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Abstract: Information theory provides a powerful framework to analyse the representation of sensory
stimuli in neural population activity. However, estimating the quantities involved such as entropy and
mutual information from finite samples is notoriously hard and any direct estimate is known to be
heavily biased. This is especially true when considering large neural populations. We study a simple
model of sensory processing and show through a combinatorial argument that, with high probability,
for large neural populations any finite number of samples of neural activity in response to a set of stimuli
is mutually distinct. As a consequence, the mutual information when estimated directly from empirical
histograms will be equal to the stimulus entropy. Importantly, this is the case irrespective of the precise
relation between stimulus and neural activity and corresponds to a maximal bias. This argument is
general and applies to any application of information theory, where the state space is large and one
relies on empirical histograms. Overall, this work highlights the need for alternative approaches for an
information theoretic analysis when dealing with large neural populations.

Keywords: sensory coding; information theory; entropy; sampling bias

1. Introduction

The neural code is inherently stochastic, so that even when the same stimulus is repeated, we observe
a considerable variability in the neural response. Thus, an important question when considering the
interplay between sensory stimuli and neural activity, and when trying to understand how information
is represented and processed in neural systems, is how much an observer can actually infer about the
stimulus from only looking at its representation in the neural activity. This problem can be formulated and
quantitatively studied in the general framework of information theory.

With neural information processing happening at the level of populations, any such analysis
necessarily has to consider the activity of an entire population [1,2]. The number of neurons which can be
recorded simultaneously has increased in recent years, driven by technologies such as calcium fluorescence
imaging [3] and high-density electrode arrays [4]. These methods allow recording of population activity
from thousands of neurons simultaneously. However, at these scales, information theoretic analyses of
neural activity become considerably harder. Critically, any information theoretic analysis depends at some
point on the precise knowledge of the joint probability distribution of the states of the stimuli and the
neural population.

However, estimating this distribution from data, and thus entropy and mutual information,
is notoriously difficult. This problem is well known, in particular, when the state space for the
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neural activity becomes large, as is the case when considering large neural populations [5–9].
This problem is generally addressed by applying corrections derived from asymptotic considerations [10],
or shuffling/bootstrap procedures together with extrapolations [11–17]. A crucial result in this context is
the inconsistency theorem, which implies that under some circumstances estimators that are frequently
employed will yield arbitrarily poor estimates [18]. More recently, and, in particular, with regard to entropy
estimation, there have been advances towards new estimators or model-based approaches for estimating
the aforementioned joint probability distributions [19–24].

In the following we revisit the direct (and model-independent) estimate of entropy and mutual
information from experimental histograms. Rhee et al. [7] noted that estimated probability distributions
from data samples appear “thinner” and that this leads to what has become known as the sampling
bias. Moreover, according to these authors, ensuring the state space is adequately sampled becomes
proportionally more difficult with the size of the neural population. The aim of this article is to make
this intuition precise, and to show that under certain assumptions with increasing population size any
such direct estimate of mutual information will with high probability only yield the stimulus entropy.
This emphasises the problems of an information theoretic analysis on the basis of experimental histograms
and highlights the importance of new approaches when it comes to estimating information theoretic
quatities for large neural populations.

2. Results

In a typical experiment investigating sensory processing, one studies the activity from a neural
population of interest in response to a defined set of stimuli. Due to the stochastic nature of neural activity,
every stimulus is presented separately multiple times, yielding a finite set of samples of neural activity for
every stimulus [25]. From these samples across all stimuli, one can then estimate the relative frequency of
patterns of neural activity in response to different stimuli in order to, for example, calculate the dependence
in terms of mutual information between the stimuli and the neural activity [26,27].

To make this paradigm more concrete, suppose we are interested in the representation of the visual
field in the primary visual cortex. In order to probe this representation, we simultaneously record the
spiking activity from a neural population in the respective brain area when exposed to a visual stimulus
whose position we vary in the course of the experiment. We can sample the neural activity for every
presentation of the stimulus, by measuring the neural activity, for example, in terms of the number of
spikes. In order then to quantify the representation of the different stimulus values in their entirety, we can
collect the samples of neural activity that we observed, compute empirical histograms and perform an
information theoretic analysis.

