
entropy

Article

An Improved Total Uncertainty Measure in the
Evidence Theory and Its Application in
Decision Making

Miao Qin, Yongchuan Tang * and Junhao Wen

School of Big Data and Software Engineering, Chongqing University, Chongqing 401331, China;
20171979@cqu.edu.cn (M.Q.); jhwen@cqu.edu.cn (J.W.)
* Correspondence: tangyongchuan@cqu.edu.cn

Received: 31 March 2020; Accepted: 22 April 2020; Published: 24 April 2020
����������
�������

Abstract: Dempster–Shafer evidence theory (DS theory) has some superiorities in uncertain
information processing for a large variety of applications. However, the problem of how to
quantify the uncertainty of basic probability assignment (BPA) in DS theory framework remain
unresolved. The goal of this paper is to define a new belief entropy for measuring uncertainty
of BPA with desirable properties. The new entropy can be helpful for uncertainty management
in practical applications such as decision making. The proposed uncertainty measure has two
components. The first component is an improved version of Dubois–Prade entropy, which aims to
capture the non-specificity portion of uncertainty with a consideration of the element number in frame
of discernment (FOD). The second component is adopted from Nguyen entropy, which captures
conflict in BPA. We prove that the proposed entropy satisfies some desired properties proposed in
the literature. In addition, the proposed entropy can be reduced to Shannon entropy if the BPA is
a probability distribution. Numerical examples are presented to show the efficiency and superiority
of the proposed measure as well as an application in decision making.

Keywords: Dempster–Shafer evidence theory; uncertainty measure; belief entropy; conflict
management; decision making

1. Introduction

Uncertain information processing is a hot topic in intelligent information processing of theory
and applications [1–3]. Many theories have been proposed to address the problem such as fuzzy
set theory [4], probability theory [5], Dempster–Shafer evidence theory (DS theory) [6,7], etc. First
proposed by Arthur Dempster and Glenn Shafer, Dempster–Shafer theory has been widely used in
many fields such as risk evaluation [8–10], sensor data fusion [11], decision making [12,13], image
recognition [14], classification [15,16], clustering [17,18] and so on [19,20]. However, some open
issues remain unresolved. First, the fused information based on Dempster combination rule may
generate counterintuitive results if evidence is highly conflicted with each other [21–23]. Second,
many properties have been built to evaluate different uncertainty measures [24,25], but the rationality
for some of these properties is still questionable. Third, during the process of calculating entropy,
some characteristics of the basic probability assignment are lost. Fourth, the evidence in the open world
assumption needs further consideration [26,27]. The uncertainty measure including belief entropy can
be a promising method for uncertain information modeling, processing, and management of conflict
in DS theory [28,29].
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Uncertainty measure in DS theory has attracted much attention [30–33]. Over the years,
many theories have been developed to quantify the uncertainty in DS Theory, such as Deng entropy [28],
Pouly et al. method [34], Yager’s interval valued entropy [35], the cross entropy in Dempster–Shafer
theory [36], uncertainty measure for D numbers [37], and so on [38,39]. To develop a reasonable
measure, several properties for entropy of BPAs in the DS theory were built by Jirousek and Shenoy
as an improved version of five axiomatic requirements in Shannon entropy [25,40]. The desired
properties are: consistency with DS theory semantics, non-negativity, maximum entropy, monotonicity,
probability consistency, additivity, and subadditivity. However, none of the existing measures satisfies
all seven properties. The properties of belief entropy are still an open issue.

In this paper, we first analyze the rationality of some properties suggested in [24,40] and list seven
reasonable properties, and then propose an improved total uncertainty measure in the evidence theory
to measure the uncertainty of BPA. The hypotheses are that: (1) BPA is a generalization of probability;
and (2) Shannon entropy can be adopted to DS theory. Thus, the new belief entropy can be a helpful
tool for measuring uncertain degree of information. The proposed belief entropy has two components.
The first component is an improved version of Dubois–Prade entropy [24], which can capture the
non-specificity portion of uncertainty with a consideration of the size of frame of discernment (FOD).
The second component is adopted from Nguyen entropy [41], which captures conflict in BPA. We show
that our entropy satisfies six of seven desired properties. In addition, our entropy can reduce to
Shannon entropy if a BPA is degenerated to a probability distribution. The proposed method is applied
in decision making, which follows the works in diverse applications [42,43].

