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Abstract: The purpose of this paper is to elucidate the interrelations between three essentially different
concepts: dynamical solenoids, topological entropy, and Hausdorff dimension, where by a dynamical
solenoid we mean a sequence of continuous epimorphisms of a compact metric space. For this purpose,
we describe a dynamical solenoid by topological entropy-like quantities and investigate the relations
between them. For L-Lipschitz dynamical solenoids and locally A—expanding dynamical solenoids, we
show that the topological entropy and fractal dimensions are closely related. For a locally A —expanding
dynamical solenoid, we prove that its topological entropy is lower estimated by the Hausdorff dimension
of X multiplied by the logarithm of A.

Keywords: entropy; Hausdorff measure; Hausdorff dimension; box dimension; dynamical solenoid;
locally expanding map

1. Introduction

A solenoid, which was introduced to mathematics by Vietoris [1] as the topological object, can be
presented either in an abstract way as an inverse limit or in a geometric way as a nested intersection
of a sequence of tori. The classical construction of Vietoris was modified by McCord [2], Williams [3],
and others. Since the publication of William’s paper on expanding attractors [3], inverse limit spaces have
played a key role in dynamical systems and in continuum theory. Smale [4] introduced the solenoid to
dynamical systems as a hyperbolic attractor.

In the paper, a sequence fo = (fy : X — X)_; of continuous epimorphisms of a compact metric
space (X, d) is called a dynamical solenoid while the inverse limit

Xeo = lm(X, fi) := {(x)iZo © Xk—1 = fic(x) }-

is called a classical solenoid. Since the paper is not about classical solenoids, the term dynamical solenoid
is sometimes abbreviated as solenoid.

In mathematical literature, one can also find a more restrictive definition of the solenoid as a finite-
dimensional, connected, compact abelian group. These solenoids generalize torus groups, and their entropic
properties have been studied by Berg [5], Lind and Ward [6], Einsiedler and Lindenstrauss [7], and others.
A less restrictive definition of the solenoid was considered in [8-10].

A dynamical solenoid is a natural generalization of a classical dynamical system. In contrast with the
classical dynamical systems, the properties of solenoid entropies have not been fully investigated. In the
paper, we consider several different definitions of entropy-like quantities for a dynamical solenoid fe:
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topological entropy /o ( foo ), topological cover entropy htop—coo( foo), and topological dimensional entropy
htopfdim (foo) :

Both nonautonomous dynamical systems and dynamical solenoids are determined by compositions
of continuous self-maps; therefore, in both cases, the entropy-like quantities that capture complexities of
these generalized dynamical systems can be similar. For example, the topological entropy of a dynamical
solenoid coincides with the topological entropy of a nonautonomous dynamical system defined in [11].
In this paper, we derive the following relations between the entropies of a dynamical solenoid which were
previously known for continuous maps on compact metric spaces, and we obtained the following results.

Theorem 1. T4y, gim (foo) < Htop—cov(foo)-
Theorem 2. htop(foo) = Htop—cov(feo)-

In 2002, Milnor [12] stated two questions related to the classical dynamical system: “Is entropy of it
effectively computable?” “Given an explicit dynamical system and given € > 0, is it possible to compute
the entropy with maximal error of €?” In most cases the answer is negative. For the recent results on
computability of topological entropy, we recommend [13,14].

Therefore, in mathematical literature, there were many attempts to estimate entropy of dynamical
systems by Lyapunov exponents, volume growth, Hausdorff dimension, or fractal dimensions.

The theory of Carathéodory structures, introduced by Pesin [15] for a single map, has been applied
in [11] to get some estimations of the topological entropy of a nonautonomous dynamical system. To show a
comprehensive picture and beauty of dynamics of dynamical solenoids, we rewrite the Theorem 3 in [11] to
express complexity of so called L-Lipschitz dynamical solenoid. A dynamical solenoid feo = (fy : X — X)5°4
is called L-Lipschitz if it consists of L-Lipschitz epimorphisms; the following inequality holds.

Theorem 3. Assume that foo = (fu : X — X)S_ is a L-Lipschitz dynamical solenoid with L > 1. Then, for any

Y C X, we obtain
htopfdim((foo)/ Y)
>
AP0 =" logy

where HD(Y') is the Hausdorff dimension of Y.

Finally, we investigate so called locally A —expanding dynamical solenoids, in the sense of Ruelle [16]
(see Definition 6). We prove that the topological entropy of a A—expanding dynamical solenoid, defined
on the space X, is related to the upper box dimension of X multiplied by the logarithm of A. We obtained
the following inequalities.

