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Abstract: Diagrammatic formats are useful for summarizing the processes of evaluation and
comparison of forecasts in plant pathology and other disciplines where decisions about interventions
for the purpose of disease management are often based on a proxy risk variable. We describe a new
diagrammatic format for disease forecasts with two categories of actual status and two categories of
forecast. The format displays relative entropies, functions of the predictive values that characterize
expected information provided by disease forecasts. The new format arises from a consideration of
earlier formats with underlying information properties that were previously unexploited. The new
diagrammatic format requires no additional data for calculation beyond those used for the calculation
of a receiver operating characteristic (ROC) curve. While an ROC curve characterizes a forecast in
terms of sensitivity and specificity, the new format described here characterizes a forecast in terms of
relative entropies based on predictive values. Thus it is complementary to ROC methodology in its
application to the evaluation and comparison of forecasts.

Keywords: probability; forecast; likelihood ratio; positive predictive value; negative predictive value;
diagnostic information; relative entropy

1. Introduction

Forecasting using two categories of actual status and two categories of forecast is common in
many scientific and technical applications where evidence-based risk assessment is required as a basis
for decision-making, including plant pathology and clinical medicine. The statistical evaluation of
probabilistic disease forecasts often involves the calculation of metrics defined conditionally on actual
disease status. For the purpose of disease management decision making, metrics defined conditionally
on forecast outcomes (i.e., predictive values) are also of interest, although these are less frequently
reported. Here we introduce a new diagrammatic format for disease forecasts with two categories
of actual status and two categories of forecast. The format displays relative entropies, functions of
predictive values that characterize expected information provided by disease forecasts. Our aims in
introducing a new diagrammatic format are two-fold. First, we wish to highlight that performance
metrics conditioned on forecast outcomes have a useful role in the overall evaluation of diagnostic tests
and disease forecasters; second, bearing in mind the first aim, we wish to demonstrate that performance
metrics based on information theoretic quantities can help distinguish characteristics of such tests and
forecasters that may not be apparent from probability-scale metrics. The new diagrammatic format we
introduce is intended to provide a generic approach that can applied in any suitable context.

Diagrammatic formats are useful for summarizing the processes of evaluation and comparison
of disease forecasts in plant pathology and other disciplines where decisions about a subject must
often be taken based on a proxy risk variable rather than knowledge of a subject’s actual status. The

Entropy 2020, 22, 361; doi:10.3390/e22030361 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-6346-9461
http://dx.doi.org/10.3390/e22030361
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/3/361?type=check_update&version=2


Entropy 2020, 22, 361 2 of 16

receiver operating characteristic (ROC) curve [1] is one such well-known format. In plant pathology,
ROC curves are widely applied to characterize disease forecasters in terms of probabilities defined
conditionally on actual disease status. Calculating the new diagrammatic format that we describe here
has the same data requirements as the calculation of the ROC curve, but relates to relative entropy, an
information theoretic metric that quantifies the expected amount of diagnostic information consequent
on probability revision from prior to posterior arising from application of a disease forecaster. That is
to say, it depicts (functions of) probabilities defined conditionally on the forecast. Even when the full
underlying ROC curve data are not available, the new format can be constructed simply from ROC
curve summary statistics.

The new diagrammatic format is linked analytically to other formats in ways that may not always
be obvious simply from the resulting diagrams. We describe other formats and the links between them
and the new format, using example data from a previously published study. In a general discussion,
we consider the complementarity of metrics defined conditionally on the actual disease status and
metrics defined conditionally on the outcome of the forecast.

2. Methods

We discuss information graphs for disease forecasters with two categories of actual status for
subjects and two categories of forecast. In the present article, the terms ‘forecast’ and ‘prediction’ are
synonymous. We place our discussion in the context of plant pathology, but the information graphs
we describe likely have wider application. We are not concerned here with the detailed experimental
and analytical methodology that underlies the development of disease forecasters. Readers seeking a
description of such work are referred to Yuen et al. [2], Twengström et al. [3], and Yuen and Hughes [4],
for example. Rather, we will describe some graphical methods for the comparison and evaluation of
forecasters, and will outline some terminology and notation accordingly.

We need forecasters for support in crop protection decision making because the stage of the
growing season at which disease management decisions are taken is usually much earlier than an
assessment of actual (or ‘gold standard’) disease status could be made. For the purpose of development
of a forecaster, two disease assessments are made on each of a series of experimental crops during
the growing season. The actual status of each crop is characterized by an assessment of yield, or of
disease intensity, at the end of the growing season. Crops are classified as cases (‘c’) or non-cases (‘nc’),
based on whether or not the gold standard end-of-season assessment indicates economically significant
damage, respectively. Because the end-of-season assessment takes place too late to provide a basis
for crop protection decision-making, an earlier assessment of disease risk is made, at a stage of the
growing season when appropriate action can still be taken, if necessary. This earlier risk assessment
may take the form of observation of a single variable that provides a risk score for the crop in question,
or observation of a set of variables that are then combined to provide a risk score [5]. The risk score
is a proxy variable, related to the actual status of the crop, that can be obtained at an appropriately
early stage of the growing season for use in crop protection decision-making. Risk scores are usually
calibrated so that higher scores are indicative of greater risk.

