrate. When solving large-scale TSP problems, genetic algorithm
have the disadvantage of slow convergence, and ant colony algorithm have the advantage of solving
large-scale problems [25,26].
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In 1991, Italian researcher Marco Dorigo et al. [27,28] proposed a highly innovative MetaHeuristic
Algorithm inspired by the real foraging behavior of ants: Ant System. After decades of development,
researchers have proposed an ant colony optimization (ACO) algorithm [29] and ant colony system
(ACS) algorithm [30]; good results were obtained. However, there are still problems of slow convergence
and poor quality of the solution when dealing with large-scale problems. The conventional optimization
strategy of the ant colony algorithm is to improve the pheromone updating strategy, local search,
and parameter selection to achieve an ideal solution or convergence rate [31]. Deng et al. [32] improved
ant colony optimization algorithm from pheromone updating strategy and pheromone diffusion
mechanism to solve the Scheduling Problem. Zhang et al. [33] proposed a multi-population ant colony
optimization algorithm based on congestion factor and co-evolution mechanism to solve a large-scale
traveling salesmen problem with better performance. Chen et al. [34] proposed an entropy-based
dynamic heterogeneous ant colony optimization to solve a large-scale traveling salesman problem.
Jia et al. [35] applied a local optimization strategy to optimize the ant colony algorithm, solving
the problems of manufacturing time and energy consumption. Sun et al. [36] used multiple ant
colonies for the solution and determined strategies for information exchange among ant colonies
according to the information entropy of each population to guarantee the balance of its convergence
and diversity. Guan et al. [37] used information entropy to choose the positive or negative feedback
strategy. A repulsive operator was used in literature [38] used to improve the ant colony algorithm.
Li et al. [39] improved the ant colony algorithm by using crossover operator to enhance the global
search ability. Mohsen et al. [40] improved the ant colony algorithm by using a mutation operator to
increase the ants’ population diversity.

It can be concluded from the above literature that local pheromone update strategy or global
pheromone update strategy is very effective to improve the ant colony algorithm. However, there
still exists the disadvantage of slow convergence speed or easily falling into local optimum values
to optimize large-scale problems. Inspired by the literature [36–40], various types of operators are
beneficial to optimize pheromone update strategy, and information entropy can classify the population.
Therefore, this paper proposes a new dual operator and dual population ant colony (DODPACO)
algorithm to achieve the goals of accelerating convergence and improving the quality of the solution.
Using the DODPACO algorithm to plan the walking path of DMD 3D mobile platform based on the
stepper system DMD pattern transfer system can effectively reduce the walking path length of the
DMD 3D mobile platform to improve the exposure efficiency in the process of PCB pattern transfer.

2. Methods

2.1. ACS Algorithm

In the ACS algorithm, the state transition rule is as follows: τmn represents the pheromone
concentration between city m and city n; ηmn represents the heuristic information on the edge (m, n),
and is the reciprocal of the distance between city m and city n. An ant k located in city m selects the
next city n according to Equation (1) [29]. allowedk represents the collection of cities that ant k can
choose. α reflects the influence of pheromone concentration on the path selection of subsequent ants,
which is called the pheromone factor. β reflects the influence of distance length between cities on ant
path selection, which is called expectation heuristic information factor:

Pmn =


[τmn]

α[ηmn]
β∑

u∈allowedk
[τmu]

α[ηmu]
β n ∈ allowedk

0 else
(1)
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In ACS, only globally optimal ants are allowed to release pheromones, which is called global
pheromone update strategy. The global pheromone update rule is given by Equation (2) [30]:

τmn ←

 θ× τmn + (1− θ) ×
(
Lgb

)−1
(m, n) ∈ global optimal solution

θ× τmn else
(2)

where Lgb is the global shortest path length. The parameter θ(0 < θ < 1) represents the pheromone
retention parameter.

