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Abstract: We propose an image encryption scheme based on quasi-resonant Rossby/drift wave
triads (related to elliptic surfaces) and Mordell elliptic curves (MECs). By defining a total order on
quasi-resonant triads, at a first stage we construct quasi-resonant triads using auxiliary parameters of
elliptic surfaces in order to generate pseudo-random numbers. At a second stage, we employ an MEC
to construct a dynamic substitution box (S-box) for the plain image. The generated pseudo-random
numbers and S-box are used to provide diffusion and confusion, respectively, in the tested image.
We test the proposed scheme against well-known attacks by encrypting all gray images taken from
the USC-SIPI image database. Our experimental results indicate the high security of the newly
developed scheme. Finally, via extensive comparisons we show that the new scheme outperforms
other popular schemes.

Keywords: quasi-resonant Rossby/drift wave triads; Mordell elliptic curve; pseudo-random
numbers; substitution box

1. Introduction

The exchange of confidential images via the internet is usual in today’s life, even though the
internet is an open source that is unsafe and unauthorized persons can steal useful or sensitive
information. Therefore it is essential to be able to share images in a secure way. This goal is achieved by
using cryptography. Traditional cryptographic techniques such as data encryption standard (DES) and
advanced encryption standard (AES) are not suitable for image transmission because image pixels are
usually highly correlated [1,2]. By contrast, DES and AES are ideal techniques for text encryption [3],
so researchers are trying to develop such techniques to meet the demand for reliable image delivery.

A number of image encryption schemes have been developed using different approaches [4–14].
Hua et al. [12] developed a highly secure image encryption algorithm, where pixels are shuffled via
the principle of the Josephus problem and diffusion is obtained by a filtering technology. Wu et al. [13]
proposed a novel image encryption scheme by combining a random fractional discrete cosine transform
(RFrDCT) and the chaos-based Game of Life (GoL). In their scheme, the desired level of confusion
and diffusion is achieved by GoL and an XOR operation, respectively. “Confusion” entails hiding the
relation between input image, secret keys and the corresponding cipher image, and “diffusion” is an
alteration of the value of each pixel in an input image [1].

One of the dominant trends in encryption techniques is chaos-based encryption [15–20].
The reason for this dominance is that the chaos-based encryption schemes are highly sensitive to the
initial parameters. However, there are certain chaotic cryptosystems that exhibit a lower security level
due to the usage of chaotic maps with less complex behavior (see [21]). This problem is addressed in [22]
by introducing a cosine-transform-based chaotic system (CTBCS) for encrypting images with higher
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security. Xu et al. [23] suggested an image encryption technique based on fractional chaotic systems
and verified experimentally the higher security of the underlying cryptosystem. Ahmad et al. [24]
highlighted certain defects of the above-mentioned cryptosytem by recovering the plain image without
the secret key. Moreover, they proposed an enhanced scheme to thwart all kinds of attacks.

The chaos-based algorithms also use pseudo-random numbers and substitution boxes (S-boxes)
to create confusion and diffusion [25,26]. Cheng et al. [25] proposed an image encryption algorithm
based on pseudo-random numbers and AES S-box. The pseudo-random numbers are generated
using AES S-box and chaotic tent maps. The scheme is optimized by combining the permutation and
diffusion phases, but the image is encrypted in rounds, which is time consuming. Belazi et al. [26]
suggested an image encryption algorithm using a new chaotic map and logistic map. The new chaotic
map is used to generate a sequence of pseudo-random numbers for masking phase. Then eight
dynamic S-boxes are generated. The masked image is substituted in blocks via aforementioned S-boxes.
The substituted image is again masked by another pseudo-random sequence generated by the logistic
map. Finally, the encrypted image is obtained by permuting the masked image. The permutation
is done by a sequence generated by the map function. This algorithm fulfills the security analysis
but performs slowly due to the four cryptographic phases. In [27], an image encryption method
based on chaotic maps and dynamic S-boxes is proposed. The chaotic maps are used to generate the
pseudo-random sequences and S-boxes. To break the correlation, pixels of an input image are permuted
by the pseudo-random sequences. In a second phase the permuted image is decomposed into blocks.
Then blocks are encrypted by the generated S-boxes to get the cipher image. From histogram analysis
it follows that the suggested technique generates cipher images with a nonuniform distribution.

Similar to the chaotic maps, elliptic curves (ECs) are sensitive to input parameters, but EC-based
cryptosystems are more secure than those of chaos [28]. Toughi et al. [29] developed a hybrid encryption
algorithm using elliptic curve cryptography (ECC) and AES. The points of an EC are used to generate
pseudo-random numbers and keys for encryption are acquired by applying AES to the pseudo-random
numbers. The proposed algorithm gets the promising security but pseudo-random numbers are
generated via the group law, which is time consuming. In [3], a cyclic EC and a chaotic map are
combined to design an encryption algorithm. The developed scheme overcomes the drawbacks of small
key space but is unsafe to the known-plaintext/chosen-plaintext attack [30]. Similarly, Hayat et al. [31]
proposed an EC-based encryption technique. The stated scheme generates pseudo-random numbers
and dynamic S-boxes in two phases, where the construction of S-box is not guaranteed for each
input EC. Therefore, changing of ECs to generate an S-box is a time-consuming work. Furthermore,
the generation of ECs for each input image makes it insufficient.

Based on the above discussion, we propose an improved image encryption algorithm, based on
quasi-resonant Rossby/drift wave triads [32,33] (triads, for short) and Mordell elliptic curves (MECs).
The triads are utilized in the generation of pseudo-random numbers and MECs are employed to create
dynamic S-boxes. The proposed scheme is novel in that it introduces the technique of pseudo-random
numbers generation using triads, which is faster than generating pseudo-random numbers by ECs.
Moreover, the scheme does not require to separately generate triads for each input image of the same
size. In the present scheme, MECs are used opposite to [31], in the sense that now, for each input
image, the generation of a dynamic S-box is guaranteed [34]. Finally, extensive performance analyses
and comparisons reveal the efficiency of the proposed scheme.

This paper is organized as follows. Preliminaries are described in Section 2. In Section 3, the proposed
encryption algorithm is explained in detail. Section 4 provides the experimental results as well as a
comparison between the proposed method and other existing popular schemes. Lastly, conclusions are
presented in Section 5.