Theorem 4. Given a locally A—expanding dynamical solenoid foo = (fy : X — X)_;. Then,

n=1*
htop(feo) > (log A) - dimp(X) > (logA) - HD(X),
where dimp (X) is the upper box dimension of X.

The paper is organized as follows. In Section 2, we introduce several definitions of entropy-like
quantities for a dynamical solenoid: topological entropy, topological cover entropy, and topological
dimensional entropy. In Section 3, we prove the relations between them (Theorems 1 and 2). Section 4 is
devoted to L-Lipschitz dynamical solenoids; we present Theorem 3. Finally, in Section 5, we investigate
locally A—expanding dynamical solenoids and prove Theorem 4.
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2. Topological Entropies of a Dynamical Solenoid

In 1965, Adler, Konheim, and McAndrew [17] introduced a definition of topological entropy for the
classical dynamical system (i.e., a pair (X, f), where X is a topological space and f : X — X is a continuous
map) as a non-negative number assigned to an open cover of X. A different definition of entropy of a
continuous self-map defined on a compact metric space was introduced by Bowen [18] and independently
by Dinaburg [19]. In [20], Bowen proved that the definitions are equivalent. Nowadays, topological entropy
is a main notion in topological dynamics. In the paper, we present a few generalizations of the classical
topological entropy of a single map to dynamical solenoids.

In the paper, we consider a dynamical solenoid determined by a sequence foo = (fy, : X = X)5; of
continuous epimorphisms of a compact metric spaces (X, d). Thus, the dynamical solenoid is a generalized
dynamical system. Its complexity and chaos can be measured by several entropy-like quantities. First,
we introduce topological entropy via (1, €) —separated sets.

2.1. Topological Entropy of a Dynamical Solenoid via (n, €)—Separated or (n, €)—Spanning Sets

Let B(x,r) = {y € X : d(x,y) < r} denote a closed ball in the metric space (X, d) centered at x € X
and with radius r.

Definition 1. Fix e > 0, n € N. A subset F C X is called (n, €)-spanning if for any x € X there exists y € F
such that

max{d(f;o fit10..0 fu(x), fio fix10..0fu(y)):ie{l, .., n}t} <e

Let r(n,€) := min{card(F) : F is (n, €)-spanning set }.
Aset E C X is called (n, €)-separated if for any pair of distinct points x,y € E we have

max{d(f;o fiz10...0 fu(x), fio fixz10..0 fu(y)) :i €{1,..,n}} >e.
Let s(n,€) := max{card(E) : E is (n,€)-separated }.
The following two lemmas are a reformulation of Definition 1.

Lemma 1. Aset F C X is (n, €)—spanning if and only if

X = Nfiofirro-ofu) 'Bl(fio fir1 00 fu) (y),€l.

ycFi=1

Proof. (=) Assume that a subset F C X is (1, €)—spanning. Then for any point x € X there exists a point
y € F such that

max{d(f;o fiz10...0 fu(x), fio fixz10..0 fu(y)) :i€{1,..,n}} <e.
Foranyi € {1,..,n} we obtain

fiofiyr1 0.0 fu(x) € B[fio fix10...0 fu(y), €]

and

x € (fiofin o...ofn)_lB[(fiofiH 0.0 fu)(y), €.
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So
x e ((fiofixr00 fu) 'Bl(fio fiy1 0.0 f)(y),€l.
i=1

Since x is an arbitrary point of X we conclude
n
X U N(fiofix1 0.0 fu) 'Bl(fio fiz1 0.0 fu)(y) €] C X.
yeFi=1
(<) Now assume that the following equality
n
X = N(fiofirrom0fa) ' Bl(fio fis1 00 fu) (v),€]
yeFi=1

holds for a subset F C X. Then, for any x € X there exists y € F such that
n
x € (Y(fio firr 0.0 fa) Bl(fio fir10- 0 fu)(¥), €]

1

1=

which is equivalent to
max{d(f;jo fiz10...0 fu(x), fio fix10..0 fu(y)) :i € {1,..,n}} <e.
Thus the set F is (1, €) —spanning and the proof is finished. [

Lemma 2. A set E C X is (n, €)-separated if and only if for any x € E the set (/1 (fi © fit1 ©
fir10...0 fu)(x), €] contains no other points of E.