In addition to the global pheromone update rule, ACS also contains a local pheromone update
rule. Each time an ant passes through an edge (m, n) during an iteration to update the pheromone
concentration on the path by calling Equation (3). ε represents the pheromone retention parameter,
which satisfies 0 < ε < 1:

τmn ← ε× τmn + (1− ε) × τ0 (3)

2.2. Improvement Strategy

2.2.1. Self-Adaptive Ant Colony Division

The ant colony is divided into two populations: yellow ant colony and white ant colony. Different
operators are set for the two populations, and then the relationship between the two populations is
adjusted dynamically by adjusting the number of ants of the two populations adaptively, so as to solve
the problem of contradiction between the quality of solution and the speed of convergence. The yellow
ant colony plays a major role in the early stage to improve the quality of the solution, whereas the
white ant colony plays a major role in the late stage to accelerate the convergence speed.

Assuming that the total number of the ants is G, Gw represents the number of white ants in the
white ant colony, Gy represents the number of yellow ants in the yellow ant colony, k represents the
current number of iterations, and K represents the maximum number of iterations. According to
Equation (4), the number of ants in the yellow and white ant colonies is obtained: Gw = 1

4−3 k
K

G

Gy = G−Gw
(4)

In the initial implementation of the algorithm, the number of white ant colonies and yellow
ant colonies is about 25% and 75% of the total ant colonies, respectively. When iterating to about
2000 generations, the number of white ant colonies is about 50% of the total ant colonies. When all
the iterations are completed, all ants belong to the white ant colony. The white ant colony has a low
proportion in the early stage and plays a small role, whereas the number in the later stage increases
rapidly and plays a major role in improving the convergence rate of the algorithm in the later stage.
Correspondingly, the yellow ant colony plays a great role in the early stage to improve the quality of
the solution. With the rapid decrease of the number in the later stage, its influence on the algorithm
gradually decreases.

There are x paths after t iterations. The ratio of the ants on each path is Pm = am/G (m = 1, 2, . . . , x),
am is the number of ants on path m, and the total number of ants that have participated in the iterations
is A, and A =

∑x
m=1 am, A ≤ G. The information entropy expression for defining the path diversity is

Equation (5):

e(t) = −c
∑x

m=1
Pm(t) log2 Pm(t) (5)

Formula (5) represents the uncertainty of ant selection path in the t-th iteration, where c is the
weight coefficient. When G ants generate G paths iteratively, the number of generated paths is the
largest, and the information entropy is the largest. With the path optimization, ants gradually gather on
the optimal paths, and the information entropy becomes smaller. Therefore, the change of information
entropy can reflect the evolution degree of ant population.
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When the ant colony evolves to a certain degree, the convergence of the algorithm will be
accelerated. To describe this degree, the proportion of ants choosing the same path to the total number
of ants is ρ; then, Equation (6) represents the value of information entropy at this point:

W = −c
[
ρ log2 ρ+ (1− ρ) log2(1− ρ)

]
(6)

When ρ×G ants choose the same path, which is (ρ) ≥ e(t), the algorithm will enter a new stage.
In this stage, the yellow ant colony is killed, and the corresponding number of white ants is activated
to accelerate the convergence of the algorithm.

2.2.2. Feedback Operator

All ants complete one iteration and record the path length of each ant in this iteration. If the
iteration finds a better solution, the pheromone distribution of the current path is beneficial to
optimization, which can accelerate the accumulation of pheromones and speed up the acquisition of
the optimal solution; if the result of the iteration is equal to the current optimal solution, it is necessary
to continue the optimization; if the result of the iteration is inferior to the current optimal solution and
the pheromone distribution of the current path is not conducive to the optimization, then the method
of slowing down the accumulation of pheromones is used to change the choice of the path and look
forward to finding the optimal solution. The shortest path of the r-th iteration is Ψmin, the average path
length of this iteration is Ψmean, and the optimal path of the previous (r− 1) iterations is Ψopt. Thus,
Equation (7) is the feedback operator formula obtained:

δ = 1− cos
(

Ψmean −Ψmin − 1
Ψmean −Ψopt − 1

×
π
2

)
(7)

When the shortest path of the r-th iteration is less than the optimal path of the previous (r− 1)
iterations, 1 < δ ≤ 2, a shorter path is found. The feedback operator plays a positive feedback role in
pheromone update and path selection of the next iteration. If the shortest path of the r-th iteration is
greater than or equal to the optimal path of the previous (r− 1) iterations, 0 ≤ δ ≤ 1. If no shorter path
is found, no function or negative feedback function will be played.