Now, consider the introduction of a threshold on the risk score scale. Scores above the threshold
are designated ‘+’, indicative of (predicted) need for a crop protection intervention. Scores at or below
the threshold are designated ‘−’, indicative of (predicted) no need for a crop protection intervention.
The considerations underlying the adoption of a specific threshold risk score for use in a particular
crop protection setting are beyond the scope of this article. Madden [6] discusses this in connection
with an example data set that we consider in more detail below. In all settings, an adopted threshold
characterizes the operational classification rule that is used as a basis for predictions of the need or
otherwise for a crop protection intervention. The variable that characterizes the risk score together
with the adopted threshold risk score that characterizes the operational classification rule together
characterize what we may refer to as a (binary) ‘test’ (‘forecaster’ and ‘predictor’ are synonymous). A
prediction-realization table [7] encapsulates the cross-classified experimental data underlying such a
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test. The data provide estimates of probabilities as shown in Table 1. Then, from Table 1 via Bayes’
Rule, we can write p̂i∩ j =

[
p̂ j∩i

]
= p̂i| j·p̂ j = p̂ j|i·p̂i, with i = +, − (for the predictions) and j = c, nc (for

the realizations). The p̂ j are taken as the Bayesian prior probabilities of case (j = c) or non-case (j = nc)
status, such that p̂nc = 1− p̂c. Note also that the p̂i for intervention required (i = +) and intervention
not required (i = −) can be written as p̂i = p̂i|c·p̂c + p̂i|nc·p̂nc via the Law of Total Probability.

Table 1. The prediction-realization table for a test with two categories of realized (actual) status (c, nc)
and two categories of prediction (+, −). In the body of the table are the joint probabilities.

Realization

Prediction c nc Row Sums

+ p̂+∩ c p̂+∩ nc p̂+
− p̂−∩ c p̂−∩ nc p̂−

Column sums p̂c p̂nc 1

The posterior probability of (gold standard) case status (c) given a + prediction on using a test
is pc |+, referred to as the positive predictive value. Here, this refers to correct predictions of the need
for a crop protection intervention; the complement pnc |+ = 1 − pc |+ refers to incorrect predictions of
the need for an intervention. The posterior probability of (gold standard) non-case (nc) status given
a – prediction on using a test is pnc |−, referred to as the negative predictive value. Here, this refers to
correct predictions of no need for an intervention; the complement pc |− = 1 − pnc |− refers to incorrect
predictions of no need for an intervention. If we think of pj (j = c, nc) as representing the Bayesian
prior probabilities (i.e., before the test is used to make a prediction), the pj |i (i = +, −) then represent the
corresponding posteriors (i.e., after obtaining the prediction). Predictive values are metrics defined
conditionally on forecast outcomes.

The proportion of + predictions made for cases is referred to as the true positive proportion,
or sensitivity, and provides an estimate of the conditional probability p+|c. The complementary false
negative proportion is an estimate of p−|c. The proportion of + predictions made for non-cases is
referred to as the false positive proportion, and provides an estimate of p+|nc. The complementary
true negative proportion, or specificity, is an estimate of p−|nc. Sensitivity and specificity are metrics
defined conditionally on actual disease status. The ROC curve, which has become a familiar device in
crop protection decision support following the pioneering work of Jonathan Yuen and colleagues [2,3],
is a graphical plot of sensitivity against 1−specificity for a set of possible binary tests, based on the
disease assessments made during the growing season and derived by varying the threshold on the risk
score scale. Since sensitivity and specificity values are linked, a disease forecaster based on a particular
threshold represents values chosen to achieve an appropriate balance [8].

3. Results

3.1. Biggerstaff’s Analysis

We denote the likelihood ratio of a + prediction as L+, estimated by:

L̂+ =
p̂+ | c
p̂+ | nc

(1)

(in words, the expression on the RHS is the true positive proportion divided by the false positive
proportion or sensitivity/(1–specificity)). We denote the likelihood ratio of a − prediction as L−,
estimated by:

L̂− =
p̂− | c
p̂− | nc

(2)
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(in words, the expression on the RHS is the false negative proportion divided by the true negative
proportion or (1–sensitivity)/specificity). Likelihood ratios are properties of a predictor (i.e., they are
independent of prior probabilities) [9]. Values L+ > 1 and 0 < L− < 1 are the minimum requirements
for a useful binary test; within these ranges, larger positive values of L+ and smaller positive values of
L− are desirable. L+ characterizes the extent to which a + prediction is more likely from c crops than
from nc crops; L− characterizes the extent to which a − prediction is less likely from c crops than from
nc crops.

Now, working in terms of odds (o) rather than probability (p) (with o = p/(1−p)), we can write
versions of Bayes’ Rule, for example:

ôc|+ = ôc·L̂+ (3)

and:
ôc|− = ôc·L̂−. (4)

Thus, a + prediction increases the posterior odds of c status relative to the prior odds by a factor of L̂+

and a – prediction decreases the posterior odds of c status relative to the prior odds by a factor of L̂−.
Biggerstaff [10] used Equations (3) and (4) to make pairwise comparisons of binary tests (with both tests
applied at the same prior odds), premised on the availability only of the sensitivities and specificities
corresponding to the two tests’ operational classification rules (for example, when considering tests for
application based on their published ROC curve summary statistics, sensitivity and specificity).