The central objects of interest in information theory are random variables and their distributions.
At its core one defines a measure of their uncertainty, the entropy [28]. If X is a discrete random variable
taking values in an at most countable set, its entropy H(X) is defined as

H(X) := −∑
x
P [X = x] logP [X = x],

where P [X = · ] denotes the probability distribution of X, and therefore P [X = x] the probability the X
attains the value x. In this definition, we adopt the customary convention that 0 log 0 := 0. For the purpose
of this paper, we leave the base of the logarithm unspecified; however, we note that in the context of
information theory the base is generally chosen to be 2 so that entropy will be measured in units of bits.

If X′ is a second random variable, the conditional entropy of X given X′, H(X|X′), is defined as

H
(
X|X′

)
:= −∑

x,x′
P
[
X = x ∧ X′ = x′

]
logP

[
X = x

∣∣X′ = x′
]
,
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where P [X = · ∧ X′ = · ] and P [X = · |X′ = · ] denote the joint probability distribution of X and X′ and
conditional probability distribution of X given X′, respectively. The conditional entropy is a measure for
the residual uncertainty in a random variable given observation of another random variable. Specifically,
we have that H(X|X′) ≤ H(X) with equality if X and X′ are independent.

An important quantity in information theory is the mutual information between two random variables,
X and X′, which is defined as

MI
(
X; X′

)
= H(X)− H

(
X|X′

)
.

Mutual information quantifies the amount of entropy of X that knowledge of X′ annihilates or, in other
words, the information that X′ holds about X. Furthermore, as the mutual information is symmetric in its
arguments it likewise also quantifies the information X holds about X′. Mutual information is non-negative
and vanishes if and only if X and X′ are independent. Because of this, mutual information is frequently
used as a measure of the independence of two random variables. The mutual information between X
and X′ can be written in terms of the relative entropy (Kullback–Leibler divergence) between their joint
probability distributions and the product of the corresponding marginal distributions, which defines a
premetric on the probability distribution.

Importantly, we note that, in contrast to what the notation suggests, both the entropy and the mutual
information do not depend on the random variables and their values themselves, but are rather functionals
of their distributions [29]. As a consequence of that, we refrain from specifying the random variables’
codomains in the following and if a random variable X attains the value x, x may simply be regarded as a
label in an abstract alphabet.

2.1. Analysis of a Computational Model of Sensory Processing Regarding Estimating Information
Theoretic Quantities

Building on the experimental paradigm we outlined above, we devise and analyse a simple
computational model. We assume the stimulus to be modelled by a discrete, almost surely non-constant
random variable S and the neural population’s activity by the discrete vector-valued random variable
X ≡ ⊗N

n=1 X(n), where N is the size of the population. As the stimulus is determined by the
experimental protocol, we assume perfect knowledge of its statistics. In addition, we assume that for
every stimulus value s there exist a subset of the whole neural population U⊥⊥s ⊆ {1, . . . N} such that
Ns,s′ := |U⊥⊥s ∩U⊥⊥s′ | = ω(ln N) as N → ∞, i.e., Ns,s′ asymptotically grows faster than the logarithm,
for all stimulus values s and s′ such that the components X(n) | S ∈ {s, s′} for n ∈ U⊥⊥s ∩ U⊥⊥s′ are
independent and identically distributed and almost surely non-constant (Figure 1). In an experimental
setting, one might think of U⊥⊥s as the set of neurons that are not receptive to a stimulus value s and
therefore activated independently according to a common noise profile. Importantly, these sets differ in
general from stimulus to stimulus. However for every two stimulus values, they overlap on a sufficiently
large common set. Moreover, in contrast to what one might initially think, these sets cannot be excluded
since one can imagine a scenario where every neuron in the population is receptive to at least one of the
stimulus values and is simultaneously an element of at least one independent set for other stimulus values.