The rest of this paper is outlined as follows. In Section 2, the preliminaries of DS theory and
entropy are briefly introduced. The improved entropy is presented in Section 3, as well as the analysis of
the properties. In Section 4, some numerical examples are carried out to demonstrate the effectiveness
and superiority of the proposed method. In Section 5, the proposed entropy is used in decision making.
Finally, the conclusion and a discussion of future work are given in Section 6.

2. Preliminaries

Some basic preliminaries are introduced in this section.

2.1. Dempster–Shafer Evidence Theory

Dempster–Shafer evidence theory is widely applied in addressing uncertainties [44,45]. Some
basic concepts are introduced as follows [6,7].

Let X be a set of mutually exclusive and exhaustive events, denoted as:

X = {θ1, θ2, θ3.....θ|X|}, (1)

where the set X is named the frame of discernment (FOD). The power set of X is defined as follows:

2X = {Ø, {θ1}......{θ|X|}, {θ1, θ2}......{θ1, θ2......θi}......|X|}, (2)
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For a FOD X = {θ1, θ2, θ3.....θ|X|}, the mass function is a mapping m from 2X to [0, 1], defined
as follows:

m : 2X → [0, 1], (3)

which satisfies the following condition:

m {∅} = 0 and ∑
A∈2X

m(A) = 1. (4)

In DS theory, the mass function is also referred as basic probability assignment (BPA). If a subset a
satisfies a ∈ 2X and m(a) > 0, then a is called the focal element of m. If a BPA m contains a focal
element X with belief 1, then the BPA m is a vacuous BPA.

2.2. Dempster’s Rule of Combination

Assume there are two independent BPAs m1 and m2; the Dempster’s rule of combination, which
is denoted as m = m1

⊕
m2, is defined as: follows [6]:

m(A) =

{
1

1−K ∑B
⋂

C=A m1(B)m2(C), A 6= ∅,

0, A = ∅,
(5)

where the K is is a normalization constant defined as follows:

K = ∑
B
⋂

C=∅
m1(B)m2(C) (6)

The normalization constant K is assumed to be non-zero. if K = 0, then m1 and m2 are in
total-conflict and cannot be combined using Dempster’s rule. If k = 1, m1 and m2 are non-interactive
with each other, then m1 and m2 are non-conflicting.

The Dempster’s rule of combination combines two BPAs in such a way that the new BPA
represents a consensus of the contributing pieces of evidence. It also focus BPA on single set to
decrease the uncertainty in the system based on the combination rule, which can be useful in decision
making process.

2.3. Belief Entropy in Dempster–Shafer Evidence Theory

Several methods have been proposed to solve the problem of uncertainty measure in DS theory.
Some previous methods are briefly summarized in Table 1.
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Table 1. Belief entropy in Dempster–Shafer evidence theory.

Name Defination Set Cons. Non-Neg Max. Ent. Monton. Prob. Cons. Additivity Subadditivity

Dubois–Prade Equation [24] HD(m) = ∑A⊆X m(a)log2 |A| yes no no yes no yes yes
Nguyen Equation [41] Hn(m) = ∑A⊆X m(A)log2(

1
m(A)

) no no no no yes yes no

Klir–Ramer Equation [46] Hkr(m) = −∑A⊆X m(A)log2 ∑B⊆X m(B) |A∩B|
|B| no yes no yes yes yes no

Klir–Parviz Equation [47] Hkp(m) = −∑A⊆X m(A)log2 ∑B⊆X m(B) |A∩B|
|A| no yes no yes yes yes no

Deng Equation [28] HD(m) = ∑A⊆X m(A)log2
2|A|−1
m(A)

no yes no no yes no no

Jirousek–Shenoy Equation [40] H(m) = ∑x⊆X Pl_Pm(x)log2
1

Pl_Pm(x) + ∑A⊆X m(A)log2(|A|) yes yes no yes yes yes no
Yager Equation [48] Hy(m) = −∑A⊆X m(A)log2Pl(A) no no no no yes yes no
Hohle Equation [49] Ho(m) = −∑A⊆X m(A)log2Bel(A) no no no no yes yes no

Pal et al. Equation [50] Hb(m) = ∑A⊆X m(A)log2(
|A|

m(A)
) yes yes yes yes yes yes no
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3. The Improved Total Uncertainty Measure

3.1. The New Measure

To address the uncertainty in the FOD, an improved total uncertainty measure is proposed in this
paper. The improved total uncertainty measure denoted as Q(m) is defined as follows:

Q(m) = ∑
A⊆X

|A|
|X|m(A)log2(|A|) + ∑

A⊆X
m(A)log2(

1
m(A)