At this point, we refer to a previously published phytopathological data set [11] in order to
illustrate our analysis. Note, however, that the analysis we present is generic, and is not restricted to
application in one particular pathosystem. Table 2 summarizes data for five different scenarios, based
in essence on five different normalized prediction-realization tables, derived from the original data set
and discussed previously in [6] in the context of decision making in epidemiology.

Table 2. Example data set. See [6,11] for full details.

Scenario p̂c p̂+| c p̂
−
| nc p̂c|+ p̂nc|−

A 0.36 0.833 0.844 0.75 0.90
B 0.05 0.833 0.844 0.22 0.99
C 0.05 0.390 0.990 0.67 0.97
D 0.85 0.833 0.844 0.97 0.47
E 0.85 0.944 0.656 0.94 0.67

p̂c: prior probability of an epidemic or for the need for a control intervention, estimated by disease prevalence.
p̂+ | c: estimated probability of an actual epidemic being correctly predicted on using a test (as defined by a
prediction-realization table). Referred to as sensitivity. p̂−| nc: estimated probability of an actual non-epidemic
being correctly predicted on using a test (as defined by a prediction-realization table). Referred to as specificity.
p̂c|+: estimated posterior probability of an epidemic given that one is predicted on using a test (as defined by a
prediction-realization table). Referred to as positive predictive value. p̂nc|−: estimated posterior probability of no
epidemic given that one is not predicted on using a test (as defined by a prediction-realization table). Referred to as
negative predictive value.

Recall that we are interested in probability (or odds) revision calculated on the basis of a forecast.
For illustration, we first consider the pairwise comparison of the tests derived from Scenario B
(reference) and Scenario C (comparison) made at p̂c = 0.05 (Table 2). Madden [6] gives a detailed
comparison based on knowledge of the full ROC curve derived from field experimentation. Biggerstaff’s
analysis essentially represents an attempt to reverse engineer a similar comparison based only on
knowledge of the tests’ published sensitivities and specificities. Scenario B yields sensitivity = 0.833
and specificity = 0.844, so we have L̂+ = 5.333 and L̂− = 0.198. Scenario C yields sensitivity = 0.390 and
specificity = 0.990, so we have L̂+ = 39.000 and L̂− = 0.616. Thus, Scenario C’s test is superior in terms of
L̂+ values but inferior in terms of L̂− values (even though its sensitivity is lower and specificity higher
than that of the reference test). As long as we restrict ourselves to pairwise comparisons of binary tests
at the same prior probability we have a simple analysis that leads, via calculation of likelihood ratios,
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to an evaluation of tests made on the basis of Bayesian posteriors (directly in terms of posterior odds,
but these are easily converted to posterior probabilities if so desired). The diagrammatic version of
this comparison is shown in Figure 1. The likelihood ratios graph comprises two single-point ROC
curves. A similar analysis for Scenario D (reference) and Scenario E (comparison) (Figure 2) shows that
Scenario E’s test is inferior in terms of L̂+ values but superior in terms of L̂− values (even though its
sensitivity is higher and specificity lower than that of the reference test).
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Figure 1. Biggerstaff’s likelihood ratios graph for Scenario B (reference) and Scenario C (comparison).
The graph for Scenario B consists of a single point at 1–specificity = 0.156, sensitivity = 0.833 (see Table 2).
The solid red line through (0, 0) and (0.156, 0.833) has slope = sensitivity/(1–specificity) = 5.333 = L̂+. The
dashed red line through (0.156, 0.833) and (1, 1) has slope = (1–sensitivity)/specificity = 0.198 = L̂−. The
graph for Scenario C consists of a single point at 1–specificity = 0.01, sensitivity = 0.39 (see Table 2). The
solid green line through (0.01, 0.39) and (1, 1) has slope = sensitivity/(1–specificity) = 39.0 = L̂+. The
dashed green line through (0.156, 0.833) and (1, 1) has slope = (1–sensitivity)/specificity = 0.616 = L̂−.

Referring back to Table 2, the likelihood ratios, and corresponding graphs, for Scenarios A, B
and D would be numerically identical. It is in this context that the information theoretic properties
of likelihood ratios graphs (not pursued by Biggerstaff) are of interest. To elaborate further, we will
require an estimate of the prior probability p̂c. This is beyond what Biggerstaff’s analysis allowed, but
it is not so unlikely that such an estimate might be available. For example, a p̂c value is provided for
any test for which a numerical version of the prediction-realization table (see Table 1) is accessible.

For information quantities, the specified unit depends on the choice of logarithmic base; bits for
log base 2, nats for log base e, and hartleys (abbreviation: Hart) for log base 10 [12]. Our preference
is to use base e logarithms, symbolized ln, where we need derivatives, following Thiel [7]. In this
article, we will also make use of base 10 logarithms, symbolized log10, where this serves to make
our presentation straightforwardly compatible with previously published work, specifically that of
Johnson [13]. To convert from hartleys to nats, divide by log10(e); or to convert from nats to hartleys,
divide by ln(10). When logarithms are symbolized just by log, as immediately following, this indicates
use of a generic format such that specification of a particular logarithmic base is not required until the
formula in question is used in calculation.
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Figure 2. Biggerstaff’s likelihood ratios graph for Scenario D (reference) and Scenario E (comparison).
The graph for Scenario D consists of a single point at 1–specificity = 0.156, sensitivity = 0.833 (see Table 2).
The solid red line through (0, 0) and (0.156, 0.833) has slope = sensitivity/(1–specificity) = 5.333 = L̂+. The
dashed red line through (0.156, 0.833) and (1, 1) has slope = (1–sensitivity)/specificity = 0.198 = L̂−. The
graph for Scenario E consists of a single point at 1–specificity = 0.344, sensitivity = 0.944 (see Table 2).
The solid blue line through (0, 0) and (0.344, 0.944) has slope = sensitivity/(1–specificity) = 2.744 = L̂+.
The dashed blue line through (0.344, 0.944) and (1, 1) has slope = (1–sensitivity)/specificity = 0.085 = L̂−.