Next, suppose that for every stimulus value s we are given Ks independent samples from
P [X = · | S = s], which we denoted as x(s) := {x(s)k }k=1,...Ks . Based on these samples the empirical
estimate for P [X = · | S = · ], P̂ [X = · | S = · ], is

P̂ [X = x| S = s] =
1

Ks

Ks

∑
k=1

δ
x,x(s)k



Entropy 2020, 22, 490 4 of 12

for any sample x and stimulus value s. The Kronecker delta here attains the value 1 whenever its arguments
coincide, and otherwise vanishes. Again, in the experimental setting, one might think of x(s) as the samples
of neural activity that was recorded in response to a stimulus value s.

Consistent with the intuition of Rhee et al. [7], with high probability, the samples for every stimulus
value are mutually different, as we are considering larger and larger neural populations and, moreover,
these samples even become uniquely associated with one of the stimulus values, i.e., x(s) ∩ x(s

′) = ∅ for
s 6= s′. This simplifies the empirical estimate for P [X = · | S = · ] from above so that, for a sample x(s)k

and a stimulus value s′, P̂
[

X = x(s)k

∣∣∣ S = s′
]
= 1

Ks′
δs,s′ , using that every sample is uniquely associated

with a stimulus value and occured only once for those stimulus value. As we will show, the probability for
this event is at least 1−O(N−∞) as N → ∞. Note, that for a sequence (zN)N∈N we say zN = O(N−∞)

if zN = O(N−m) for every m ≥ 0, i.e., limN→∞ NmzN = 0. This not only implies that in the limit of an
infinitely large population, the probability is 1, but also makes a statement about the dependence on the
size of population. In fact, the probability approaches 1 eventually faster than any polynomial, so that it
will be close to 1 even for moderately sized populations.

Us

Us′

S = s S = s′

Us

Us′

...

...

X

Figure 1. A computational model of sensory processing. We consider a population of N neurons, illustrated
irrespective of the physical location as points in the plane on the left-hand side that is exposed to the
presentation of a stimulus, which is modelled by a random variable S. The (measured) activity of this
population, illustrated as spiking activity on the right-hand side over the presentation of two different
values of the stimulus, is modelled by a vector-valued random variable X ≡ ⊗N

n=1 X(n). For every stimulus
value s, we assume there exists a subset of the population, Us, depicted as circular regions on the plane,
such that, intuitively, the neurons within this subpopulation are receptive to the particular stimulus value.
Conversely, the neurons in the complement of that set in {1, . . . N}, U⊥⊥s, are assumed to be not receptive
to that stimulus value and to activate independently according to a common noise profile. As an example,
the sets for stimulus values s and s′ are highlighted. Neurons from any of the two sets are shown to have
an increased spiking activity during the presentation of the corresponding stimulus value. In contrast to
this activity, others are shown to be rather sporadically active.

For any two stimuli there exists by assumption a subset of the components of X which is independent
and identically distributed when conditioned on either of the two stimuli. As it suffices that the samples
differ in these components for them to be mutually different, the probability for this event is a lower
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bound on the probability that the samples are mutually different. Therefore, the probability for all samples
corresponding to stimulus s and s′ to be mutually different is at least 1−O(N−∞), for N large. As we
show in the next section, this is the probability that a finite number of independent samples from a
random vector of length Ns,s′ with Ns,s′ = ω(ln N) are mutually different, provided the components are
independent and identically distributed and almost surely non-constant, which is the case by assumption.

From that the probability that this event occurs for all stimulus values can be estimated to be at least
1−∑s,s′ (1− (1−O(N−∞))) = 1−O(N−∞).

In that event, when all the samples are mutually different, we compute for the entropy and conditional
entropy, Ĥ(X) and Ĥ(X|S), using the law of total probability to express both in terms of the distribution
of S and the empirical estimate of the distribution of X given S, the fact that the latter vanishes away from
the samples and that, as we have seen above, for a sample x(s)k and a stimulus value s′, it takes the form

P̂
[

X = x(s)k

∣∣∣ S = s′
]
= 1

Ks′
δs,s′ ,

Ĥ(X) = −∑
x
P̂ [X = x] log P̂ [X = x]

= −∑
s
P [S = s]∑

x
P̂ [X = x| S = s] log ∑

s′
P
[
S = s′

]
P̂
[

X = x
∣∣ S = s′

]
= −∑

s
P [S = s]