), (7)

where |A| denotes the cardinality of the focal element A, |X| is the number of element within X, and m
is the BPA in FOD X. The first component ∑A⊆X

|A|
|X|m(A)log(|A|) is designed as a weighted measure

for the total non-specificity among focal elements. The second component ∑A⊆X m(A)log2(
1

m(A)
)

can be interpreted as a portion to capture the uncertainty in the form of conflict. The improved
total uncertainty measure also guarantees that the measure could be reduced to Shannon entropy
in Bayesian probability cases. Notice that the coefficient |A||X| is added to consider the size of FOD.
As shown in Table 1, the number of elements contained in FOD is not included for most measures.

3.2. Desired Properties of Belief Entropy

In this paper, we consider some properties of entropy H(m) (m is a BPA) proposed in [40,51].
Let X and Y denote random variables with state spaces ΩX and ΩY, respectively. Let mX and

mY denote distinct BPAs for X and Y, respectively. Let γX and γY denote the vacuous BPAs for X and
Y, respectively.

(1) Consistency with DS Theory semantics. If a definition of entropy of m, or a portion of
a definition, is based on a transform of BPA m to a probability mass function (PMF) pm, then the
transform must satisfy the following condition: Pm1

⊕
m2 = Pm1 ⊗ Pm2

(2) Non-negativity. HmX > 0, with equality if and only if there is a x ∈ ΩX where x is a single
element set that satisfies mX({x}) = 1. It is similar to probabilistic case.

(3) Monotonicity. If |ΩX | < |ΩY|, then H(γX) < H(γY).
(4) Probability consistency. If mX is a Bayesian BPA for X, then H(mX) =

∑x⊆ΩX
mX({x})log 1

mX({x})
. In other words, in the case of Bayesian BPA, the entropy reduces to

Shannon entropy [52].
(5) Maximum entropy. H {mX} 6 H {γX}, with equality if and only if mX = γX. The entropy

in [40] shows that it is rational that the vacuous BPA γX has the most uncertainty among all cases
since in this case γX(ΩX) = 1. One hundred percent belief degree is assigned to γX(ΩX), which
provides no information to help with decision making because the belief of each proposition in FOD is
completely unknown.

(6) Additivity. Given two distinct BPAs mX and mY for X and Y, we can combine them using
Dempster’s rule, denoted as mX ⊕mY. Then, H(mX ⊕mY) must satisfy the following equation:

H(mX ⊕mY) = H(mX) + H(mY). (8)

(7) Set consistency. H(m) = log2(|a|) whenever m is deterministic with focal set a, i.e., m(a) = 1.
(8) Range. For any BPA mX for X, 0 ≤ H(m) ≤ log2|ΩX | .
(9) Subadditivity. Suppose m is a BPA for {X, Y}; then, with marginal BPA m′X for X and m′Y for

Y, we have
H(m) ≤ H(m′X) + H(m′Y) (9)

It is argued in [40] that, if a definition of entropy of m, or a portion of a definition, is based
on a transform of BPA to a PMF, then the transform must satisfy the condition Pm1⊕m2 = Pm1 ⊗ Pm2

where ⊗ is the combination rule in probability theory, and ⊕, as mentioned in Section 2, is Dempster’s
combination rule. Notice that only if a transform is used, then it must be consistent with Dempster’s
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rule. Since none of the methods except for Jirousek–Shenoy Equation in Table 1 use transform of BPA
to a PMF, we do not discuss the Consistency with DS Theory semantics property in this article.

The Set consistency property requires that H(γX) = log2|ΩX |. The probability consistency
property would require that, for the Bayesian uniform BPA mu, H(mu) = log2|ΩX | as well. Thus,
these two requirements would entail that H(γX) = H(mu). On the contrary, the Maximum entropy
property indicates that the entropy of vacuous BPA H(γX) should be maximum, H(γX) > H(mu).
Before further analysis of these two properties, first consider the following the example.

Example 1. Suppose there is a race with three bikes. We have two experts that make following the statements.

• Expert 1: “The three bikes and riders are similar."
• Expert 2: “I do not have information about the characteristics of each bike and rider."

If we represent these information in BPA, the opinion of Expert 1 produces a uniform distribution
( 1

3 , 1
3 , 1

3 ) and the second one a vacuous BPA. The question is, if we must bet on a bike that will win
this race, on which should we place our bet following the information of these experts? In this case,
we do not have anything that allows us to bet on a bike, thus our final decision will be made randomly.
Hence, the information, or uncertainty, should be the same. In both cases, it must reach the maximum
uncertainty value. Therefore in this paper, we modify the Maximum entropy property instead of
adopting the original property:

• Maximum entropy. H(mX) 6 H(γX), with equality if and only if mX = γX or mX is
a uniform distribution.