We start with disease prevalence as an estimate of the prior probability p̂c of need for a crop
protection intervention, and seek to update this by application of a predictor. The information required
for certainty (i.e., when the posterior probability of need for an intervention is equal to one) is then
log(1/p̂c) denominated in the appropriate information units. However, a predictor typically does not
provide certainty, but instead updates p̂c to p̂c|i< 1. The information still required for certainty is then
log

(
1/p̂c|i

)
in the appropriate information units. We see from log(1/p̂c) − log

(
1/p̂c| i

)
= log

(
p̂c| i/p̂c

)
that the term log

(
p̂c| i/p̂c

)
represents the information content of prediction i in relation to actual status c

in the appropriate information units. Provided the prediction is correct (i.e., in this case, i = +), the
posterior probability is larger than the prior, and thus information content of the positive predictive
value is > 0. In general, the information content of correct predictions is > 0. Predictions that result in
a posterior unchanged from the prior have zero information content and incorrect predictions have
information content < 0.

Here, we consider the information content of a particular forecast, averaged over the possible
actual states. These quantities are expected information contents, often referred to as relative entropies.
For a binary test:

Î+ =
∑
c,nc

p̂ j| +· log
[ p̂ j| +

p̂ j

]
(5)

for the forecast i = + and:

Î− =
∑
c,nc

p̂ j| −· log
[ p̂ j| −

p̂ j

]
(6)

for the forecast i = –. Relative entropies measure expected information consequent on probability
revision from prior p̂ j to posterior p̂ j|i after obtaining a forecast. Relative entropies are ≥ 0, with equality
only if the posterior probabilities are the same as the priors. Larger values of both Î+ and Î− are
preferable, as being indicative of forecasts that, on average, provide more diagnostic information.
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We can write the relative entropies Î+ and Î− in terms of sensitivity, specificity and (constant) prior
probability. Working here in natural logarithms, and recalling that p̂− | c = 1− p̂+ | c , p̂− | nc = 1− p̂+ | nc ,
and p̂nc = 1− p̂c we have:

Î+ =
p̂+ | c ·p̂c

p̂+ | c ·p̂c+p̂+ | nc ·p̂nc
· ln

[ p̂+ | c
p̂+ | c ·p̂c+p̂+ | nc ·p̂nc

]
+

p̂+ | nc ·p̂nc
p̂+ | c ·p̂c+p̂+ | nc ·p̂nc

· ln
[ p̂+ | nc

p̂+ | c ·p̂c+p̂+ | nc ·p̂nc

] (7)

in nats and:
Î− =

p̂− | c ·p̂c
p̂− | c ·p̂c+p̂− | nc ·p̂nc

· ln
[ p̂− | c

p̂− | c ·p̂c+p̂− | nc ·p̂nc

]
+

p̂− | nc ·p̂nc
p̂− | c ·p̂c+p̂− | nc ·p̂nc

· ln
[ p̂− | nc

p̂− | c ·p̂c+ p̂− | nc ·p̂nc

] (8)

again in nats. Now we can use these formulas to plot sets of iso-information contours for constant
relative entropies Î+ and Î− on the graph with axes sensitivity and 1 – specificity, for given prior
probabilities. From Equation (7) we obtain:

d(p̂+ | c )
d(p̂+ | nc )

=
p̂+ | c
p̂+ | nc

(9)

the solution of which is the straight line p̂+ | c = a·p̂+ | nc , which yields a = L̂+. From Equation (8)
we obtain:

d(p̂+ | c )
d(p̂+ | nc )

=
1− p̂+ | c
1− p̂+ | nc

(10)

the solution of which is the straight line p̂+ | c = (1− b) + b·p̂+ | nc , which yields b = L̂−. Thus, we find
that iso-information contours for Î+ and Î− are straight lines on the graph with axes sensitivity and
1 – specificity, i.e., Biggerstaff’s likelihood ratios graph (see Figure 3).
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Figure 3. Biggerstaff’s likelihood ratios graphs for Scenarios A, B and D (Table 2). The slopes of the
lines are the likelihood ratios L̂+ = 5.333 and L̂− = 0.198, calculated from Table 2. Analysis shows
that the lines themselves are also iso-information contours for the expected information contents of +