Ks

∑
k=1

P̂
[

X = x(s)k

∣∣∣ S = s
]

log ∑
s′
P
[
S = s′

]
P̂
[

X = x(s)k

∣∣∣ S = s′
]

= −∑
s
P [S = s] logP [S = s]

1
Ks

= H(S) +E [log KS]

and

Ĥ(X|S) = −∑
s,x

P̂ [X = x ∧ S = s] log P̂ [X = x| S = s]

= −∑
s
P [S = s]∑

x
P̂ [X = x| S = s] log P̂ [X = x| S = s]

= −∑
s
P [S = s]

Ks

∑
k=1

P̂
[

X = x(s)k

∣∣∣ S = s
]

log P̂
[

X = x(s)k

∣∣∣ S = s
]

= −∑
s
P [S = s] log

1
Ks

= E [log KS] .

Thus, M̂I(X; S) = Ĥ(X)− Ĥ(X|S) = H(S), and in addition we also get from the above that Ĥ(X, S) =
Ĥ(X) and that Ĥ(S|X) = 0. As for mutual information the classical bound MI(X; S) ≤ min(H(X) , H(S))
holds, mutual information is in fact estimated to be maximal.

Importantly, in this analysis we did not make any assumptions about the precise dependence between
S and X apart from the existence of a sufficiently large subpopulation U⊥⊥s for every stimulus value s.
Therefore, the conclusion holds also if S and X were, in fact, independent and mutual information should
have vanished.
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2.2. Computing the Probability of a Finite Number of Independent and Identically Distributed Random Variables
being Mutually Different

In the previous section, we were interested in the probability that a finite set of independent and
identically distributed (discrete) random variables yields mutually different realisations. This probability is
trivially 0 by the pigeonhole principle if there are more random variables in any such set than the number
of values these random variables attain with non-vanishing probability. However, once the number of
values that are attained exceeds the number of random variables this is not the case anymore, and for any
arbitrary distribution of the random variable it is not obvious how to obtain the exact probabilities.

We first take a step back and consider generally series of the form

∑
n1,...nK∈N

n1 6=n2 6=...nK

an1 · · · anK

for sequences (an)n∈N such that the corresponding series is absolutely convergent. This specifically
guarantees that the series in question will also converge. We will show how to evaluate such a series
and from a closed-form expression derive the probabilities for any finite set of random variables to yield
mutually different realisations. From this it will follow, in particular, that large random vectors yield
mutually different values with high probability.

Let (an)n∈N be a sequence with an ∈ R for every n ∈ N such that ∑n∈N an is absolutely convergent
and define Qm := ∑n∈N am

n for m ∈ N. Then, for any K ∈ N we have that

∑
n1,...nK∈N

n1 6=n2 6=...nK

K

∏
k=1

ank = ∑
α∈NK

0 :〈α〉K=K

(−1)K−|α| K!
α!

K

∏
m=1

(
Qm

m

)αm

.

Here and in the following we use the conventional notation for multi-indices α ∈ NK
0 , so that,

e.g., |α| = ∑K
k=1 αk and α! = ∏K

k=1 αk!. In addition, we set 〈α〉k = ∑k
m=1 αmm for 1 ≤ k ≤ K.

We will prove this assertion in two steps. We will first derive a recursion relation for the series in
question and then in a second step conclude with an induction argument.

We consider a family of operators Γ1, . . . ΓK, and for 1 ≤ k ≤ K, formally define the corresponding
operator Γk on monomials of ank via

Γk : am
nk
7→ ∑

nk∈N\{n1,...nk−1}
ank am

nk
= Qm+1 −

k−1

∑
r=1

am+1
nr

and extend it linearly to span
{

1, ank , a2
nk

, . . .
}

. Using these operators we find that

AK := ∑
n1,...nK∈N

n1 6=n2 6=...nK

K

∏
k=1

ank = ∑
n1∈N

an1 ∑
nk∈N\{n1}

an2 · · · ∑
nK∈N\{n1,...nK−1}

anK = (Γ1 ◦ Γ2 ◦ · · · ΓK)(1) .