2. Preliminaries

Barotropic vorticity equation: The barotropic vorticity equation (in the so-called β-plane
approximation) is one of the simplest two-dimensional models of the large-scale dynamics of a
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shallow layer of fluid on the surface of a rotating sphere. It is described in mathematical terms by the
partial differential equation

∂

∂t
(∇2ψ− Fψ) +

(∂ψ

∂x
∂∇2ψ

∂y
− ∂ψ

∂y
∂∇2ψ

∂x

)
+ γ

∂ψ

∂x
= 0, (1)

where ψ(x, y, t) ∈ R represents the geopotential height, γ is the Coriolis parameter, a real constant
measuring the variation of the Coriolis force with latitude (x represents longitude and y represents
latitude) and F is a non-negative real constant representing the inverse of the square of the deformation
radius. We assume periodic boundary conditions: ψ(x + 2π, y, t) = ψ(x, y + 2π, t) = ψ(x, y, t) for all
x, y, t ∈ R. In the literature Equation (1) is also known as the Charney–Hasegawa–Mima equation
(CHM) [35–39]. This equation accepts harmonic solutions, known as Rossby waves, which are solutions
of both the linearized form and the whole (nonlinear) form of Equation (1). A Rossby wave solution is
given explicitly by the parameterized function ψ(k,l)(x, y, t) = <{A ei(kx+ly−ω(k,l)t)}, where A ∈ C is

an arbitrary constant, ω(k, l) = − γ k
k2+l2+F is the so-called dispersion relation, and (k, l) ∈ Z2 is called

the wave vector. For simplicity, we take γ = −1 and F = 0 in what follows [32,33].
Resonant triads: As Equation (1) is nonlinear, modes with different wave vectors tend to couple

and exchange energy. If the nonlinearity is weak, this exchange happens to be quite slow and is
more efficient amongst groups of modes that are in resonance. To the lowest order of nonlinearity in
Equation (1), approximate solutions known as resonant triad solutions can be constructed via linear
combinations of the form

ψ(x, y, t) = <{A1 ei(k1x+l1y−ω(k1,l1)t) + A2 ei(k2x+l2y−ω(k2,l2)t) + A3 ei(k3x+l3y−ω(k3,l3)t)} ,

where A1, A2, A3 are slow functions of time (they satisfy a closed system of ODEs, not shown here),
and the wave vectors (k1, l1), (k2, l2) and (k3, l3) satisfy the Diophantine system of equations:

k1 + k2 = k3, l1 + l2 = l3 and ω1 + ω2 = ω3, (2)

for ωi = ω(ki, li), i = 1, 2, 3. A set of three wavevectors satisfying Equations (2) is called a resonant
triad. Solutions can be found analytically via a rational transformation to elliptic surfaces (see below).

Quasi-resonant triads and detuning level: If, in (2), the equation ω1 + ω2 = ω3 is replaced
by the inequality |ω1 + ω2 − ω3| ≤ δ−1, for a large positive number δ, then the triad becomes a
quasi-resonant triad and δ−1 is known as the detuning level of the quasi-resonant triad. It is possible
to construct quasi-resonant triads via downscaling of resonant triads that have very large wave
vectors [32]. For simplicity, in what follows we simply call a quasi-resonant triad a triad and denote it
by ∆. Finally, to avoid over-counting of triads we will impose the condition k3 > 0.

Rational transformation: In [32], wave vectors are explicitly expressed in terms of rational
variables X, Y and D as follows:

k1

k3
=

X
Y2 + D2 ,

l1
k3

=
(X

Y

)(
1− D

Y2 + D2

)
,

l3
k3

=
D− 1

Y
. (3)

In the case F = 0, the rational variables X, Y, D lie on an elliptic surface. The transformation is bijective
and its inverse mapping is given by:

X =
k3(k2

1 + l2
1)

k1(k2
3 + l2

3)
, Y =

k3(k3l1 − k1l3)
k1(k2

3 + l2
3)

, D =
k3(k3k1 − l1l3)

k1(k2
3 + l2

3)
. (4)

New parameterization: In [40], Kopp parameterized the resonant triads and in terms of
parameters u and t it follows by [40] (Equation (1.22)) that:
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k1

k3
=(t2 + u2)(t2 − 2u + u2)/(1− 2u), (5)

l3
k3

=
(
u(2u− 1) + (t2 + u2)(t2 − 2u + u2)

)
/
(
t(1− 2u)

)
, (6)

l1
k3

=(t2 + u2)
(
(2u− 1) + u(t2 − 2u + u2)

)
/
(
t(1− 2u)

)
. (7)

In 2019, Hayat et al. [33] found a new parameterisation of X, Y and D in terms of auxiliary parameters
a, b and hence k1

k3
, l3

k3
and l1

k3
are given by:

k1

k3
=

(
a2 + b(2− 3b) + 1

)3

(a2 − 3b2 − 2b + 1)
(
2(11− 3a2)b2 + (a2 + 1)2 − 16ab + 9b4

) , (8)

l3
k3

=
6(a2 + a− 1)b2 − (a + 1)2(a2 + 1) + 4ab− 9b4

(a2 − 3b2 − 1)(a2 − 3b2 − 2b + 1)
, (9)

l1
k3

=

(
a2 + b(2− 3b) + 1

)
(a2 − 3b2 − 1)(a2 − 3b2 − 2b + 1)

(
2(11− 2a2)b2 + (a2 + 1)2 − 16ab + 9b4)

×[a6 + 2a5 + a4(−9b2 − 6b + 3)− 4a3(3b2 + 2b− 1) + 3a2(3b2 + 2b− 1)2

+2a(9b4 + 12b3 + 14b2 − 4b + 1)− (3b2 + 1)2(3b2 + 6b− 1)]

. (10)

Elliptic curve (EC): Let Fp be a finite field for any prime p, then an EC Ep over Fp is defined by

y2 ≡ x3 + bx + c (mod p), (11)

where b, c ∈ Fp. The integers b, c and p are called parameters of an EC. The number of all (x, y) ∈ F2
p

satisfying the congruence (11) is denoted by #Ep.
Mordell elliptic curve (MEC): In the special but important case b = 0, the above EC is known as

an MEC and is represented by
y2 ≡ x3 + c (mod p). (12)

For p ≡ 2 (mod 3), there are exactly p + 1 points (x, y) ∈ F2
p satisfying the congruence (12), see [41]

for further details.
If points on Ep are ordered according to some total order ≺ then Ep is said to be an ordered EC.