and – forecasts. However, the calculated values of these expected information contents depend on
the prior probability as well as on sensitivity and specificity. Making use of the available data on the
prior probabilities allows us to calculate relative entropies in order to distinguish analytically between
scenarios, but the likelihood ratios graph does not distinguish visually between scenarios with the
same sensitivity and specificity.
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Now consider Scenarios A, B and D; from the data in Table 2, we calculate likelihood ratios
L̂+ = 5.333 and L̂− = 0.198 for all three scenarios (these are the slopes of the lines shown in Figure 3).
However, the three scenarios differ in their prior probabilities: p̂c = 0.36, 0.05, 0.85 for A, B, and D
respectively. This situation may arise in practice when a test is developed and used in one geographical
location, and then subsequently evaluated with a view to application in other locations where the
disease prevalence is different. The difference in test performance is reflected by the relative entropy
calculations. For Scenario A, we calculate relative entropies Î+ = 0.315 and Î− = 0.179 (both in nats,
these characterize the lines shown in Figure 3 interpreted as iso-information contours for the expected
information contents of + and – forecasts respectively). For Scenario B, we calculate Î+ = 0.171 and
Î− = 0.024 nats. For Scenario D, Î+ = 0.076 and Î− = 0.289 nats. Thus we may view Biggerstaff’s likelihood
ratios graph from an information theoretic perspective. While likelihood ratios are independent of
prior probability, relative entropies are functions of prior probability. There is further discussion of
relative entropies, including calculations for Scenarios C and E, in Section 3.3.

3.2. Johnson’s Analysis

Johnson [13] suggested transformation of the likelihood ratios graph (e.g., Figures 1–3), such that
the axes of the graph are denominated in log likelihood ratios. At the outset, note that Johnson works in
base 10 logarithms and that this choice is duplicated here, for the sake of compatibility. Thus, although
Johnson’s analysis is not explicitly information theoretic, where we use it as a basis for characterizing
information theoretic quantities, these quantities will have units of hartleys. Note also that Johnson
calculates

∣∣∣log10 L̂+

∣∣∣ and
∣∣∣log10 L̂−

∣∣∣ but here we take account of the signs of the log likelihood ratios.
Fosgate’s [14] correction of Johnson’s terminology is noted, although this does not affect our analysis
at all.

From Equation (3), we write:

log10 ôc| + = log10 ôc+ log10 L̂+ (11)

and from Equation (4):
log10 ôc| − = log10 ôc+ log10 L̂− (12)

with log10 L̂+> 0 (larger positive values are better) and log10 L̂−< 0 (larger negative values are better)
for any useful test. As previously, the objective is to make pairwise comparisons of binary tests (with
both tests applied at the same prior odds), premised on the availability only of the sensitivities and
specificities corresponding to the two tests’ operational classification rules.

With Scenario B as the reference test and Scenario C as the comparison test, we find Scenario C’s
test is superior in terms of log 10L̂+ values but inferior in terms of log 10L̂− values (Figure 4). With
Scenario D as the reference test and Scenario E as the comparison test, we find Scenario E’s test is
inferior in terms of log 10L̂+ values, but superior in terms of log 10L̂− (Figure 4). Moreover, we find
that the transformed likelihood ratios graph still does not distinguish visually between Scenarios A, B
and D (Figure 4). Thus, the initial findings from the analysis of the scenarios in Table 2 are the same
as previously.

Now, as with Biggerstaff’s [10] original analysis, we seek to view Johnson’s analysis from an
information theoretic perspective. As before, we will require an estimate of the prior probability p̂c.
After some rearrangement, we obtain from Equation (11):

log10

[
p̂c |+

p̂c

]
− log10

[
p̂nc |+

p̂nc

]
= log10 L̂+Hart (13)
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where log10[p̂c |+ /p̂c] (> 0) and log10[p̂nc |+ /p̂nc] (< 0) on the LHS are information contents (as outlined
in Section 3.1) with units of hartleys. From Equation (12):

log10

[
p̂c |−

p̂c

]
− log10

[
p̂nc |−

p̂nc

]
= log10 L̂−Hart (14)

where log10[p̂c |− /p̂c] (< 0) and log10[p̂nc |− /p̂nc] (> 0) on the LHS are information contents, again
with units of hartleys. Thus, we recognize that log10 likelihood ratios also have units of hartleys.
Figure 5 shows the information theoretic characteristics of Johnson’s analysis when data on priors are
incorporated, by drawing log10-likelihood contours on a graphical plot that has information contents
on the axes.
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Figure 4. A version of Johnson’s log10 likelihood ratios diagram for data from Table 2. Here
log10 L̂+ = 0.727 and log10 L̂−= −0.704 for Scenarios A, B and D (�). For Scenario C (�), log10 L̂+ = 1.591
and log10 L̂−= −0.208. For Scenario E (�), log10 L̂+ = 0.438 and log10 L̂− = −1.071. Valid comparisons
(i.e., for scenarios with equal prior probabilities) are Scenario B (reference) with Scenario C (comparison)
and Scenario D (reference) with Scenario E (comparison).

In Figure 5, both the log10 L̂+ and log10 L̂− contours always have slope = 1. As the decompositions
characterized in Equations (13) and (14) show, any (constant) log10 likelihood ratio is the sum of
two information contents. Looking at the “north-west” corner of Figure 5 and taking Scenarios
A, B, and D from Table 2 as examples, we have log10[p̂c |+ /p̂c] = 0.642, 0.319, 0.056 Hart and
log10[p̂nc |+ /p̂nc] = −0.085, −0.408, −0.671 Hart for p̂c = 0.05 (B), 0.36 (A), 0.85 (D), respectively. In each
case, Equation (13) yields log10 L̂+ = 0.727 Hart. Looking at the “south-east” corner of Figure 5, again
taking Scenarios A, B, and D from Table 2 as examples, we have log10[p̂nc |− /p̂nc] = 0.498, 0.148, 0.018
Hart and log10[p̂c |− /p̂c] = −0.207, −0.556, −0.687 Hart for p̂nc = 0.15 (D), 0.64 (A), 0.95 (B), respectively.
In each case, Equation (14) yields log10 L̂− = −0.704 Hart. Thus we have an information theoretic
perspective on Johnson’s analysis when data on priors are available, and this time one that separates
Scenarios A, B and D visually (Figure 5).
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Figure 5. The “north-west” region of the figure is characterized by Equation (13), so relates to +