The Range property requires that, for all BPAs, the value of entropy should be bounded by
log2|ΩX |; we disagree. In Shannon’s information theory, the maximum number of bits required to
represent the uncertainty of a system with n status is log2(n), which is reasonable since the system
can be represented only by state number n. However, in this case, the BPAs focus on several subsets
(up to 2n − 1) and each of them can have non-empty intersection with others. However, because of
the non-specificity part of total uncertainty, one cannot even say that the total uncertainty should be
bounded by log2(2n − 1). Based on this analysis, we do not adopt Range property.

Based on the analysis above, we list seven properties that may be satisfied by uncertainty measure
in DS theory:

• Non-negativity
• Monotonicity
• Probability consistency
• Maximum entropy
• Additivity
• Set consistency
• Subadditivity

3.3. Property of the New Measure

The analysis of the property for the proposed measure is presented as follows.
(1) Non-negativity. The first component ∑A⊆X

|A|
|X|m(A)log2(|A|) = 0 and second component

∑A⊆X m(a)log2(
1

m(A)
) = 0 if and only if there exists x ⊆ X and m({x}) = 1. For all BPAs, |A||X| > 0,

then Q(m) > 0. Therefore, Q(m) satisfies the non-negativity property.
(2) Monotonicity. Suppose a vacuous BPA γX; then, Q(γX) = |X|. Since it is monotonic in |X|,

Q(m) satisfies the monotonicity property.
(3) Probability Consistency. If m is Bayesian, then the first component ∑A⊆X

|A|
|X|m(A)log2(|A|) =

0. In this case, Q(m) is degenerated to Shannon entropy. Thus, Q(m) satisfies the probability
consistency property.
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(4) Maximum entropy. Suppose a Bayesian uniform BPA mu and n denotes |X|; therefore, for each
focal element, m(A) = 1

n . Suppose another vacuous BPA γX with n denoting |X|. After calculation,
it is clear that the entropies of both cases reach the maximum value of log2n at the same time, thus
Q(m) satisfies the Maximum entropy property.

(5) Additivity. Let BPA X = {x1, x2, x3} , Y = {y1, y2} and X×Y be the product space of X and
Y. BPAs for X and Y are listed as follows:

mX{x1, x2} = 0.6

mX{x3} = 0.3

mX{X} = 0.3

mY{Y} = 1

Now, we build the BPA m′ = mX ×mY on X×Y. The BPA m′ has the following masses:

m′({z11, z12, z21, z22}) = 0.6

m′({z31, z32}) = 0.1

m′(X×Y) = 0.3

where zij = (xi, yj).
The values of uncertainty via Q(m) are:

Q(m′) = 2.9043

Q(mX) + Q(mY) = 3.1710
(10)

Clearly, Q(m) does not meet the requirements of Additivity property. The second
component ∑A⊆X m(a)log2(

1
m(A)

) satisfies the additivity property that the log of a product
is the sum of the logs. Let R be the product space of X, Y, R = A × B ⊆
X × Y; then, H(m) = ∑R⊆X×Y m(R)log2(

1
m(R) ) = ∑A⊆X,B⊆Y m(A × B)log2(

1
m(A×B) ) =

∑A⊆X,B⊆Y m(A)m(B)log2(
1

m(A)m(B) ) = ∑A⊆X mX(A)log2(
1

mX(A)
) + ∑B⊆Y mY(B)log2(

1
mY(B) ) =

H(mX) + H(mY). The first part ∑A⊆X
|A|
|X|m(A)log(|A|) does not meet the requirement of additivity

for adding the coefficient |A||X| . Thus, Q(m) does not satisfy the Additivity property. Notice that,
in probability cases, Q(m) degenerates to Shannon entropy and the Additivity property holds.
In addition, while both Deng’s entropy and Q(m) fail to satisfy this property, their performances
shown in Sections 4 and 5 are still reasonable.

(6) Set consistency. For vacuous BPA γX of X, Q(m) is reduced to Nguyen entropy, and, according
to Table 1, the definition of Nguyen entropy satisfies the Set consistency property, thus Q(m) satisfies
the Set consistency property.