Recall that total order is a binary relation which possesses the reflexive, antisymmetric and transitive
properties. Azam et al. [42] introduced a total order known as a natural ordering on MECs given by

(x1, y1) ≺ (x2, y2)⇔

either x1 < x2, or

x1 = x2 and y1 < y2,

and generated efficient S-boxes using the aforesaid ordering. We will use natural ordering to generate
S-boxes. Thus from here on Ep stands for a naturally ordered MEC unless it is specified otherwise.

3. The Proposed Encryption Scheme

The proposed encryption scheme is based on pseudo-random numbers and S-boxes.
The pseudo-random numbers are generated using quasi-resonant triads. To get an appropriate
level of diffusion we need to properly order the ∆s. For this purpose we define a binary relation .
as follows.

3.1. Ordering on Quasi-Resonant Triads

Let ∆, ∆′ represent the triads (ki, li), (k′i, l′i), i = 1, 2, 3, respectively, then
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∆ . ∆′ ⇔


either a < a′, or

a = a′ and b < b′, or

a = a′, b = b′ and k3 ≤ k′3,

where a, b and a′, b′ are the corresponding auxiliary parameters of ∆ and ∆′, respectively.

Lemma 1. If T denotes the set of ∆s in a box of size L, then . is a total order on T.

Proof. The reflexivity of . follows from a = a, b = b and k3 = k3 and hence ∆ . ∆. As for
antisymmetry we suppose ∆ . ∆′ and ∆′ . ∆. Then, by definition a ≤ a′ and a′ ≤ a, which imply
a = a′. Thus we are left with two results: b ≤ b′ and b′ ≤ b, which imply b = b′. Thus, we obtain the
results k3 ≤ k′3 and k′3 ≤ k3, which ultimately give k3 = k′3. Solving Equations (8)–(10) for the obtained
values, we get k1 = k′1, l3 = l′3 and from Equation (2) it follows that l2 = l′2. Consequently ∆ = ∆′ and
. is antisymmetric. As for transitivity, let us assume ∆ . ∆′ and ∆′ . ∆′′. Then a ≤ a′ and a′ ≤ a′′,
implying a ≤ a′′. If a < a′′, then transitivity follows. If a = a′′, then a′ = a′′ too. Thus, b ≤ b′ and
b′ ≤ b′′, so b ≤ b′′. If b < b′′, then transitivity follows. If b = b′′, then b′ = b′′ too. Thus, k3 ≤ k′3 and
k′3 ≤ k′′3 , implying k3 ≤ k′′3 and hence transitivity follows: ∆ . ∆′′.

Let
∗
T stand for the set of ∆s ordered with respect to the order .. The main steps of the proposed

scheme are explained as follows.

3.2. Encryption

A. Public parameters: In order to exchange the useful information the sender and receiver should
agree on the public parameters described as below:

(1) Three sets: choose three sets Ai = [Ai, Bi], i = 1, 2, 3 of consecutive numbers with unknown step
sizes, where the end points Ai, Bi, i = 1, 2, 3 are rational numbers.

(2) A total order: select a total order ≺ so that the triads generated by the above-mentioned sets
may be arranged with respect to that order.

Suppose that P represents an image of size m× n to be encrypted, and the pixels of P are arranged
in column-wise linear ordering. Thus, for positive integer i ≤ mn, P(i) represents the i-th pixel value
in linear ordering. Define SP as the sum of all pixel values of the image P. Then the proposed scheme
chooses the secret keys in the following ways.

B. Secret keys: To generate confusion and diffusion in an image, the sender chooses the secret keys
as follows.

(1) Step size: select positive integers ai, bi to construct the step sizes αi = ai
bi

of Ai, i = 1, 2.
Additionally, choose a non-negative integer a3 as a step size of A3 in such a way that
∏3

i=1 ni ≥ mn, where #Ai = ni represents the number of elements in Ai.
(2) Detuning level: fix some posive integer δ to find the detuning level δ−1 allowed for the triads.
(3) Bound: select a positive integer L such that |ki|, |li| ≤ L for i = 1, 2, 3. This condition is imposed

in order to bound the components of the triad wave vectors. Furthermore, choose an integer t
to find r = bSP/te, where b·e gives the nearest integer when SP is divided by t. The reason for
choosing such a t is to generate key-dependent S-boxes and the integer r is used to diffuse the
components of triads.

(4) A prime: select a prime p ≥ 257 such that p ≡ 2 (mod 3) as a secret key for computing nonzero
c ≡ SP + t (mod p) to generate an S-box ζEp(p, t, SP) on the Ep. The S-box construction
technique is made clear in Algorithm 1, and the S-box generated for p = 1607, t = 182 and S = 0
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by Algorithm 1 is shown in Table 1. Furthermore, the cryptographic properties of the said S-box
are evaluated in Sections 4.1 and 4.2.

Algorithm 1: Construction of 8× 8 S-box.

/* B is a set of points (x, y) satisfying Ep, B(i) is i-th point of B and yi
stands for y-component of point B(i). */

Input : A prime p ≡ 2 (mod 3) and two integers t and S such that c = S + t and S + t 6≡ 0
(mod p).

Output : An S-box ζEp(p, t, S).
1 B := ∅;
2 Y := [0, (p− 1)/2];
3 i← 0;
4 for x ∈ [0, p− 1] do
5 for y ∈ Y do
6 if y2 ≡ x3 + c (mod p) then
7 i← i + 1; B(i) := (x, y);
8 if y 6= 0 then
9 i← i + 1; B(i) := (x, p− y);

10 break;

11 Y = Y− {y};
12 ζEp(p, t, S) = {yi ∈ B(i) : 0 ≤ yi < 256}.

Table 1. The obtained S-box ζE1607 (1607, 182, 0).