2.2.3. Load Operator

When the number of cities is b and the ant is located in city m, a certain amount of pheromones
are accumulated on the optional (b− 1) roads. Load operator is introduced to measure the load degree
of pheromone on a certain path. Load operator represents the ratio of pheromone concentration on a
path to the sum of pheromone concentration on (b− 1) paths, as shown in Equation (8):

ωmn =
τmn(t)∑b−1

r=1 τmn(t)
(8)

We can conclude that, when b is large enough, theωmn value is close to 0. The upper limit λ of the
load operator is set, and when the load operator on the path (m, n) exceeds λ, the concentration of the
path information is regulated by reducing the information on the path. The function of load operator:
avoid falling into local optimization in the early stage, change its upper limit to make it fail properly in
the later stage, and reduce its influence on convergence speed.

2.3. Self-Adaptive Dual-Population Ant Colony

2.3.1. Convergence Rate Optimization

In the classical ant colony algorithm, the conventional method is to update pheromones locally or
globally. This single pheromone update method will reduce the convergence speed, and it is easy to fall
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into local optimum, and it is difficult for it to jump out. In the improved algorithm, the solution results
of a single white ant can be locally updated, and the solution results of the white ant colony can be
globally updated by a comprehensive application. The two pheromone update rules of the improved
algorithm are shown in Equation (9), where ω is the load operator of side (m, n), δ is the feedback
operator, ε is the pheromone retention parameter during local update, and θ is the pheromone holding
parameter during a global update:

τmn(t + 1) =

 Υ× τmn(t) +ωmn × δ× (1−Υ) × τ0 (ωmn ≥ λ)∩ (Υ = ε∪Υ = θ)

Υ× τmn(t) + (1 +ωmn) × δ× (1−Υ) × τ0 else∩ (Υ = ε∪Υ = θ)
(9)

In the early stage of the algorithm, the next node is selected through the distance between nodes,
and the nodes are selected many times, resulting in excessive accumulation of pheromone concentration
on the path. Under the positive feedback mechanism, pheromone accumulation continued, which
affects the selection of the next iteration time point, so that it is impossible to jump out of the local
optimal to obtain a better solution. Whenωmn ≥ λ, asωmn is small, the accumulation of pheromones on
this edge can be limited, and the excess of pheromones on a single edge can be rejected. According to the
definition of δ, if the optimal path is found after the (t + 1)-th iteration, the pheromone accumulation can
be accelerated by Equation (9) to achieve positive feedback. If no better path is found, the accumulation
of pheromone is restricted by Equation (9) to realize negative feedback. At the end of iterations, upper
limits λ1 and λ2 are adjusted to update the pheromone on the path without getting trapped in local
optimization, so as to accelerate pheromone accumulation, accelerate convergence, and ensure the
diversity of the improved algorithm after the yellow ant colony is killed.

In the later stage, in order to accelerate the convergence speed, kill the yellow ant colony and
activate the corresponding number of white ant colony, the white ant colony path probability selection
is calculated according to Equation (1).

2.3.2. Optimization of Solutions

Yellow ant colony adjusts the path probability selection when the ant colony system iterates.
Using the rule of pheromone accumulation in ACS algorithm, if φ > φ0, then the ants select according
to Equation (10):

Pk
mn(t) =


δ[τmn(t)]

α[ηmn]
β∑

s∈allowedk
δ[τms(t)]

α[ηms]
β n ∈ allowedk

0 else
(10)