predictions (which are correct for c subjects and incorrect for nc subjects). Log10L+ contours are
always straight lines with slope = 1. The solid red line indicates the contour for log10 L̂+ = 0.727 Hart,
corresponding to Scenarios A, B, and D (Table 2). A correct + prediction has a large information content
when p̂c is small (B), and a small information content is when p̂c is large (D) (the arrow indicates the
direction of increasing p̂c along the contour). As the information content log10[p̂c |+ /p̂c] (on the vertical
axis) becomes decreasingly positive, the information content log10[p̂nc |+ /p̂nc] (on the horizontal axis)
becomes increasingly negative. The “south-east” region of the figure is characterized by Equation (14),
so relates to − predictions (which are correct for nc subjects and incorrect for c subjects). Log10L−
contours are always straight lines with slope = 1. The dashed red line indicates the contour for
log10 L̂− = −0.704 Hart, corresponding to Scenarios A, B, and D (Table 2). A correct − prediction has a
large information content when p̂nc is small (D), and a small information content is when p̂nc is large (B)
(the arrow indicates the direction of increasing p̂nc along the contour, p̂nc = 1− p̂c). As the information
content log10[p̂nc |− /p̂nc] (on the horizontal axis) becomes decreasingly positive, the information content
log10[p̂c |− /p̂c] (on the vertical axis) becomes increasingly negative.

3.3. A New Diagrammatic Format

Biggerstaff’s [10] diagrammatic format for binary predictors allows an information theoretic
interpretation once the data on prior probabilities have been incorporated. This distinguishes predictors
with the same likelihood ratios analytically, but not visually. Johnson’s [13] transformed version of
Biggerstaff’s diagrammatic format also allows an information theoretic interpretation once data on
prior probabilities are incorporated. This approach distinguishes predictors with the same likelihood
ratios both analytically and visually, but does not contribute to the comparison and evaluation of
predictive values of disease forecasters.

We now return to the information theoretic interpretation of Biggerstaff’s likelihood ratios graph
(and revert to working in natural logarithms for continuity with previous analysis based on Figure 3).
In Figure 3, the likelihood ratios are the slopes of the lines on the graphical plot. The lines themselves
are relative entropy contours, the value of which depends on prior probability. We can now visually
separate scenarios that have the same likelihood ratios but different relative entropies (e.g., A, B, D in
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Table 2) by calculating the graph with relative entropies Î+ and Î− on the axes of the plot (Figure 6). If
we consider the predictor based on Scenario A as the reference, then the predictor based on Scenario B
falls in the region of Figure 6 indicating comparatively less information is provided by both + and –
predictions, while the predictor based on Scenario D falls in the region indicating comparatively less
diagnostic information is provided by + predictions but comparatively more by − predictions.
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Figure 6. Scenario A: from the data in Table 2, we calculate relative entropies Î+ = 0.315, Î− = 0.179 (both
in nats) (p̂c = 0.36) (Equations (3) and (4)). Similarly, for Scenario B we calculate Î+ = 0.171, Î− = 0.024
nats (p̂c = 0.05) and for Scenario D, Î+ = 0.076, Î− = 0.289 nats (p̂c = 0.85).

There is an alternative view of the diagrammatic format presented in Figure 6. Scenarios A, B and
D all have the same likelihood ratios, L̂+= 5.333 and L̂− = 0.198 (see Figure 3). What differs between
scenarios is the prior probability p̂c. We can remove the gridlines indicating the relative entropies for
Scenario A and plot the underlying prior probability contour (Figure 7). In Figure 7, starting at the
origin and moving clockwise, prior probability increases as we move along the contour. The contour
has maximum points with respect to both the horizontal axis and the vertical axis. The maximum
value of the contour with respect to the horizontal axis is:

p̂c =
p̂+| nc·

[
p̂+| c·

(
ln

[ p̂+ | c
p̂+ | nc

]
− 1

)
+ p̂+| nc

]
[p̂+ | c − p̂+ | nc ]

2 (15)

and the maximum value of the contour with respect to the vertical axis is:

p̂c =
p̂−| nc·

[
p̂−| c·

(
ln

[ p̂− | c
p̂− | nc

]
− 1

)
+ p̂−| nc

]
[p̂+ | c − p̂+ | nc ]

2 . (16)

The corresponding values of Î+ and Î−, respectively, can then be calculated by substitution into
Equations (7) and (8). The two maxima (together with the origin) divide the prior probability contour
into three monotone segments (see Figure 7). As p̂c increases, we observe a segment where Î+ and Î−
are both increasing (this includes Scenario B), then one where Î+ is decreasing and Î− is increasing, this
includes Scenario A), and then one where Î+ and Î− are both decreasing (this includes Scenario D).