220 118 17 158 25 138 33 196 247 252 15 226 135 177 232 83
161 70 107 186 137 236 21 142 131 103 54 58 217 181 201 172
91 84 223 89 29 156 136 14 69 99 164 171 35 188 76 139

153 16 198 227 32 10 115 122 184 61 208 225 213 106 94 56
165 40 245 189 163 239 193 194 129 175 241 141 130 231 215 127
151 199 105 22 148 39 179 173 78 248 81 23 75 55 146 109
195 251 178 170 162 206 228 169 147 28 210 221 80 121 202 77
9 74 197 31 26 154 145 44 47 82 43 60 117 250 88 191
67 8 174 93 1 20 128 53 218 237 96 72 3 65 6 253

150 101 119 87 160 133 108 57 41 64 51 49 185 243 2 249
167 50 205 183 97 114 48 27 246 254 124 92 19 134 159 95
24 224 111 62 116 168 200 86 79 143 126 112 45 71 125 13
5 216 187 222 7 113 238 36 204 52 140 46 240 85 207 4

152 104 235 190 242 68 63 203 230 176 180 59 157 244 66 212
34 90 120 0 30 166 37 255 38 110 211 233 11 155 209 219

192 12 144 73 182 132 98 214 42 102 18 149 123 229 100 234

The positive integers a1, b1, a2, b2, a3, δ, L, SP, t and p are secret keys. Here it is mentioned that the
parameters a1, b1, a2, b2, a3, δ and L are used to generate mn triads in a box of size L. The generation
of triads is explained step by step in Algorithm 2. These triads along with keys SP and t are used to
generate the sequence β ∗

T
(t, SP) of pseudo-random numbers.
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Algorithm 2: Generating quasi-resonant triads.

/* T is a set containing the Quasi-resonant triads, while m and n are the
dimensions of an input image. */

Input : Three sets Ai, i = 1, 2, 3, inverse detuning level δ, bound L, two positive integers m
and n.

Output : Quasi-resonant triads
1 T := ∅;
2 c1 ← 0, c2 ← 1 ;
3 for a ∈ A1 do
4 for b ∈ A2 do
5 c1 ← c1 + 1;
6 Calculate and store the values of k′1(c1), l′3(c1), and l′1(c1) for each pair (a, b) using

Equations (8)–(10).

7 for c2 ∈ [1, c1] do
8 for k3 ∈ A3 do
9 k1 = b(k′1(c2) ∗ k3)e, l3 = b(l′3(c2) ∗ k3)e and l1 = b(l′1(c2) ∗ k3)e;

10 k2 = k3 − k1, l2 = l3 − l1 and ωi = ki/(k2
i + l2

i ), i = 1, 2, 3;
11 ω4 = ω3 −ω2 −ω1;
12 if |ω4| < δ−1 and 0 < |ki|, |li| < L, i = 1, 2, 3 then
13 T := T ∪ {∆};
14 if #T=mn then
15 break;

16 break;

17 Sort T with respect to the ordering . to get
∗
T.

Thus ∆j represents the j-th triad in ordered set
∗
T. Moreover, (k ji, lji), i = 1, 2, 3 are the components

of ∆j . In Algorithm 3, the generation of β ∗
T
(t, SP) is interpreted.

Algorithm 3: Generating the proposed pseudo-random sequence.

Input : An ordered set
∗
T, an integer t and a plain image P.

Output : Random numbers sequence β ∗
T
(t, SP).

1 Tr(j) := |rk j1|+ |lj1|+ |k j2|;

2 β ∗
T
(t, SP)(j) = (Tr(j) + SP) (mod 256);

The proposed sequence β ∗
T
(t, SP) is cryptographically a good source of pseudo-randomness

because triads are highly sensitive to the auxiliary parameters (a, b) [33] and inverse detuning level δ.
It is shown in [32] that the intricate structure of clusters formed by triads depends on the chosen δ,
and the size of the clusters increases as the inverse detuning level increases. Moreover, the generation
of triads is rapid due to the absence of modular operation.

C. Performing diffusion. To change the statistical properties of an input image, a diffusion process is
performed. While performing the diffusion, the pixel values are changed using the sequence β ∗

T
(t, SP).

Let MP denote the diffused image for a plain image P. The proposed scheme alters the pixels of P
according to:

MP(i) = β ∗
T
(t, SP)(i) + P(i) (mod 256). (13)
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D. Performing confusion. A nonlinear function causes confusion in a cryptosystem, and nonlinear
components are necessary for a secure data encryption scheme. The current scheme uses the dynamic
S-boxes to produce the confusion in an encrypted image. If CP stands for the encrypted image of P,
then confusion is performed as follows:

CP(i) = ζEp(p, t, SP)(MP(i)). (14)

Lemma 2. If #Ai = ni, i = 1, 2, 3 and p is a prime chosen for the generation of an S-box, then the time
complexity of the proposed encryption scheme is max{O(n1n2n3), p2}.

Proof. The computation of all possible values of k′1, l′3 and l′1 in Algorithm 2 takes O(n1n2) time.

Similarly the time complexity for generating
∗
T is O(c1n3) but c1 executes n1n2 times. Thus the

time required by
∗
T and hence by β ∗

T
(t, SP) is O(n1n2n3). Additionally, Algorithm 1 shows that the

proposed S-box can be constructed in O(p2) time. Thus the time complexity of the proposed scheme is
max{O(n1n2n3), p2}.

Example 1. In order to have a clear picture of the proposed cryptosystem, we explain the whole procedure using
the following hypothetical 4× 4 image. For example, let I represent the plain image of Lena256×256, and let P be
the subimage of I consisting of the intersection of the first four rows and the first four columns of I as shown in
Table 2, whereas the column-wise linearly ordered image P is shown in Table 3.

Table 2. Plain image P.

162 162 162 163
162 162 162 163
162 162 162 163
160 163 160 159

Table 3. Linear ordering of image P.

P(1) P(5) P(9) P(13)
P(2) P(6) P(10) P(14)
P(3) P(7) P(11) P(15)
P(4) P(8) P(12) P(16)

We have SP = 2589 and c = 247 and the values of other parameters are described in Section 4.3.
The corresponding 16 triads are obtained by Algorithm 2 as shown in Table 4.

Table 4. The corresponding set
∗
T for image P.