In particular, we have for every 1 ≤ k′ ≤ k ≤ K and m ∈ N0 that (Γ1 ◦ Γ2 ◦ · · · Γk) (am
nk′

) =

∑ n1,...nk∈N
n1 6=n2 6=...nk

an1 · · · am+1
nk′
· · · ank = ∑ n1,...nk∈N

n1 6=n2 6=...nk

an1 · · · am+1
nk

= (Γ1 ◦ Γ2 ◦ · · · Γk) (am
nk
), where we have

relabeled the indices and the interchangability of the sums is guaranteed by the absolute convergence of
every individual series. Therefore, (Γ1 ◦ Γ2 ◦ · · · Γk) (am

nk′
) = (Γ1 ◦ Γ2 ◦ · · · Γk) (am

nk
).
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Now, using the linearity of the operators Γ1, . . . ΓK we have that

(Γ1 ◦ Γ2 ◦ · · · ΓK)
(
am

nK

)
= (Γ1 ◦ Γ2 ◦ · · · ΓK−1)

(
Qm+1 −

K−1

∑
r=1

am+1
nr

)

= Qm+1 (Γ1 ◦ Γ2 ◦ · · · ΓK−1)(1)−
K−1

∑
r=1

(Γ1 ◦ Γ2 ◦ · · · ΓK−1)
(

am+1
nr

)
= Qm+1 AK−1 − (K− 1) (Γ1 ◦ Γ2 ◦ · · · ΓK−1)

(
am+1

nK−1

)
=

K

∑
k=1

(−1)k+1 (K− 1)!
(K− k)!

Qm+k AK−k.

In the last step we explicitly resolved the recursion, which can be verified by a simple inductive
argument. In particular, for m = 0 we obtain an expression for AK so that we conclude after reordering the
sum and rearranging the terms that

AK

(−1)K K!
= − 1

K

K−1

∑
k=0

QK−k
Ak

(−1)k k!
.

As AK is precisely the sum we intend to compute, the last expression yields a recursion relation for it
with initial datum A0 = 1. In particular, we note that this equation is reminiscent of a discrete Volterra
equation of convolution type. Thus, this concludes the first step of the argument and in the second step
we will show that the expression stated in the beginning actually solves this recursion relation.

For the induction argument we assume now that the assertion holds for 1 ≤ k ≤ K− 1 in order to
perform the step K− 1→ K and we use the recursion relation derived above to relate AK to A0, A1, . . . AK−1.
In addition, we denote with ek the multi-index that is 0 in every component except the kth one, where it
is 1.

AK

(−1)K K!
= − 1

K

K−1

∑
k=0

QK−k
1

(−1)k k!

 ∑
α∈Nk

0 :〈α〉k=k

(−1)k−|α| k!
α!

k

∏
m=1

(
Qm

m

)αm


= − 1

K

K−1

∑
k=0

∑
α∈NK

0 :〈α〉K=k

(−1)−|α|

α!
QK−k

K

∏
m=1

(
Qm

m

)αm

= − 1
K

K

∑
k=1

∑
α∈NK

0 :〈α〉K=K−k

(−1)−|α|

α!
Qk

K

∏
m=1

(
Qm

m

)αm

=
K

∑
k=1

∑
α∈NK

0 :〈α〉K=K−k

(αk + 1) k
K

(−1)−|α+ek |

(α + ek)!

K

∏
m=1

(
Qm

m

)(α+ek)m

= ∑
α∈NK

0 :〈α〉K=K

(−1)−|α|

α!

K

∏
m=1

(
Qm

m

)αm

In the last step, we used that, as we will show, for any multi-index functional Φ,

K

∑
k=1

∑
α∈NK

0 :〈α〉K=K−k

(αk + 1) k
K

Φ(α + ek) = ∑
α∈NK

0 :〈α〉K=K

Φ(α) .
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Indeed, we first observe that the terms of Φ that appear in both sums are identical. Therefore, we only
have to carefully evaluate the coefficients.