(7) Subadditivity. Consider BPA m for {X, Y} as follows: m {(x, y), (x̄, ȳ} = m {(x̄, y), (x, ȳ} = 1
2 ,

for this BPA, Q(m) = 1.5000. m′X and m′X have vacuous BPA γX and γY, Q(m′X) + Q(m′Y) = 2,
and the inequality holds when m reduces to a possibility distribution. Therefore, Q(m) satisfies the
Subadditivity property.

As shown in Table 1, both Pal et al.’s equation and Q(m) satisfies six of seven properties listed in
Section 3.2; the limitation of Pal et al.’s is discussed later in Section 4.
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4. Numerical Examples

In this section, some typical numerical examples are presented to show the effectiveness of the
proposed measure.

Example 2 (Adopted from [28]). Given a frame of discernment X with 15 elements which are denoted as
Elements 1–15, the BPA is shown as follows:

m({3, 4, 5}) = 0.05, m({6}) = 0.05, m({A}) = 0.8, m({X}) = 0.1.

Table 2 and Figure 1 list the values of the proposed entropy Q(m) when A increases. Figure 2 shows
that the uncertainty degree measured by the proposed measure increases along with the growing size of A.

It is rational since more information volume becomes unknown if the size of A rises.
Figure 2 lists the performance of other uncertainty measures including Dubois–Prade’s

entropy [24], Höhle’s entropy [49], Yager’s entropy [48], Klir–Ramer’s entropy [46], Klir–Parviz’s
entropy [49], and Pal et al.’s entropy [50]. According to Figure 2, only Deng entropy, Dubois–Prade’s
entropy, Pal et al.’s entropy and the proposed entropy increase monotonously with the size of A.
On the contrary, other measures either decrease irregularly or fluctuate as the size of A increases. This
is because other methods do not consider the size of A and X simultaneously in the definition. Using
more available information means less uncertainty.

Table 2. Proposed measure Q(m) with A.

Cases Q(m)

A = {1} 1.4285
A = {1, 2} 1.5351

A = {1, 2, 3} 1.6821
A = {1, ..., 4} 1.8551
A = {1, ..., 5} 2.0476
A = {1, ..., 6} 2.2557
A = {1, ..., 7} 2.4765
A = {1, ..., 8} 2.7085
A = {1, ..., 9} 2.9500
A = {1, ..., 10} 3.2002
A = {1, ..., 11} 3.4580
A = {1, ..., 12} 3.7228
A = {1, ..., 13} 3.9941
A = {1, ..., 14} 4.2731
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Figure 1. Q(m) changes with the variable A.
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Figure 2. Uncertain degree with the proposed measure and other methods.

Example 3 (Adopted from [53]). Consider two different FODs Θ1 = {a, b, c, d} and Θ2 = {a, b, c};
the BPAs are given as follows:

m1 : m1({a, b}) = 0.4,

m1({c, d}) = 0.6.

m2 : m2({a, c}) = 0.4,

m2({b, c}) = 0.6.

According to the definitions in Table 1, the uncertainty of m1 and m2 can be calculated with
different uncertainty measures; the results are shown in Table 3. The results calculated by Deng
entropy, Pal et al.’s entropy, and Dubois–Prade entropy fail to show the difference of uncertain degree
among the two bodies of evidence. The FOD of m1 consists of four elements denoted as a, b, c, and d,
while the FOD of m2 only has three elements denoted as a, b, and c. It is expected that the uncertainty of
these two BPAs should be different. Deng entropy, Pal et al.’s entropy, and Dubois–Prade entropy fail
to measure the difference between these BPAs, while the proposed method can effectively measure the
difference by considering the size of the FOD. The final result seems rational; although there fewer less
elements in the second BPA m2, the intersection in m2 provides more uncertainty while all elements in
m1 are independent from each other. Therefore, the proposed method appears to be a reasonable way
to measure uncertainty of evidence under such circumstances.

Table 3. Results of different uncertainty measures of Example 3.

BPAs Deng Pal et al. Dubois–Prade Proposed Measure

m1 2.5559 1.9710 1 1.4710
m2 2.5559 1.9710 1 1.6376

5. Application in Conflict Data Fusion

In this section, the proposed measure is applied to a case study on conflict data-based decision
making. The dataset is adopted from [53,54].

5.1. Problem Statement

Supposing that the FOD is Θ = {F1, F2, F3}, which consists of three types of faults for the machines.
The diagnosis sensors are denoted as S = {S1, S2, S3, S4, S5}. Five sensors are positioned on different
places for collecting diagnosis data. The results represented by BPAs are shown in Table 4.
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Table 4. Conflict data from sensors.