From Figure 7, we see that for the predictor based on Scenarios A, B and D, a + prediction provides
most diagnostic information around prior probability 0.2 < p̂c < 0.3. A – prediction provides most
diagnostic information around prior probability 0.7 < p̂c < 0.8. Recall that this contour describes
performance (in terms of diagnostic information provided) for predictors with sensitivity = 0.833 and
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specificity = 0.844 (Table 2) (alternatively expressed as likelihood ratios L̂+ = 5.333 and L̂− = 0.198). No
additional data beyond sensitivity and specificity are required in order to produce this graphical plot;
that is to say, by considering the whole range of prior probability we remove the requirement for any
particular values. The point where the contour intersects the main diagonal of the plot is where Î+ = Î−.
In this case, we find that Î+ = Î− at prior probability ≈ 0.5 (Figure 7). At lower prior probabilities, +

predictions provide more diagnostic information than − predictions, while at higher prior probabilities,
the converse is the case. This contour’s balance of relative entropies at prior probability ≈ 0.5 is
noteworthy because it is not necessarily the case that there is always scope for such balance.
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Figure 7. The prior probability p̂c contour for Scenarios A, B, and D (solid red line). The contour is
calibrated at 0.1 intervals of p̂c, clockwise from the origin, 0.1 to 0.9 (+ symbol on curve). Scenarios B
(p̂c = 0.05), A (p̂c = 0.36), and D (p̂c = 0.85) as characterized in Table 2 are indicated (�). Also indicated
on the prior probability contour: maximum Î+ = 0.337 nats (N) (p̂c = 0.245), maximum Î− = 0.317 nats
(N) (p̂c = 0.749), Î+ = Î−= 0.251 nats (•) (p̂c = 0.513).

Recall from Section 3.1 that we start with disease prevalence as an estimate of the prior probability
p̂c of need for a crop protection intervention. The information required (from a predictor) for certainty
is then log(1/p̂c) denominated in the appropriate information units. This is the amount of information
that would result in a posterior probability of need for an intervention equal to one. Similarly,
log(1/p̂nc), denominated in the appropriate information units, is the amount of information that would
result in a posterior probability of no need for an intervention equal to one. We can plot the contour
for these information contents on the diagrammatic format of Figure 7. This contour, illustrated in
Figure 8, indicates the upper limit for the performance of any binary predictor. No phytopathological
data are required to calculate this contour.

The diagrammatic format of Figure 7 (for Scenarios A, B and D) can accommodate prior probability
contours for other Scenarios (i.e., for predictors based on different sensitivity and specificity values).
For example, Figure 9 shows, in addition, the prior probability contours for the predictors based on
Scenario C (with sensitivity = 0.39 and specificity = 0.99) and on Scenario E (with sensitivity = 0.944 and
specificity = 0.656). We observe that a predictor based on Scenario C’s sensitivity and specificity values
potentially provides a large amount of diagnostic information from a + prediction, but over a very
narrow range of prior probabilities. Scenario C itself represents one such predictor. The amount of
diagnostic information from − predictions is very low over the whole range of prior probabilities. A
predictor based on Scenario E’s sensitivity and specificity values potentially provides a large amount of
diagnostic information from − predictions over a narrow range of prior probabilities. Scenario E itself
represents one such predictor. The amount of diagnostic information from + predictions remains low
over the whole range of prior probabilities.
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Figure 9. The prior probability contours for Scenarios C (solid green line) and E (solid blue line).
Starting at the origin, the green prior probability contour passes through points (clockwise from origin):
Scenario C, Î+ = 1.399, Î− = 0.004 (prior = 0.05) (�); maximum Î+ = 1.436 (prior = 0.073) (N); maximum
Î− = 0.029 (prior = 0.580) (N). This contour does not coincide with the main diagonal of the plot other
than at the origin. Starting at the origin, the blue prior probability contour passes through points
(clockwise from origin): Î+ = Î− = 0.080 (•) (prior = 0.109); maximum Î+ = 0.126 (prior = 0.337) (N);
Scenario E, Î+ = 0.039, Î− = 0.700 (prior = 0.850) (�); maximum Î− = 0.701 (prior = 0.842) (point obscured
from view). The prior probability contour for Scenarios A, B, and D (solid red line) is included here
for reference; clockwise from origin, points marked � indicate Scenarios B, A and D (see Figure 7
for details). The dashed curve shows the contour indicating the upper limit for performance of a
binary predictor (see Figure 8 for details). Note the changes in the scales on the axes compared with
Figures 7 and 8.
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4. Discussion

Diagrammatic formats have the potential to aid interpretation in the evaluation and comparison
of disease forecasts. Biggerstaff’s [10] likelihood ratios graph is a particularly interesting example. This
graph uses the format of the ROC curve, as widely applied in exhibiting and explaining sensitivity
and specificity for binary tests. However, while sensitivity and specificity are defined conditionally on
actual disease status, the likelihood ratios graph is used to compare tests on the basis of predictive
values, defined conditionally on the forecast (when tests are applied at the same prior probability). As
Biggerstaff notes, one is less interested in sensitivity and specificity when it comes to the application of
a test, because the conditionality is in the wrong order. The predictive values, or some functions of
them, are also important, and ideally one would be able use these when assessing test performance in
application (Figures 1 and 2).