∆j k1 l1 k2 l2 k3 l3 ∆j k1 l1 k2 l2 k3 l3

∆1 −1128 1152 1529 668 401 1820 ∆9 −1240 1267 1681 735 441 2002
∆2 −1142 1167 1548 676 406 1843 ∆10 −1254 1282 1700 743 446 2025
∆3 −1156 1181 1567 685 411 1866 ∆11 −1268 1296 1719 751 451 2047
∆4 −1170 1195 1586 694 416 1889 ∆12 −1282 1310 1738 760 456 2070
∆5 −1184 1210 1605 701 421 1911 ∆13 −1296 1325 1757 768 461 2093
∆6 −1198 1224 1624 710 426 1934 ∆14 −1310 1339 1776 776 466 2115
∆7 −1212 1238 1643 719 431 1957 ∆15 −1325 1353 1796 785 471 2138
∆8 −1226 1253 1662 726 436 1979 ∆16 −1339 1368 1815 793 476 2161

From SP = 2589 and t = 2, it follows that r = 1295 and hence by
application of Algorithm 3 the terms of β ∗

T
(2, 2589) are listed in Table 5. Moreover,

the S-box ζE293(293, 2, 2589) is constructed by Algorithm 1, giving the mapping
ζE293(293, 2, 2589) : {0, 1, . . . , 255} → {0, 1, . . . , 255}, which maps the list (0, . . . , 255) to the list
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(80, 213, 29, 113, 180, 2, 119, 174, 10, 103, 190, 120, 173, 99, 194, 126, 167, 42, 251, 78, 215, 84, 209, 93, 200, 130,
163, 32, 17, 117, 176, 62, 231, 110, 183, 56, 237, 75, 218, 127, 166, 73, 220, 13, 91, 202, 28, 129, 164, 118, 175, 69,
224, 50, 243, 100, 193, 137, 156, 89, 204, 12, 63, 230, 74, 219, 4, 131, 162, 134, 159, 123, 170, 90, 203, 70, 223, 87,
206, 59, 234, 145, 148, 58, 235, 57, 236, 65, 228, 15, 112, 181, 52, 241, 76, 217, 60, 233, 121, 172, 68, 225, 51, 242,
135, 158, 41, 252, 21, 142, 151, 26, 25, 40, 253, 96, 197, 136, 157, 9, 116, 177, 122, 171, 45, 248, 115, 178, 102, 191,
67, 226, 95, 198, 143, 150, 133, 160, 98, 195, 3, 94, 199, 30, 104, 189, 132, 161, 8, 64, 229, 144, 149, 140, 153, 14,
85, 208, 20, 6, 109, 184, 125, 168, 92, 201, 19, 53, 240, 31, 66, 227, 35, 82, 211, 108, 185, 139, 154, 33, 16, 86, 207,
128, 165, 5, 71, 222, 38, 255, 23, 0, 81, 212, 1, 141, 152, 111, 182, 138, 155, 49, 244, 22, 106, 187, 105, 188, 36, 54,
239, 46, 247, 43, 250, 97, 196, 27, 11, 24, 44, 249, 83, 210, 61, 232, 39, 254, 7, 72, 221, 77, 216, 47, 246, 107, 186,
48, 245, 55, 238, 124169, 34, 79, 214, 88, 205, 114, 179, 37, 18, 146, 147, 101, 192).

Table 5. Pseudo-random sequence for plain image P.

β ∗
T
(2, 2589)(1) = 188 β ∗

T
(2, 2589)(5) = 126 β ∗

T
(2, 2589)(9) = 65 β ∗

T
(2, 2589)(13) = 3

β ∗
T
(2, 2589)(2) = 108 β ∗

T
(2, 2589)(6) = 47 β ∗

T
(2, 2589)(10) = 241 β ∗

T
(2, 2589)(14) = 180

β ∗
T
(2, 2589)(3) = 29 β ∗

T
(2, 2589)(7) = 224 β ∗

T
(2, 2589)(11) = 162 β ∗

T
(2, 2589)(15) = 115

β ∗
T
(2, 2589)(4) = 206 β ∗

T
(2, 2589)(8) = 144 β ∗

T
(2, 2589)(12) = 83 β ∗

T
(2, 2589)(16) = 35

Hence by the respective application of Equation (13) and the S-box ζE293(293, 2, 2589), the pixel
values of diffused image MP and encrypted image CP are shown in Tables 6 and 7, respectively.

Table 6. Diffused image MP.

94 32 227 166
14 209 147 87

191 130 68 22
110 51 243 194

Table 7. Encrypted image CP.

76 231 254 19
194 54 161 65

0 67 162 209
151 69 34 1

3.3. Decryption

In our scheme the decryption process can take place by reversing the operations of the encryption
process. One should know the inverse S-box ζ−1

Ep
(n, t, SP) and the pseudo-random numbers β ∗

T
(t, SP).

Assume the situation when the secret keys a1, b1, a2, b2, a3, δ, L, SP, t and p are transmitted by a

secure channel, so that the set
∗
T is obtained using keys a1, b1, a2, b2, a3, δ and L, and hence the S-box

ζ−1
Ep

(p, t, SP) and the pseudo-random numbers β ∗
T
(t, SP) can be computed by SP, t and p. Finally,

the receiver gets the original image P by applying the following equations:

MP(i) = ζ−1
Ep

(p, t, SP)(CP(i)), (15)

P(i) = MP(i)− β ∗
T
(t, SP)(i) (mod 256). (16)

4. Security Analysis

In this section the cryptographic strength of both the S-box construction technique and encryption
scheme are analyzed in detail.
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4.1. Evaluation of the Designed S-Box

An S-box with good cryptographic properties ensures the quality of an encryption technique.
Generally, some standard tests such as nonlinearity (NL), linear approximation probability (LAP), strict
avalanche criterion (SAC), bit independence criterion (BIC) and differential approximation probability
(DAP) are used to evaluate the cryptographic strength of an S-box.