Here, δ is the feedback operator. In the rules of the classical ACS algorithm, the pheromone
concentration and the distance between cities are the two factors that affect the next node selection.
In the early stage, the determinant of the next node selection is the distance between cities. If the
pheromone concentration on some paths is too high, it will lead to a high probability of being selected
in the next iteration, and the path will be limited to several cities, so it is difficult to get a better solution.
The introduction of δ makes the probability selection also affected by the quality of the solution
generated from the last iteration. The selected target is adjusted by positive and negative feedback
in order to improve the randomness of probability selection. In the early stage of the algorithm,
the probability selection is adjusted according to whether the better solution is obtained, so as to
avoid the local optimization caused by too much influence on the distance between cities in the early
stage. When δ > 1, a better solution is obtained, which generates positive feedback on the probability
selection; otherwise, negative feedback or no influence is generated. The result of the improved
algorithm is that the path is fixed on multiple paths instead of one. However, it is difficult to jump
out of the local optimum in the later stage when it is trapped in the local optimum. Therefore, in this
paper, when the ant colony evolves to a certain degree, that is, when the information entropy reaches a
certain value, kill the yellow ant colony and activate the corresponding number of white ants so as to
invalidate the operator, and use the white ant colony operator to jump out of the optimum.
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2.3.3. Algorithm Flow

The algorithm flow is described as follows: After setting the initialization parameters, ACS is
used to complete the first iteration, and its data are used to calculate the pheromone. Use Equation (5)
to calculate the information entropy after each iteration. When the information entropy reaches the
preset value W(ρ), the yellow ant colony will be killed and the corresponding number of white ants
will be activated, so that the operator will fail, and the algorithm will enter the accelerated iteration
until the preset maximum number of iterations. The function of entropy is to measure the evolution
degree of the ant colony system, that is, to divide the different tasks of the algorithm in different stages,
so as to achieve the balance between the solution quality and the convergence speed:

Step 1 initialize parameters such as α, β, θ, k, ε, ρ, λ1, λ2, etc.;
Step 2 use the ACS algorithm to complete an iteration;
Step 3 calculate the load operator and feedback operator;
Step 4 divide the white and yellow ant colony adaptively;
Step 5 use white ant colony and yellow ant colony operators to iterate;
Step 6 calculate the information entropy e(t) value, and the number of iterations t plus 1;
Step 7 determine whether the number of iterations t < T is true, output that the current path is the

optimal path if it is false, and end the calculation, where T is the maximum number of iterations set;
Step 8 judge the relationship between entropy e(t) and W(ρ). If W(ρ) ≥ e(t), the yellow ant will

be inactivated and the corresponding number of white ants will be copied; otherwise, step 2 will
be executed;

Step 9 calculate the load operator and feedback operator;
Step 10 use the white ant operator to iterate, and the number of iterations t plus 1;
Step 11 perform step 7;
Step 12 perform step 9.

3. Results and Discussion

MATLAB 2013a is used in order to verify the performance of this improved algorithm. Taking
eight sets of large-scale data in TSPLIB as an example, the simulation is compared with two classical
ACO and six improved ACO algorithms. In actual cases, four ACO algorithms are compared with the
DODPACO algorithm.

3.1. Algorithm Simulation and Discussion

3.1.1. Parameter Setting

At the beginning of the algorithm, the same pheromone concentration on each path causes the
pheromone concentration to have little effect on the path construction, but, with the accumulation of
pheromones on the path after iterations, the pheromone has more and more influence on the path
construction. Therefore, a large β value and a small α value are selected to make η pay a larger role in
the early stage and accelerate the path construction. In the later stage, the influence of pheromones
plays a major role, so the influence of η can be approximately ignored [41]. λ is used to limit the
concentration of pheromone on the path. If λ is too large, the algorithm will fail, and, if λ is too
small, the convergence speed of the algorithm will be affected. The experimental results show that,
when ρ = 0.28, the entropy W(ρ) obtained from the predetermined value of information can well
divide the early and later stages of the algorithm. λ plays a better role without affecting convergence.
The parameter setting in this paper is shown in Table 1, and the value of ant number G is shown
in Table 2.
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Table 1. Parameter setting table used in the algorithm.