40f 16

w0 fu)'B(fio

Proof. (=) Assume thataset E C X is (11, €)—separated and choose two distinct points x1, x, € E. For any

ie{l,..,n}weget
x1 € (fio fir10.0 fu) 'Bl(fio fis1 00 fu) (1), €]

SO

x1 € (V(fio fis10-0 fu) ' Bl(fio fiy1 0.0 fu)(x1),€].
i1

Assume that

n
x2 € (V(fio firr 00 fu) ' BI(fi0 fir1 00 fu) (x1), €]
i=1
then we obtain the following inequality

max{d(f;o fiz10...0 fu(x1), fio fixz10..0 fu(x)) i€ {1,..,n}} <e

which gives a contradiction with the assumption that x1, x, are (n, €) —separated. Thus the intersection

() EA(V(Fro firt 00 fu) BIUfi o fisn 00 fi) (x1)s€] = {1}
i=1
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(<) Now assume that for a given subset E C X the condition (*) holds. For two distinct points
x1,x2 € E we have

X2 & (\(fio fix10 0 fu) 'Bl(fi0 fis1 00 fu)(x1),€].

i=1

Therefore, there exists i € {1, ...,n} such that

d(fio fisn oo fu)(x1), fio fiyr 0.0 fu) (x2)) > €.
We have proved that the set E C X is (n,€)—separated. [

Modifying slightly the classical Bowen'’s definition [18] of the topological entropy of a single map (for
details see also Chapter 7 in [21]), we present the definition of topological entropy of a dynamical solenoid
as follows.

Definition 2. The quantity
htop(feo) := lim limsup % logs(n,e€)

e=0"  noeo

is called the topological entropy of feo.

Remark 1. The topological entropy of a dynamical solenoid can also be expressed in the language of (n, €)-spannings
sets. Using argquments similar to remarks on page 169 in [21], we get estimations

r(n,e) <s(n,e) <r(ne/2).

Indeed, for any two distinct points x1,xp of an (n,€)—separated set E with cardinality card(E) = s(n, €)
we have

max{d(f;o fix10...0 fu(x1), fio fixz10..0 fu(xp)) :i € {1,..,n}} > €.
Since E is (n, €)—separated set with maximal cardinality, for any y € X \ E there exists x3 € E such that
max{d(fi o fiz1 0.0 fa(y), fio fix1 0.0 fulx3)) ;i € {1,..,n}} <e.
It means that E is (n, €) —spanning and
r(n,€) < card(E) = s(n,¢).

To show the other inequality for the set E and an (n, §)— spanning set F C X with cardinality card(F) = r(n,€/2)
define ¢ : E — F by choosing, for each point x € E some point ¢(x) € E with

max{d(fjo fiy10..0fu(x),fio fir1 0.0 fu(@p(x))) i€ {l,..,n}} <

N ™

The map ¢ : E — F is injective and therefore card(E) < card(F). Hence s(n,€) < r(n,€/2).
Applying the inequalities
r(n,e) <s(n,e) <r(n,e/2)

and passing to the suitable limits, we obtain the equality

htop(foo) = lim hmsup%logr(n, €).

€—=0T  p—oo
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Remark 2. Assume that all maps of the sequence foo = (fu : X — X)$_; coincide with a fixed continuous

map f : X — X of a compact metric space (X,d). Then, the topological entropy of f is equal to the topological
entropy of f. For example, the topological entropy of a dynamical solenoid coincides with the topological entropy of a
nonautonomous dynamical system defined in [11].

2.2. Topological Entropy of a Dynamical Solenoid via Open Covers

It is a well-known fact that topological entropy of a single continuous map f : X — X can be defined
by open covers of the compact metric space (X, d). We intend to show that similar approach can be applied
to a dynamical solenoid. For this purpose, notice that for two open covers A, B of X, the family

AVB:={ANB:Ac A BeB}

is an open cover of X. Moreover, for a continuous map f; o fiy1 0...0 f, : X — X and an open cover A of
X the family

(fi Ofi+1 O ... Ofn)il.A = {(fl Ofi-‘rl Oo... Ofn)ilA A€ .A}
is an open cover of X. Thus, for the open cover A of X, the family

n

\/(fl o fit1 O"-Ofn)_lA —

i=1

(fiofaoof) HANV (f2ofsono i) AV V (fa) T (A)

is an open cover of X.
For an open cover B of X let us denote by N(B) the number of sets in a finite subcover of B covering
X, with the smallest cardinality.