The NL [43] and the LAP [44] are outstanding features of an S-box, used to measure the resistance
against linear attacks. The NL measures the level of nonlinearity and the LAP finds the maximum
imbalance value of an S-box. The optimal value of the nonlinearity is 112. A low value of LAP
corresponds to a high resistance. The minimum NL and the LAP values for the displayed S-box are
106 and 0.1484, respectively. This ensures that the proposed S-box is immune to linear attacks. Webster
and Tavares [45] developed the concepts of the SAC and the BIC, which are used to find the confusion
and diffusion creation potential of an S-box. In other words, the SAC criterion measures the change in
output bits when an input bit is altered. Similarly, the BIC criterion explores the correlation in output
bits when change in a single input bit occurs. The average values of the SAC and the BIC for the
constructed S-box are 0.4951 and 0.4988, respectively, which are close to the optimal value 0.5. Thus,
both tests are satisfied by the suggested S-box. The DAP [46] is another important feature used to
analyze the capability of an S-box against differential attacks. The lowest value of DAP for an S-box
implies the highest security to the differential attacks. Our DAP result is 0.0234, which is good enough
to resist differential cryptanalysts.

4.2. Performance Comparison of the S-Box Generation Algorithm

After performing the rigorous analyses, the S-box constructed by the current algorithm is compared
with some cryptographically strong S-boxes developed by recent schemes, as shown in Table 8.

Table 8. Comparison table of the proposed S-box ζE1607 (1607, 182, 0).

S-Boxes NL LAP SAC BIC DAP

(min) (avg) (max) (min) (avg) (max)

Ours 106 0.1484375 0.390625 0.49511719 0.609375 0.47265625 0.49888393 0.52539063 0.0234375
Ref. [31] 104 0.1484375 0.421900 - 0.6094 0.4629 - 0.5430 0.0469
Ref. [47] 104 0.1328125 0.40625 0.49755859 0.625 0.46679688 0.50223214 0.5234375 0.0234375
Ref. [48] 101 0.140625 0.421875 0.49633789 0.578125 0.46679688 0.49379185 0.51953125 0.03125
Ref. [49] 104 0.140625 0.421875 0.50390625 0.59375 0.4765625 0.50585938 0.5390625 0.0234375
Ref. [50] 100 0.140625 0.40625 0.50097656 0.609375 0.44726563 0.50634766 0.53320313 0.03125
Ref. [51] 106 0.140625 0.390625 0.49414063 0.609375 0.47070313 0.50132533 0.53320313 0.0234375
Ref. [52] 102 0.140625 0.421875 0.49804688 0.640625 0.4765625 0.50746373 0.53320313 0.0234375
Ref. [53] 104 0.0391 0.3906 - 0.6250 0.4707 - 0.53125 0.0391
Ref. [54] 104 0.0547000 0.4018 0.4946 0.5781 0.4667969 0.4988839 0.5332031 0.0391
Ref. [55] 108 0.1328 0.40625 0.4985352 0.59375 0.46484375 0.5020229 0.52734375 0.0234375

From Table 8 it follows that the NL of ζE1607(1607, 182, 0) is greater than the S-boxes
in [31,47–50,52–54], equal to that of [51] and less than the S-box developed in [55], which indicates that
ζE1607(1607, 182, 0) is highly nonlinear in comparison to the S-boxes in [31,47–50,52–54]. Additionally,
the LAP of ζE1607(1607, 182, 0) is comparable to all the S-boxes in Table 8. The SAC (average) value of
ζE1607(1607, 182, 0) is greater than the S-boxes in [51,54], and the SAC (max) value is less than or equal to
the S-boxes in [31,47,50–53]. Similarly the BIC (min) value of ζE1607(1607, 182, 0) is closer to the optimal
value 0.5 than that of [31,47,48,50,51,53–55], and the BIC (max) value of the new S-box is better than
that of the S-boxes in [31,49–55]. Thus the confusion/diffusion creation capability of ζE1607(1607, 182, 0)
is better than [31,50–53,55]. The DAP value of our suggested S-box ζE1607(1607, 182, 0) is lower than
the DAP of the S-boxes presented in [31,48,50,53,54] and equal to that of [47,49,51,52,55]. Thus from
the above discussion it follows that the newly designed S-box shows high resistance to linear as well
as differential attacks.
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4.3. Evaluation of the Proposed Encryption Technique

In this section the current scheme is implemented on all gray images of the USC-SIPI Image
Database [56]. The USC-SIPI database contains images of size m×m, m = 256,512,1024. Furthermore,
some security analyses that are explained one by one in the associated subsections are presented.
To validate the quality of the proposed scheme, the experimental results are compared with some other
encryption schemes. The parameters used for the experiments are A1 = A2 = −1.0541, A3 = 401, B1 =

B2 = −0.8514 and B3 = 691, 3036, 5071 for m = 256,512,1024, respectively; a1 = 2, b1 = 1000, a2 =

19, b2 = 1000, a3 = 5, δ = 1000, t = 2, p = 293, L = 90,000 and SP varies for each P. The experiments
were performed using Matlab R2016a on a personal computer with a 1.8 GHz Processor and 6 GB RAM.
All encrypted images of the database along with histograms are available at [57]. Some plain images,
House256×256, Stream512×512, Boat512×512 and Male1024×1024 and their cipher images are displayed in
Figure 1.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 1. (a–d) Plain images House, Stream, Boat and Male; (e–h) cipher images of the plain
images (a–d), respectively.

4.3.1. Statistical Attack

A cryptosystem is said to be secure if it has high resistance against statistical attacks. The strength
of resistance against statistical attacks is measured by entropy, correlation and histogram tests. All of
these tests are applied to evaluate the performance of the discussed scheme.

(1) Histogram. A histogram is a graphical way to display the frequency distribution of pixel values of
an image. A secure cryptosystem generates cipher images with uniform histograms. The histograms
of the encrypted images using the proposed method are available at [57]. However, the respective
histograms for the images in Figure 1 are shown in Figure 2. The histograms of the encrypted images
are almost uniform. Moreover, the histogram of an encrypted image is totally different from that of
the respective plain image, so that it does not allow useful information to the adversaries, and the
proposed algorithm can resist any statistical attack.
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Figure 2. (a–d) Histograms of Figure 1a–d; (e–h) histograms of Figure 1e–h.