α β k θ ε λ1 λ2 ρ

1 5 8 0.80 0.70 3/n 6/n 0.28

Table 2. Initialization value of ant colony number in the city test sets.

pr152 d198 TSP225 a280 lin318 berlin52 kroa100 kroa200

95 140 155 175 220 126 134 182

3.1.2. Simulation Results and Analysis

The error rate is to measure the difference between each kind of ACO and the optimal solution of
the test set; the calculation formula is shown in Equation (11), where RACO is the optimal solution found
by the ACO algorithm, and Rmin is the standard optimal solution of the test set. The standard deviation
represents the degree of dispersion of multiple solutions of each ACO algorithm. The calculation
formula is shown in Equation (12), where N is the number of simulations and r is the mean value of
the solution:

Γ =

(
RACO
Rmin

− 1
)
× 100% (11)

σ(r) =

√√√
1
N

N∑
i=1

(xi − r)2 (12)

Comparison with Simulation Results of Classical ACO Algorithms

In this paper, eight groups of data in the TSPLIB test set are taken as the subject for 30 experiments
on DODPACO, ACS, and MMAS, 3000 iterations per round. All the results obtained by each comparison
algorithm in 30 runs are used as experimental data, and the optimal value, average value, error rate,
and minimum number of iterations of the solution are obtained, as shown in Table 3. The visual graphs
of the data in Table 3 are shown in Figures 2–4. As can be seen in Figure 2, the error rate of DODPACO
is smaller than other algorithms. For the DODPACO algorithm, the value of the error rate is between 0
and 0.92, and the maximum error rate of the ACS algorithm and the MMAS algorithm is 6.58. This
result shows that, compared with the ACS algorithm and the MMAS algorithm, the gap between the
optimal solution of the DODPACO algorithm and the known best solution is the smallest. The average
value of the DODPACO algorithm is the smallest, and the standard deviation is mostly smaller than
other algorithms. It shows that the concentration of the DODPACO algorithm is the best, and the
visual graph of standard deviation is shown in Figure 3. The standard deviation of ACS in kroa200
experiment is 2 smaller than the DODPACO algorithm; this difference is not obvious. Looking at all
the experiments from the data, only this value is not optimal. However, in the kroa200 experiment,
the results such as the convergence speed of the DODPACO algorithm are the minimum. Figure 4
shows that, in the TSP225 experiment, although DODPACO and ACS have a small difference in the
number of iterations, DODPACO has advantages in terms of error rate and standard deviation when
the number of iterations is less than ACS. It can be seen from the simulation results that the DODPACO
algorithm can effectively balance the contradiction between the quality of the solution and the speed
of convergence.
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Table 3. Performance comparison of DODPACO, ACS, and MMAS in different TSP instances.

Instance Opt Algorithms Best Mean Error rate Standard Deviation Convergence

pr152 73,682
DODPACO 73,683 73,905 0.00 360 624

ACS 74,742 74,929 1.44 467 1838
MMAS 75,829 76,056 2.91 524 1745

d198 15,780
DODPACO 15,790 15,896 0.63 79 832

ACS 16,132 16,172 2.23 101 1765
MMAS 16,154 16,20 2.37 114 1596

TSP225 3916
DODPACO 3920 3963 0.10 21 1298

ACS 3963 3973 1.20 25 1349
MMAS 4046 4058 3.32 27 1940

a280 2579
DODPACO 2588 2591 0.35 13 1521

ACS 2623 2630 1.71 16 1891
MMAS 2713 2721 5.20 19 1805

lin318 42,029
DODPACO 42,416 42,458.42 0.92 212 1806

ACS 43,155 43,263 2.68 265 1979
MMAS 44,794 44,928 6.58 314 1881

berlin52 7542
DODPACO 7542 7542 0 0 134

ACS 7542 7542 0 0 200
MMAS 7542 7542 0 0 304

kroa100 26,524
DODPACO 21,282 21,286 0 132 645

ACS 26,793 26,938 1.01 174 1029
MMAS 26,746 26,562 0.84 172 1254

kroa200 29,368
DODPACO 29,387 29,506 0.06 179 349

ACS 29,561 30,732 0.66 177 367
MMAS 29,495 30,435 0.43 182 1120
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Comparison with Simulation Results of Other ACO Algorithms