K

∑
k=1

∑
α∈NK

0 :〈α〉K=K−k

(αk + 1) k
K

Φ(α + ek)

= ∑
α∈NK

0 :〈α〉K=K

K

∑
k=1

∑
α′∈NK

0 :〈α′〉K=K−k

(
α′k + 1

)
k

K
Φ
(
α′ + ek

)
δα,α′+ek

= ∑
α∈NK

0 :〈α〉K=K

Φ(α)
K

∑
k=1

αkk
K ∑

α′∈NK
0 :〈α′〉K=K−k

δα,α′+ek

= ∑
α∈NK

0 :〈α〉K=K

Φ(α)
K

∑
k=1

αkk
K

= ∑
α∈NK

0 :〈α〉K=K

Φ(α)

This concludes the argument, so that as claimed

∑
n1,...nK∈N

n1 6=n2 6=...nK

K

∏
k=1

ank = ∑
α∈NK

0 :〈α〉K=K

(−1)K−|α| K!
α!

K

∏
m=1

(
Qm

m

)αm

.

In order to apply this result now in a probabilistic context to answer the question about the probability
that any finite set of (discrete) random variables yields mutually different realisations, consider a discrete
random variable X that takes values in the set {x1, x2, . . .}, which we assume without loss of generality to
be countably infinite. Then, applying the above result to the sequence (P [X = xn])n∈N we can compute
the probability that K independent copies of this random variable, X1, . . . XK, all yield mutually different
realisations. Specifically, we have that

P [X1 6= X2 6= · · ·XK] = E
[
1X1 6=X2 6=···XK

]
= ∑

x1 6=x2 6=···xK

K

∏
k=1

P [X = xk]

= ∑
α∈NK

0 :〈α〉K=K

(−1)K−|α| K!
α!

K

∏
m=1

(
Qm

m

)αm

.

with Qm = ∑n∈N P [X = xn]
m.

Now, consider random vectors of increasing length, X ≡ ⊗ f(N)
n=1 X(n), with independent components

and assume that there exists ε > 0 such that Q(n)
2 = ∑x P[X(n) = x]2 ≤ 1− ε for every n ∈ N. For the

latter a necessary condition is that X(n) is almost surely non-constant and in particular it is satisfied if
the components are identically distributed and almost surely non-constant. Then, if f (N) = ω(ln N)

increasing, we will show that this implies that in the limit N → ∞

P [X1 6= X2 6= · · ·XK] = 1−O
(

N−∞) ,

where we recall that for some sequence (zN)N∈N we have that zN = O(N−∞) if for every m ≥ 0
limN→∞ NmzN = 0.
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Indeed, 0 < Qm = ∏
f(N)
n=1 Q(n)

m ≤
(

supn∈N Q(n)
m

) f(N)
≤
(

supn∈N Q(n)
2

) f(N)
≤ (1− ε) f(N) for

every m ≥ 2 so that we conclude that Qm ≤ e−|ln(1−ε)| f(N) = O(N−∞). This implies the claim since
P [X1 6= X2 6= · · ·XK] is a polynomial in terms of Q1, . . . QK with the only asymptotically non-vanishing
term being QK

1 = 1.
Besides the immediate application to random vectors that we required in the last section, we remark

that the expression for the probability of random variables being mutually different can also be used
to derive a closed-form expression for the Stirling numbers of the first kind. Briefly, let X be a uniform
random variable on {1, . . . L} for some L ∈ N, so that Qm = L1−m in the above statement. The probability
that K ≤ L independent copies of this random variable are all mutually different is then given by the
above expression. On the other hand, this probability can also be computed purely combinatorially to be
(L)K
LK , where ( · )K denotes the falling factorial [30]. By definition, (L)K = ∑K

n=0 s(K, n) Ln with s(K, n) the
(signed) Stirling numbers of the first kind. Therefore, comparing the two expressions we find the Stirling
numbers to be given as (cf. [31])

s(K, n) = (−1)K−n

∑α∈NK
0 :〈α〉K=K δ|α|,n

K!
α! ∏K

m=1 mαm
1 ≤ n ≤ K

0 otherwise
.