(2) Entropy. Entropy is a standout feature to measure the disorder. Let I be a source of information
over a set of symbols N. Then the entropy of I is defined by:

H(I) =
#N

∑
i=1

p(Ii)log2
1

p(Ii)
, (17)

where p(Ii) is the probability of occurrence of symbol i. The ideal value of H(I) is log2(#N),
if all symbols of N occur in I with the same probability. Thus, an image I emanating 256 gray
levels is highly random if H(I) is close to 8 (notice, however, that this definition of entropy does
not take into account pixel correlations). The entropy results for all images encrypted by the
suggested technique are shown in Figure 3, where the minimum, average and maximum values
are 7.9966, 7.9986 and 7.9999, respectively. These results are close to 8, and hence the developed
mechanism is secure against entropy attacks.

(3) Pixel correlation. A meaningful image has strong correlation among the adjacent pixels. In fact,
a good cryptosystem has the ability to break the pixel correlation and bring it close to zero.
For any two gray values x and y, the pixel correlation can be computed as:

Cxy =
E
[
(x− E[x])(y− E[y])

]√
K[x]K[y]

, (18)

where E[x] and K[x] denote expectation and variance of x, respectively. The range of Cxy is
−1 to 1. The gray values x and y are in low correlation if Cxy is close to zero. As the pixels
may be adjacent in horizontal, diagonal and vertical directions, the correlation coefficients of all
encrypted images along all three directions are shown in Figure 3, where the respective ranges
of Cxy are [−0.0078, 0.0131], [−0.0092,0.0080] and [−0.0100,0.0513]. These results show that the
presented method is capable of reducing the pixel correlation near to zero.

In addition, 2000 pairs of adjacent pixels of the plain image and cipher image of Lena512×512 are
randomly selected. Then correlation distributions of the adjacent pixels in all three directions are
shown in Figure 4, which reveals the strong pixel correlation in the plain image but a weak pixel
correlation in the cipher image generated by the current scheme.
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Figure 3. (a–c) The horizontal, diagonal and vertical correlations among pixels of each image in
USC-SIPI database; (d) the entropy of each image in USC-SIPI database.

(a)

0 50 100 150 200 250
0

50

100

150

200

250

Correlation of horizontal adjecent two pixels for plain-image

(b)

0 50 100 150 200 250
0

50

100

150

200

250

Correlation of diagonal adjecent two pixels for plain-image

(c)

0 50 100 150 200 250
0

50

100

150

200

250

Correlation of vertical adjecent two pixels for plain-image

(d)

(e)

0 50 100 150 200 250
0

50

100

150

200

250

Correlation of horizontal adjecent two pixels for cipher-image

(f)

0 50 100 150 200 250
0

50

100

150

200

250

Correlation of diagonal adjecent two pixels for cipher-image

(g)

0 50 100 150 200 250
0

50

100

150

200

250

Correlation of vertical adjecent two pixels for cipher-image

(h)
Figure 4. (b–d) The distribution of pixels of the plane image (a) in the horizontal, diagonal and vertical
directions; (f–h) the distribution of pixels of the cipher image (e) in the horizontal, diagonal and
vertical directions.

4.3.2. Differential Attack

In differential attacks the opponents try to get the secret keys by studying the relation between
the plain image and cipher image. Normally attackers encrypt two images by applying a small change
to these images, then compare the properties of the corresponding cipher images. If a minor change in
the original image can cause a significant change in the encrypted image, then the cryptosystem has a
high security level. The two tests NPCR (number of pixels change rate) and UACI (unified average
changing intensity) are usually used to describe the security level against differential attacks. For two
plain images P and P

′
different at only one pixel value, let CP and CP′ be the cipher images of P and P

′
,

respectively, then NPCR and UACI are calculated as:

NPCR =
m

∑
u=1

n

∑
v=1

τ(u, v)
m× n

, (19)

UACI =
m

∑
u=1

n

∑
v=1

|CP(u, v)− CP′ (u, v)|
255×m× n

, (20)

where τ(u, v) = 0 if CP(u, v) = CP′ (u, v) and τ(u, v) = 1, otherwise. The expected values of NPCR and
UACI for 8-bit images are 0.996094 and 0.334635, respectively [13]. We applied the above two tests to each
image of the database by randomly changing the pixel value of each image. The experimental results are
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shown in Figure 5, giving average values of NPCR and UACI of 0.9961 and 0.3334, respectively. It follows
from the obtained results that our scheme is capable of resisting a differential attack.
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Figure 5. (a,b) The NPCR and UACI results for each image in the USC-SIPI database; (c) First
256 pseudo-random numbers and (d) two S-boxes generated for Lena512×512 with a small change
in an input key t.

4.3.3. Key Analysis

For a secure cryptosystem it is essential to perform well against key attacks. A cryptosystem is
highly secure against key attacks if it has key sensitivity and large key space and strongly opposes the
known-plaintext/chosen-plaintext attack. The proposed scheme is analyzed against key attacks as follows.

(1) Key sensitivity. Attackers usually use slightly different keys to encrypt a plain image and then
compare the obtained cipher image with the original cipher image to get the actual keys. Thus,
high key sensitivity is essential for higher security. That is, cipher images of a plain image
generated by two slightly different keys should be entirely different. The difference of the cipher
images is quantified by Equations (19) and (20). In experiments we encrypted the whole database
by changing only one key, while other keys remain unchanged. The key sensitivity results are
shown in Table 9, where the average values of NPCR and UACI are 0.9960 and 0.3341, respectively,
which specify the remarkable difference in the cipher images. Moreover, our cryptosytem is
based on the pseudo-random numbers and S-boxes. The sensitivity of pseudo-random numbers
sequences β ∗

T
(2, SP) and β ∗

T
(1, SP) and S-boxes ζEp(p, 2, SP) and ζEp(p, 1, SP) for Lena512×512 is

shown in Figure 5.

Table 9. Difference between two encrypted images when key t = 2 is changed to t = 1. NPCR: number
of pixels change rate; UACI: unified average changing intensity.

Image NPCR(%) UACI(%) Image NPCR(%) UACI(%) Image NPCR(%) UACI(%)

Female 99.62 33.39 House 99.62 33.23 Couple 99.56 33.30
Tree 99.59 33.35 Beans 99.64 33.23 Splash 99.60 33.97

(2) Key space. In order to resist a brute force attack, key space should be sufficiently large. For any
cryptosystem, key space represents the set of all possible keys required for the encryption process.
Generally, the size of the key space should be greater than 2128. In the present scheme the
parameters a1, b1, a2, b2, a3, δ, L, SP, t and p are used as secret keys, and we store each of them in
28 bits. Thus the key space of the proposed cryptosystem is 2280 which is larger than 2128 and
hence capable to resist a brute force attack.