Definition 3. The topological cover entropy of fe, telative to an open cover A of X, is defined as
1 n
htop—cov(foo, A) = limsup n log N <\/ (fiofit10..0 fn)l-A> ,
n—oo i—1

whereas the topological cover entropy of feo is the quantity
htop—cov (foo) = sup h(foo/ —A)/
A

where A ranges over all open covers of X.

2.3. Topological Entropy as a Dimension Theory Quantity

Here, we modify the Bowen’s definition [20] of the topological entropy of a continuous single map,
which is similar to the construction of the Hausdorff measure, to obtain the topological dimensional
entropy of fe.

2.3.1. The Hausforff Measure and the Hausdorff Dimension

For the convenience of the reader, we recall briefly the classical construction of the Hausdorff measure
and the Hausdorff dimension.

For a metric space (X, d) and a subset Y C X, let us denote by Cov,(Y) the family of open covers B of
Y with diam(B) < €, for any B € B. Here, diam(B) denotes the diameter of B.
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For any A > 0 the classical Hausdorff A —measure i, (Y) of a subset Y C X is defined as follows,

pa(Y) :=liminf{ ) [diam(B)]* : B € Covc(Y)}.

e BeB

The function A — p) (Y) has a unique critical point, where it jumps from oo to 0. The Hausdorff dimension
HD(Y) of Y is defined as the critical point of the function A — p, (Y), i.e.,

HD(Y) = sup{A: pp(Y) = 00} = inf{A : uy (Y) = 0}.

2.3.2. Generalized Hausdorff Measure and Generalized Hausdoff Dimension

Arguments similar to the construction of the classical Hausdorff A-measure and the Hausdorff
dimension lead to another entropy-like quantity for foo = (f; : X = X)?° ;. Denote by A a finite open
cover of X. For a subset B C X, we write B < A if there exists A; € A such that B C A;. Denote by 1 4(B)
the largest non-negative integer n such that f o fy 1 0...0 f,(B) < Afor k =1, ..., n. If there is no element
A; € Asuch that B C A;, then we write n4(B) = 0. Let us introduce the following notations.

diam 4(B) := exp(—n4(B)),
diam o(B) := sup{diam 4(B) : B € B}

and

DA(B,A) = B%[diamA(B)]A

for a family B of subsets of X and a real number, A > 0. For a subset Y C X and € > 0, let Cov(Y) denote
the family of open covers B of Y with diam 4(B) < €. Now we set

par(Y) = liminf{D4(B,A) : B € CovZ(Y)}.
€—

The behavior of the function A — 4, (Y) is very similar to the behavior of A — i, (Y): it has a unique
critical point, where it jumps from co to 0. More precisely.

Lemma 3. For the function A — ua,(Y), there exists a unique critical number Ay such that p(Y) =
oo, for0 <A < Agand par(Y) =0, for A\g < A.

Proof. For any € € (0,1) there exists a cover B of Y with exp(—n4(B)) < 1, for any B € B. Therefore,
the inequality 0 < 8 < « implies

Y. exp(—n4(B)-a) < ) exp(—ny(B)-p),

BeB BeB
so
paa(Y) =liminf{ ) exp(—n4(B)-a): B e Covf(Y)} <
e—0 BeB
liminf{ Y exp(—n4(B)-B) : B € Covf(Y)} = pap(Y).
e—0 BeB
Therefore,

(k%) 0 < B <a= puga(Y) <pap(Y).
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First assume that j1 4 5(Y) = oo for some § > 0 and that < . By (**) we conclude that

00 =pps(Y) < pap(Y).

In a similar way, we prove that if 3 4 (Y) = 0, then for A; > A we obtain the equality p 4, (Y) = 0. O

Definition 4. Denote by Ag the critical point of the function A — pga(Y). Let Ao = hyop—gim((foo), Y, A).
In other words, let

hiop—dim((foo), Y, A) := sup{A : g (Y) = oo} = inf{A : py(Y) = 0}.
The number

iop—dim(foo, Y) := sup{hyop—aim((fe), Y, A) : A finite open cover of Y}
is called the topological dimensional entropy of feo restricted to Y. If Y = X, we write hiop_gim(foo, X) =
htopfdim (fw)

Remark 3. Our definition of topological dimension entropy of a dynamical solenoid is an extension of Bowen's
entropy [20]. Moreover, the topological dimensional entropy of a dynamical solenoid is similar to Bowen’s topological
entropy of nonautonomous dynamical systems in [22].