BPAs {F1} {F2} {F3} {F1, F3}
S1 : m1 0.41 0.29 0.30 0.00
S2 : m2 0.00 0.90 0.10 0.00
S3 : m3 0.58 0.07 0.00 0.35
S4 : m4 0.55 0.10 0.00 0.35
S5 : m5 0.60 0.10 0.00 0.30

5.2. Decision Making Procedure

The process for decision making based on the improved belief entropy is proposed in Figure 3.
Six steps are designed as follows.

Figure 3. Decision making progress based on the improved total uncertainty measure.

Step 1

Data from sensors are modeled as BPAs. As shown in Table 4, each piece of evidence is modeled
as a BPA.

Step 2

Measure the uncertain degree using the improved total uncertainty measure in Equation (7).
Generally, the more dispersive is the mass value assigned among the power set, the bigger is the
entropy of the BPA . The entropy of each BPA is calculated as follows: Q(m1) = 1.5664, Q(m2) = 0.4690,
Q(m3) = 1.4878, Q(m4) = 1.5700, and Q(m5) = 1.4955. Notice that entropy Q(m2) is much smaller
than the others because m2 assigns a belief of 90% on F2, while other BPAs are more dispersive.

Step 3

Calculate the relative weight based on the uncertain degree of each evidence. It is commonly
accepted that the bigger is the entropy, the higher is the uncertain degree. The relative weight of each



Entropy 2020, 22, 487 11 of 18

BPA is defined according to the new belief entropy. For the ith BPA, the corresponding relative weight
among all n BPAs is defined as follows:

WBPA(mi) =
Q(mi)

∑n
j=1 Q(mj)

. (11)

The relative weight of each BPA in Table 4 can be calculated with Equation (11). The calculation
results are: WBPA(m1) = 0.2377, WBPA(m2) = 0.0712, WBPA(m3) = 0.2258, WBPA(m4) = 0.2383, and
WBPA(m5) = 0.2270.

Step 4

Evidence modification for the original BPA using the proposed measure. By using the relative
weight of each BPA, we unify the BPAs given by all sensors and generate one weighted BPA.
The resulting weighted BPA is used in final data fusion. For a proposition A, the modified BPA
can be derived according to the following function:

m(A) =
n

∑
i=1

mi(A)WBPA(mi). (12)

According to Equation (12), the BPAs in Table 4 are modified and the result is as follows:
m({F1}) = 0.4957, m({F2}) = 0.1953, m({F3}) = 0.0784, m({F1, F3}) = 0.2305.

Step 5

Evidence fusion using Dempster’s rule of combination in Equations (5) and (6) with (n− 1) times
based on the modified BPA. The final fusion result is as follows:

m({F1}) = (((m⊕m)⊕m)⊕m)({F1}) = 0.9849,

m({F2}) = (((m⊕m)⊕m)⊕m)({F2}) = 0.0014,

m({F3}) = (((m⊕m)⊕m)⊕m)({F3}) = 0.0105,

m({F1, F3}) = (((m⊕m)⊕m)⊕m)({F1, F3}) = 0.0032.

Step 6

Decision-making based on data fusion results. From the original data in Table 4, the report from
the second sensor is highly conflicted with the other sensors on F1 and F2. Based on all the data in
Table 4, intuitively, F1 should be recognized as the potential fault type. The fusion results with five
sensors have a belief of over 98% on the potential fault type {F1}.

5.3. Discussion

The result with different information fusion methods is shown in Table 5. The fusion results for
fault type identification based on the proposed method with two, three, four, and five sensors are
shown in Table 6.
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Table 5. Fusion results with different combination rules.

m1, m2 m1, m2, m3 m1, m2, m3, m4 m1, m2, m3, m4, m5

Dempster’s rule [7]

m({F1}) = 0
m({F2}) = 0.8969
m({F3}) = 0.1031
m({F1, F3}) = 0

m({F1}) = 0
m({F2}) = 0.6575
m({F3}) = 0.3425
m({F1, F3}) = 0

m({F1}) = 0
m({F2}) = 0.3321
m({F3}) = 0.6679
m({F1, F3}) = 0

m({F1}) = 0
m({F2}) = 0.1422
m({F3}) = 0.8578
m({F1, F3}) = 0

Yager’s rule [55]