(3) Known-plaintext/chosen-plaintext attack. In a known-plaintext attack, the attacker has partial
knowledge about the plain image and cipher image, and tries to break the cryptosystem, while in
a chosen-plaintext attack the attacker encrypts an arbitrary image to get the encryption keys.
An all-white/black image is usually encrypted to test the performance of a scheme against these
powerful attacks [29,58]. We analyzed our scheme by encrypting an all-white/black image of
size 256× 256. The results are shown in Figure 6 and Table 10, revealing that the encrypted
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images are significantly randomized. Thus the proposed system is capable of preventing the
above mentioned attacks.
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Figure 6. (a) All-white; (b) all-black; (c,d) cipher images of (a,b); (e,f) histograms of (c,d).

Table 10. Security analysis of all-white/black encrypted images by the proposed
encryption technique.

Plain Image Entropy Correlation of Plain Image NPCR (%) UACI (%)
Hori. Diag. Ver.

All-white 7.9969 0.0027 0.0020 −0.0090 99.60 33.45
All-black 7.9969 −0.0080 0.0035 0.0057 99.62 33.41

4.4. Comparison and Discussion

Apart from security analyses, the proposed scheme is compared with some well-known image
encryption techniques. The gray scale images of Lena256×256 and Lena512×512 are encrypted using the
presented method, and experimental results are listed in Table 11.

Table 11. Comparison of the proposed encryption scheme with several existing cryptosystems for
image Lenam×m, m = 256,512.

Size m Algorithm Entropy Correlation NPCR (%) UACI(%) # Dynamic

Hori. Diag. Ver. S-Boxes S-Boxes

256

Ours 7.9974 0.0001 −0.0007 −0.0001 99.91 33.27 1 Yes
Ref. [31] 7.9993 0.0012 0.0003 0.0010 99.60 33.50 1 Yes
Ref. [3] 7.9973 - - - 99.50 33.30 0 -

Ref. [27] 7.9046 0.0164 −0.0098 0.0324 98.92 32.79 >1<50 Yes
Ref. [26] 7.9963 −0.0048 −0.0045 −0.0112 99.62 33.70 8 Yes
Ref. [59] 7.9912 −0.0001 0.0091 0.0089 100 33.47 0 -
Ref. [60] 7.9974 0.0020 0.0020 0.0105 99.59 33.52 0 -

512
Ours 7.9993 0.0001 0.0042 0.0021 99.61 33.36 1 Yes

Ref. [25] 7.9992 0.0075 0.0016 0.0057 99.61 33.38 1 No
Ref. [29] 7.9993 −0.0004 0.0001 −0.0018 99.60 33.48 1 No

-
Ref. [61] 7.9970 −0.0029 0.0135 0.0126 99.60 33.48 0 -
Ref. [62] 7.9994 0.0018 −0.0012 0.0011 99.62 33.44 >1 Yes
Ref. [2] 7.9993 0.0032 0.0011 −0.0002 99.60 33.47 >1 Yes

It is deduced that our scheme generates cipher images with comparable security. Furthermore,
we remark that the scheme in [29] generates pseudo-random numbers using group law on EC,
while the proposed method generates pseudo-random numbers by constructing triads using
auxiliary parameters of elliptic surfaces. Group law consists of many operations, which makes
the pseudo-random number generation process slower than the one we present here. The scheme
in [26] decomposes an image to eight blocks and uses dynamic S-boxes for encryption purposes.
The computation of multiple S-boxes takes more time than computing only one S-box. Similarly the
techniques in [2,27] use a set of S-boxes and encrypt an image in blocks, while our newly developed
scheme encrypts the whole image using only one dynamic S-box. Thus, our scheme is faster than
the schemes in [2,27]. The security system in [61] uses a chaotic system to encrypt blocks of an
image. The results in Table 11 reveal that our proposed system is cryptographically stronger than
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the scheme in [61]. The algorithms in [3,59] combine chaotic systems and different ECs to encrypt
images. It follows from Table 11 that the security level of our scheme is comparable to that of the
schemes in [3,59]. The technique in [60] uses double chaos along with DNA coding to get good results,
as shown in Table 11, but the results obtained by the new scheme are better than that of [60]. Similarly
the technique in [31] encrypts images using ECs but does not guarantee an S-box for each set of input
parameters, thus making our scheme faster and more robust than the scheme developed in [31].

Furthermore, the following facts put our scheme in a favorable position:

(i) Our scheme uses a dynamic S-box for each input image while the S-box used in [29] is a static
one, which is vulnerable [63] and less secure than a dynamic one [64].

(ii) The presented scheme guarantees an S-box for each image, which is not the case in [31].
(iii) To get random numbers, the described scheme generates triads for all images of the same size,

while in [31] the computation of an EC for each input image is necessary, which is time consuming.
(iv) The scheme in [26] uses eight dynamic S-boxes for a plain image, while the current scheme uses

only one dynamic S-box for each image to get the desired cryptographic security.

5. Conclusions

An image encryption scheme based on quasi-resonant triads and MECs was introduced.
The proposed technique constructs triads to generate pseudo-random numbers and computes an MEC
to construct an S-box for each input image. The pseudo-random numbers and S-box are then used for
altering and scrambling the pixels of the plain image, respectively. As for the advantages of our proposed
method, firstly triads are based on auxiliary parameters of elliptic surfaces, and thus pseudo-random
numbers and S-boxes generated by our method are highly sensitive to the plain image, which prevents
adversaries from initiating any successful attack. Secondly, generation of triads using auxiliary parameters
of elliptic surfaces consumes less time than computing points on ECs (we find a 4x speed increase for
a range of image resolutions m ∈ [128, 512]), which makes the new encryption system relatively faster.
Thirdly, our algorithm generates the cipher images with an appropriate security level.

In summary, all of the above analyses imply that the presented scheme is able to resist all attacks.
It has high encryption efficiency and less time complexity than some of the existing techniques. In the
future, the current scheme will be further optimized by means of new ideas to construct the S-boxes
using the constructed triads, so that we will not need to compute an MEC for each input image.
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