3. Discussion

In this work, we have analysed a concrete, but general, model of sensory processing and demonstrated
the extent of the sampling bias when directly estimating information theoretic quantities from experimental
histograms. We have shown that as we consider larger and larger neural populations, with high probability
any estimate of entropy or mutual information will only depend on the stimulus entropy.

We found that the issue lies in the fact that the samples of neural activity in response to the presentation
of different stimulus values turn out to be mutually distinct. One way this can happen is through the
existence of a subpopulation of neurons that only contributes independent noise to the population’s activity.
Importantly, the composition of the subpopulation can be stimulus-dependent, so that it is impossible
to exclude this subpopulation from the beginning in the analysis. A plausible origin for these noisy
subpopulations are sufficiently localised, compactly supported receptive fields. In a simplified scenario,
imagine a neural population, whose neurons are receptive to any one of three stimuli. For each of the
stimuli, the neurons receptive to one of the other two stimuli constitute such a noisy subpopulation. Now,
as we have mentioned also earlier, none of the three subpopulations can be excluded on the grounds that it
contributes only noise across all stimuli, yet their activity lets samples recorded from the population appear
more distinctive than they are. While for small neural populations the effect of noisy subpopulations can
be counteracted by increasing the number of samples that one considers, this becomes infeasible for even
moderately sized populations due to the combinatorially large repertoire of population activity. As we
have shown, as we consider larger and larger populations and therefore also larger noisy subpopulations
the possibility to sample even one activity pattern twice is exponentially suppressed. In reality, receptive
fields are localised, yet at least in computational models their range often extends indefinitely. This is
the case, for example, for Gaussian receptive fields and the activity of a neuron then depends strongly
on some stimulus values while for others the dependence in vanishingly small. While the assumptions
of our model are clearly not met, we argue that for all practical purposes the consequence is the same,
although weakened. This is because one will only ever consider a finite number of samples. The smaller
the dependence between the stimulus and the activity, the weaker it manifests itself in particular when only
considering those finitely many samples, so that corresponding neurons appear essentially independent.
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In the model we have proposed, we assumed that for any two stimulus values there exist sufficiently
large subpopulations such that their components contribute independent and identically distributed noise
when exposed to either of the two stimulus values. Now, this is certainly a simplification and a more
realistic assumption would be that in the absence of sensory stimulation the activity in this subpopulations
is governed by low-dimensional dynamics in addition to some individual noise [32,33]. In principle
though, our conclusions should hold true irrespectively following the same general argument that we
formalised in this work: In a large neural population, stochastic variability, even if it is only in a relatively
small subpopulation, is sufficient to produce unique samples of neural activity in an experiment. In turn,
this then manifests itself in a maximal bias when estimating mutual information and other information
theoretic quantities.

Without any further assumptions on the statistical relation between the different neurons within
the population, this work shows that, despite being a powerful framework, in general, information
theoretic analyses become essentially intractable when considering larger neural populations, because of
the difficulties of accurately estimating the joint probability distribution between activity and stimulus
states from experimental histograms. Therefore, this is where modelling approaches come into play. These
approaches frequently employ maximum entropy Ising models that were fit initially only to low-order [34]
and later also higher-order statistics of the data [35–37]. Alternative approaches include the cascaded
logistic model which utilises Dirichlet processes at its core [38] or more recently the population tracking
model [24]. However, for an information theoretic analysis it is in addition important to be able to compute
the involved quantities in an efficient way. While most models include the possibility to sample states,
this is not an option for large populations again because of the issues presented in this work. In the
context of maximum entropy Ising models, thermodynamic considerations turned out to be useful to
efficiently compute quantities such as the entropy [37,39,40]. In the population tracking model, on the
other hand, one derives a reduced, low-dimensional model, from which those quantities can be computed
likewise [24].

Altogether, while for many statistics of neural activity it might be sufficient to consider experimental
histograms, this is not the case for information theoretic quantities when considering large neural
populations. Given the many insights that information theoretic analyses can bring [41–43], this motivates
new approaches for studying experimental recordings from ever larger neural populations. Furthermore,
it also inspires consideration of how the brain handles the informational constraints we have identified.
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