m({F1}) = 0
m({F2}) = 0.2610
m({F3}) = 0.0300
m({F1, F3}) = 0

m({X}) = 0.7090

m({F1}) = 0.4112
m({F2}) = 0.0679
m({F3}) = 0.0105

m({F1, F3}) = 0.2481
m({X}) = 0.2622

m({F1}) = 0.6508
m({F2}) = 0.0330
m({F3}) = 0.0037

m({F1, F3}) = 0.1786
m({X}) = 0.1339

m({F1}) = 0.7732
m({F2}) = 0.0167
m({F3}) = 0.0011

m({F1, F3}) = 0.0938
m({X}) = 0.1152

Mruphy’s rule [56]

m({F1}) = 0.0964
m({F2}) = 0.8119
m({F3}) = 0.0917
m({F1, F3}) = 0

m({F1}) = 0.4619
m({F2}) = 0.4497
m({F3}) = 0.0794

m({F1, F3}) = 0.0090

m({F1}) = 0.8362
m({F2}) = 0.1147
m({F3}) = 0.0410

m({F1, F3}) = 0.0081

m({F1}) = 0.9620
m({F2}) = 0.0210
m({F3}) = 0.0138

m({F1, F3}) = 0.0032

Deng et al. method [54]

m({F1}) = 0.0964
m({F2}) = 0.8119
m({F3}) = 0.0917
m({F1, F3}) = 0

m({F1}) = 0.4974
m({F2}) = 0.4054
m({F3}) = 0.0888

m({F1, F3}) = 0.0084

m({F1}) = 0.9089
m({F2}) = 0.0444
m({F3}) = 0.0379

m({F1, F3}) = 0.0089

m({F1}) = 0.9820
m({F2}) = 0.0039
m({F3}) = 0.0107

m({F1, F3}) = 0.0034

Zhang et al. method [57]

m({F1}) = 0.0964
m({F2}) = 0.8119
m({F3}) = 0.0917
m({F1, F3}) = 0

m({F1}) = 0.5681
m({F2}) = 0.3319
m({F3}) = 0.0929

m({F1, F3}) = 0.0084

m({F1}) = 0.9142
m({F2}) = 0.0395
m({F3}) = 0.0399

m({F1, F3}) = 0.0083

m({F1}) = 0.9820
m({F2}) = 0.0034
m({F3}) = 0.0115

m({F1, F3}) = 0.0032

The proposed method

m({F1}) = 0.1648
m({F2}) = 0.7796
m({F3}) = 0.0556
m({F1, F3}) = 0

m({F1}) = 0.9417
m({F2}) = 0.0250
m({F3}) = 0.0322

m({F1, F3}) = 0.0011

m({F1}) = 0.9756
m({F2}) = 0.0039
m({F3}) = 0.0176

m({F1, F3}) = 0.0029

m({F1}) = 0.9849
m({F2}) = 0.0014
m({F3}) = 0.0105

m({F1, F3}) = 0.0032

Table 6. Fusion results of Q(m) with different number of sensor reports.

m1, m2

m({F1}) = 0.1648
m({F2}) = 0.7796
m({F3}) = 0.0556
m({F1, F3}) = 0

F2

m1, m2, m3

m({F1}) = 0.9417
m({F2}) = 0.0250
m({F3}) = 0.0322

m({F1, F3}) = 0.0011

F1

m1, m2, m3, m4

m({F1}) = 0.9756
m({F2}) = 0.0039
m({F3}) = 0.0176

m({F1, F3}) = 0.0029

F1

m1, m2, m3, m4, m5

m({F1}) = 0.9849
m({F2}) = 0.0014
m({F3}) = 0.0105

m({F1, F3}) = 0.0032

F1

Figure 4 shows the performance of different combination methods with two sensor reports.
One cannot make a decision based on the Yager’s combination rule since, in this case, the universal set
denoted as m({X}) has the highest belief among all the propositions. Other methods have a belief of
more than 80% on F2, while according to the prior knowledge, the report of m2 may come from a bad
sensor and F2 cannot be the potential fault. The result with the proposed method has the lowest belief
on F2. In this case, m1 and m2 are highly conflicted with each other, while m1({F1}) = 0.41, m1({F2}) =
0.29, m1({F3}) = 0.30, m1({F1, F3}) = 0 and m2({F1}) = 0; m2({F2}) = 0.90, m2({F1}) = 0.10, and
m2({F1, F3}) = 0; and, clearly, m2({F2}) = 0.90 is much more influential than m1({F1}) = 0.41, which
allows the decision making procedure to allocate too much weight on m2 during Step 3, resulting in
the failure of identifying the right target.
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Figure 4. Fusion results with two BPAs.