In order to demonstrate the superiority of the proposed DODPACO algorithm, the proposed
algorithm is compared with PCCACO algorithm [42], EDHACO algorithm [34], ICMPACO
algorithm [32], PSO-ACO-3opt algorithm [43], HHACO algorithm [44], and CCMACO algorithm [45].
The experiment results are shown in Table 4. The average value of the DODPACO algorithm is the
smallest, indicating that the concentration of the solution is better. In the pr152 experiment, the optimal
solutions of the EDHACO algorithm and the DODPACO algorithm are 73,682 and 73,683, respectively.
The EDHACO algorithm solutions are smaller, and the difference between them is 1. However, for the
average of this group of experiments, the DODPACO algorithm is better than the EDHACO algorithm,
which are 736,905 and 74,251.6, respectively. The optimal solutions for other groups of simulations are
obtained by the DODPACO algorithm. The experimental results show that the DODPACO algorithm
can obtain the best optimization value and the minimum average value. Compared with the other six
algorithms, the DODPACO algorithm has advantages.
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Table 4. The computational results of the proposed method and other methods in the literature.

Algorithms Instance pr152 d198 TSP225 a280 lin318 berlin52 kroa100 kroa200
Known Best Solution 73,682 15,780 3916 2579 42,029 7542 21,282 29,368

PCCACO
best / 15,814 3937 / 42,461 7542 21,282 29,391

mean / 16,463 3981 / 42,933 7542 21,383 29,485

EDHACO
best 73,682 / / / 43,291 / 21,282 29,694

mean 74,251.6 / / / 43,926.3 / 21,355.13 30,391

ICMPACO
best / / 4106 / / 7548.6 / 31,267

mean / / 4214 / / 7621.36 / 32,086

PSO-ACO-3opt best / / 4135 / / 7542 21,301 29,468
mean / / 4250 / / 7543.2 21,445.1 29,957

HHACO
best / / 3998 / / / / /

mean / / 4113 / / / / /

CCMACO
best / / 3926 2592 42,475 / 21,282 29,399

mean / / 4086.5 2682.6 42,682.7 / 21,488.3 29,834.8

Proposed Method DODPACO best 73,683 15,790 3920 2588 42,416 7542 21,282 29,387
mean 73,905 15,896 3963 2591 42,458 7542 21,286 29,356
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3.2. Verification Experiments and Discussion

3.2.1. Path Planning Model Establishment

In the DMD pattern transfer lithography system shown in Figure 1b, the resolution of the DMD
used is 1024 × 768. The size of a single vibrating mirror is about 14 µm, and the photosensitive size
of the whole DMD component is about 14 mm × 10 mm [46]. In the process of PCB pattern transfer,
the resolution is required to be no more than 3 µm, and then the projected light spot of DMD needs to be
miniaturized with a miniaturization ratio of 5:1. The light emitted by the light source is modulated by
a DMD vibrating mirror, and the exposure area after miniaturization is reduced from 14 mm × 10 mm
to 3 mm × 2 mm, while each exposure pixel is also reduced from 14 µm to 3 µm, that is, the exposure
resolution can be up to 3 µm. In the application of large-area exposure, Figure 5 shows an intercept
part of a PCB with a size of 60 mm × 40 mm. The DMD projection size is 3 mm × 2 mm. The PCB
graph is divided into several cells with a size of 3 mm × 2 mm, and the PCB with an area of 60 mm
× 40 mm is divided into 20 × 20 cells. In this example, 266 of the 400 cells have conductive patterns.
Cells with conductive patterns are marked with green, green marks represent cities in the TSP problem,
and cells without conductive patterns are marked with white, as shown in Figure 6 after marking.
The designed PCB circuit diagram is divided into 3 mm × 2 mm cells by a computer. Detect the
presence or absence of conductive patterns in each cell, and mark them as green or white, respectively.
At the same time, the 1024 × 768 pixels of each cell correspond to the 1024 × 768 micromirror of the
DMD. The micromirror with a circuit diagram is modulated to the “on” state and can reflect light to
the surface of the photoresist. The micromirror without circuit diagram is “off”, and the reflected light
cannot reach the surface of the photoresist. The conventional “S” path traversal method projects and
exposes cells one by one, and the calculated path length is 1238 mm. The DODPACO algorithm is used
for DMD projection exposure, that is, only 266 green cells need to be traversed, and the white cells do
not need DMD to stay.
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3.2.2. Verification Experiments