Altman and Royston [15] discussed this idea in some detail and proposed PSEP as a metric for use
in the assessment of predictor performance (in the binary case, PSEP = positive predictive value + negative
predictive value – 1). Hughes and Burnett [16] later used an information theoretic analysis (including
a diagrammatic representation) to show how PSEP was related to both the Brier score [17] and the
information theoretic divergence score [18] methods of assessing predictor performance. In the current
article, further analysis shows that Biggerstaff’s likelihood ratios graph has underlying information
theoretic properties that specifically relate to predictive values. The lines on the likelihood ratios graph
are relative entropy contours, quantifying the expected information consequent on revising the prior
probability of disease to the posterior probability after obtaining a forecast. However, the likelihood
ratios graph does not visually distinguish relative entropy contours when predictors that have the
same ROC curve summary statistics (sensitivities and specificities, or equivalently, likelihood ratios
for both + and − predictions) are compared at different prior probabilities (Figure 3). A modified
diagrammatic format that does so would therefore be of interest.

Johnson [13] provides a modified format, with log likelihood ratios on the axes of the graph
(Figure 4), and suggests various possible advantages of this format. Our further analysis again shows
that this modified format has underlying information theoretic properties. These properties relate to
the statistical decomposition of log likelihood ratios (Figure 5; see also [5] for further discussion) but do
not appear to be straightforwardly helpful as an aid to interpretation in the evaluation and comparison
of disease forecasters based on predictive values.

Benish [19] applied information graphs for relative entropy to evaluate and compare clinical
diagnostic tests. Here we derive relative entropies from Biggerstaff’s likelihood ratios graph and
present the results in a new diagrammatic format, with relative entropies for + and − predictions on
the axes of the graph. Compared with the likelihood ratios graph, this visually distinguishes between
predictors that have the same ROC curve summary statistics when compared at different (known)
prior probabilities (Figure 6). So, referring to the scenarios listed in Table 2 with likelihood ratios
L̂+ = 5.333 and L̂− = 0.198 (i.e., A, B, and D) we see that Scenario A has the highest relative entropy for
a + prediction, then B, then D. Scenario D has the highest relative entropy for a − prediction, then A,
then B. Recall that relative entropies are functions of the predictive values.

Suppose now that our aim is not to compare predictor performance in particular scenarios,
but to evaluate performance over the range of possible scenarios. We can use our new format not
just to plot relative entropies for a comparison of predictor performance for various known prior
probability (disease prevalence) scenarios (Figure 6), but to also draw the contour showing how relative
entropies change as prior probability of disease varies over the range from zero to one (Figure 7). This
diagrammatic format requires no particular prior probabilities for calculation, only the ROC curve
summary statistics. In the same way that the ROC curve relates to all predictors (by sensitivity and
specificity) until a particular operational threshold is set, Figure 7 relates to all predictors (by relative
entropies based on predictive values) until a particular prior probability value is specified. Maximum
relative entropy points on the contour are calculable analytically in this format. Moreover, we can
include the contours for predictors with different summary statistics. Figure 9 shows the contour
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that includes the predictor based on Scenario C and the contour that includes the predictor based on
Scenario E, in addition to the contour that includes predictors based on Scenarios A, B and D from
Figure 7. In this diagrammatic format, we can easily see the difference between contours that include
predictors with high performance (in terms of relative entropies) in a narrow range of applicability (in
terms of prior probabilities) when compared with a contour that balances predictor performance with
a wider range of applicability. Unless we wish to evaluate and/or compare particular scenarios—in
which case, not unreasonably, estimates of the corresponding prior probability (disease prevalence)
values are required—producing the contour plot (Figures 7 and 9) has no data requirements beyond
those for producing the ROC curve.

Figures 8 and 9 include the contour showing the upper limit for performance of a binary predictor.
This upper limit serves as a qualitative visual calibration of predictor performance, rather in the way
that we look at an ROC curve in relation to the upper left-hand corner of the ROC plot (where sensitivity
and specificity are both equal to one). The contour cuts the main diagonal of the plot at prior probability
p̂c = 0.5, when ln(1/p̂c) = ln(2) = 0.693 nats (Figure 8). This is the amount of information required
to be certain of a binary outcome when the prior probability is equal to 0.5. However, the amount
of information required to be certain of an outcome is not of any great practical significance in crop
protection decision making. Rather than seeking certainty, a realistic objective is to develop predictors
that provide enough information to enable better decisions, on average, than would be made with
reliance only on prior probabilities. Thus we need to be able to consider predictor performance in
terms of predictive values.

Perhaps the most important instrument available to the developer of a binary predictor is the
placement of the threshold on the risk score scale [2,3,6,8]. This determines a predictor’s sensitivity
and specificity, and consequently the likelihood ratios for + and − predictions. However, this does not
guarantee predictor performance in terms of predictive values. ROC curve analysis and diagrammatic
formats that characterize predictive values (or functions of them) are therefore complementary aspects
of predictor evaluation and comparison. For example, the appropriate placement of the threshold on
the risk score scale may be informed by knowledge of disease prevalence for the scenario in which the
predictor is intended for application. This in turn affords an evaluation of likely performance—in terms
of predictive values—for the predictor in operation. Sometimes, however, we may wish to compare
predictors’ likely performances—perhaps in a novel scenario—when we are simply a potential user of
the predictors in question, having had no development input but with access to the predictors’ ROC
curve summary statistics. In both settings, the diagrammatic formats we have discussed have potential
application. They lead to information graphs that are visually distinct but analytically linked. All give
extra insight via the predictive values of disease forecasts.
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