Figure 5 shows the fusion results with three sensor reports. The result of Dempster’s rule seems
counterintuitive for assigning the highest belief on F2. The fusion result of other methods assign
the highest belief on F2; however, the proposed method is the only one that has over 90% on the
right fault F1 while none of other methods assign a belief of more than 60% on fault F1. In this case,
the proposed method successfully identify the right fault with only three sensor reports with the
highest belief degree.
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Figure 5. Fusion results with three BPAs.

As shown in Figure 6, the fusion result of Dempster’s combination rule with four BPAs still leads
to the wrong fault type F2 due to the conflicting report given by m2, while the proposed method has
the highest belief degree than the other methods on the right fault type F1.
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Figure 6. Fusion results with four BPAs.

The fusion results with all five sensors are shown in Figure 7; the proposed method has the highest
belief of 98.49% on the right fault F1.
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Figure 7. Fusion results with five BPAs.

Table 5 summarizes Figures 4–7. For Dempster’s rule, the belief assigned to F1 remains zero no
matter how many BPAs are fused, but, intuitively, as shown in Table 4, F1 should be identified as the
target. For Yager’s rule, because of the belief assigned to m({X}), the fusion result of five BPAs shows
that only a belief of 77.32% is assigned to F1, while other methods except for Dempster’s all have much
better performance, with a belief of over 90% on F1.

The fault type identification based on the proposed method with two, three, four, and five sensors
is indicated in Table 6. As shown in the table and Figure 5, the proposed method is the only one that
has over 90% on the right fault F1 when only three sensor reports are given. Suppose that the data in
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Table 4 only consist of m1, m2, and m3; based on our intuition and the provided information, F1 should
be the target, and the result shows that the proposed method indeed identifies F1. Later fusion results
with four and five BPAs also indicate that F1 should be the right fault. From this point, the decision
made based on the proposed method with limited number of reports has certain degree of validity.

According to the fusion results, the proposed method has several superiorities in comparison
with the other methods. First, as shown in Section 4, the proposed method can effectively measure
the uncertainty degree of two different BPAs even if the same belief value is assigned on different
FODs, while both Deng entropy and the Dubois–Prade entropy are failed. Secondly, it is presented
in Section 3 that Q(m) satisfies six of seven properties, ensuring that the fusion results in Table 5 are
reasonable and consistent with our intuition. Even in special cases such as vacuous BPA or probability
cases, Q(m) still presents rational result. In addition, as shown in Figure 5, the proposed method
recognizes the right fault with limited number of reports while the other methods cannot make the
right decision until there are four reports. The proposed method reduces the interference of conflicting
evidence more efficiently than the other method due to the consideration on not only the uncertainty
appearing in the mass function, but also the size of FOD and the size of each proposition. As shown in
Table 1, only the proposed method considers the size of FOD. Finally, the proposed method is based
on information volume measured by modified belief entropy, thus the physical meaning is clear.

There are several reasons that contribute to the performance of the decision-making procedure.
First, all sensor data are preprocessed before the decision-making procedure. With the corresponding
BPAs, our process successfully identifies the fault and eliminates the conflicting evidence by using
the proposed method. The effectiveness and superiority proved in Sections 3 and 4 also guarantee
the efficiency of our decision-making approach. Finally, the relative weight is calculated using the
proposed measure and the final result is based on the Dempster’s combination rule, which combines
the merits of Dempster’s combination rule and the effectiveness of the proposed method.

6. Conclusions

An improved total uncertainty measure based on total non-specificity the uncertainty in the form
of conflict is proposed in this paper. The rationality of some previous properties are discussed and
seven desired properties are listed to define a meaningful measure. The new measure satisfies six of
seven desired properties of belief entropy. The proposed entropy not only captures the non-specificity
and conflict in uncertainty, but also considers the size of FOD and the size of the proposition with
respect to the FOD. Numerical examples show that the proposed entropy can quantify the uncertain
degree of the BPA more accurately than the other uncertainty measures when the same belief value is
assigned to different FODs. In the case of vacuous BPA and uniform distribution, the proposed method
improves the performance of other measures and provides a result that is consistent with our intuition.

A decision making approach based on the proposed measure was applied to a case study.
The fusion result shows the superiorities and effectiveness of the improved method in comparison
with the other methods. In future studies, the proposed method will be applied in more real word
applications such as image compression, image recognition, etc.
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