If the DMD projection exposure machine follows the normal path (press 1, 2, 3, . . . , 399, 400 of the
order) for exposure, the total distance of the stepping process is f = 1238 mm. According to the path
planning model in Section 3.2.1, the planning path for the needs in Figure 6 is established, and the
four ACO algorithms EDHACO, PSO-ACO-3opt, ACS, and MMAS are applied to compare with the
DODPACO algorithm and the no-path planning method. During the simulation in the MATLAB
environment, the 3000 iterations are set, and each algorithm is simulated for 10 times. The optimal
path length is shown in Table 5. In the verification experiment, there are two key parameters of the
3D mobile platform. One is the shortest time from one projection position to the next, which is 0.5 s;
the other is the single DMD exposure time which is 2.6 s. Ignore the algorithm iteration time, software
system processing time, and other preparation time, and only calculate the time of the pattern transfer
process. After three verification experiments for each algorithm (including DODPACO), the average
time of each algorithm is shown in Table 5.

Table 5. Path optimization value and average time of graph transfer in verification experiments.

Algorithms DODPACO EDHACO PSO-ACO-3opt ACS MMAS No Path Planning

Optimal path length (mm) 677 691 706 720 747 1238
Time average (s) 830.7 841.8 849.7 867.3 909.2 1264.4

Time savings compared with
no-path planning (%) 34.3 33.4 32.8 31.4 28.1 0

3.2.3. Discussion

The optimal convergence results of EDHACO, PSO-ACO-3opt, ACS, MMAS, and DODPACO 5
algorithms are shown in Figure 7. Figure 7 shows that DODPACO has the fastest convergence speed,
and its solution is also optimal, with a value of 677 mm. Figure 8 is a path planning diagram when the
shortest path value of the DODPACO algorithm is 677 mm. For this planning diagram, the initial (end)
position coordinate of the 3D mobile platform is (1, 4). Figure 9 is a visual comparison diagram of the
optimal value of the simulation path and the average time spent on pattern transfer. In the simulation,
it is not difficult to find out from Figure 9 and Table 5 that the DODPACO algorithm for this problem
has an optimal path of 677 mm. The path of the DODPACO algorithm is 45.3% shorter than that of no
path planning, which is about 1% shorter than the suboptimal algorithm. In the verification experiment,
the DODPACO algorithm saves 34.3% more time compared with no path planning, which is about 1%
shorter than the suboptimal algorithm. From the simulation results and verification experiments, we
can conclude that the DODPACO algorithm has the fastest convergence speed and the best solution
quality, which is suitable for solving large-scale problems.
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4. Conclusions

In this paper, a new dual-operator and dual-population ant colony algorithm (DODPACO) was
proposed for ant colony algorithm to solve the problems of local optimal and slow convergence when
solving large-scale TSP problems. The entropy automatically divided the number of ant colonies,
the white ant colony optimized the convergence speed, and the yellow ant colony optimized the
solution. The key data of simulation and verification experiments were: the error rate of the DODPACO
algorithm was between 0 and 0.92, and the maximum error rate of the ACS algorithm and the MMAS
algorithm was 6.58; the average time spent showed that the DODPACO algorithm proposed here had
the shortest average time, which saved 34.3% of time compared with no path planning, which was
about 1% shorter than the suboptimal algorithm. The importance of this article can be summarized
as follows: (1) The simulation results showed that the DODPACO algorithm was superior in solving
large-scale problems in terms of the solution and the convergence speed. (2) A path planning model
was established to apply in path planning for DMD pattern transfer and other digital mask pattern
transfer. (3) In the verification experiments, this algorithm effectively improved the DMD pattern
transfer efficiency, providing a good case for the digital mask production of PCB and playing a positive
role in the efficient application and promotion of digital mask lithography of DMD. In the future
work, we will further study the updating model of adaptive pheromone of yellow white ant colony
algorithm, reduce the value of standard deviation, and improve the robustness of the algorithm.
The DODPACO algorithm will be widely applied in other large-area lithography exposure fields, such
as MEMS production, micro-optical device processing, 3D micro-nano structure, integrated circuit
production, etc.
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