3. Relations between Topological Entropies of a Dynamical Solenoid

In the previous section, we introduced three entropy-like quantities for a dynamical solenoid. Now,
we relate the topological dimensional entropy of a dynamical solenoid to its topological covering entropy.
We obtain the following result.

Theorem 1. htgp,d,'m (foo) < htop—cov (fOO)

Proof. Choose a finite open cover A of X and let

An={((fio fiz10..0 fa) L(A) : A; € A}

=

1

i

Denote by B, a finite subcover of A, with cardinality |B,,| = N(.A,). Then, for any B € B,, we obtain that
n4(B) > n,so
diam 4(B) < exp(—n)

and for any A > 0 we get

Da(Bu, A) = BZB [diam 4(B)]" = BZB exp(=A-n4(B)) < [Ba|-exp(=A-n).

As|B,| = N(A,), we have
|B|-exp(—A-n) =exp(—A-n+log|B,|) = exp(—n(A — %logN(.An))).

Consequently,
1
Da(Bn, L) <exp(—n-(A— - log N(Ay))).
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Fix € > 0 and an arbitrary small y > 0. Choose A* such that A* > hiop—cov ( foos A) > A* — «. For sufficiently
large n € N, we obtain the inequalities
A* — %logN(.An)) >0,
diam 4(B) < exp(—n) <€, for B € B,and
Da(Bn, A*) < exp(—n- (A* — %logN(An))) <e.
As € > 0 is arbitrarily small, the above two inequalities yield yz 4+ (X) = 0. Therefore,
iop—dim(foo, Y, A) < A" < htop—cov(foo, A) + -
As A is an arbitrary finite open cover of X, we obtain
htop—dim(foo) = sup{hiop—dim((feo), X, A) : A — finite open cover of X}
< sup{hiop—cov(feo, A) 1 A — finite open cover of X} 4+ = hop—coo(feo) + -

Finally, passing with -y to zero, we get
htop—dim (fOO) < htopfcov (foo)

O
Lemma 4. For an open cover A of X with the Lebegue number Leb(.A) = &, we get

n
_ )
N <\/<ﬁofi+1o...ofn> 1,4> <r(n,3):
i=1
Proof. Fixn € Nand d > 0. Choose an (1, §)-spanning set F with cardinality card(F) = r(n, ). As Leb(A) =
J, we obtain that any ball B[(f; o fiy1 0 ...0 fu)(x), %] of radius /2, where x € Fand i € {1,..,n},

is included in some set A; € A, so
n

(fio fov1© 0 fu) BI(fi0 firr 00 fu) (), 3] € (Y(fio fisro 0 fu) Ay

i=1

=

1

i

for some Aq, Ay, ...A; € A. It means that the set
)

(fio fix10w0 fu) 'B(fi fir1 00 fu) (x), 5]

i=1
is a subset of some member of the covering

(fiofix1 0.0 fu) LA

=

i=1
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On the other hand, applying Lemma 1, we get

X = U ﬂ(ﬁofi+l O...Ofn)—lB((fi o fit1 o...ofn)(x),g),
xcFi=1
N(\/(fl o fiy10.. Ofn)_l.A) < card(F) = r(n, g)
i=1
O

Lemma 5. Assume that € > 0 and B is an open cover of X, with diam(B) < e. Then,

(fio firr 0.0 fa)"'B).

<=

s(n,e) < N(

i=1

Proof. Choose an (1, €)-separated set E with cardinality card(E) = s(n,€). Assume that two distinct
points x1, x, € E belong to the same member of the cover \/?_; (f; o fi 11 © ... o f) ~! 3. Therefore, there exist
sets B; € Bsuch that (fjo fii10...0 fy)(x1),(fio fiz10...0 fu)(x2) € B; forany i € {1,..,n}. On the other
hand, as the set E is (1, €)-separated, there exists j € {1, ..., n} such that

d((fjo fir1 00 fu)(x1), (fjo fixr 0.0 fu)(x2)) =
max{d(fi o fiy1 0.0 fu)(x1), (fio fix1 00 fu)(x2) i€ {1, ,m}} > e

Thus, we get a contradiction with diam(B;) < e. Therefore,

(fio fiy10..0 fu) ' B).

Z.

s(n,e) < N(

i=1

O

Now, we are ready to prove that the topological entropy of a dynamical solenoid is equivalent to its
topological covering entropy.

Theorem 2. htop(foo) = Htop—cov(feo)-

Proof. Fix € > 0. Let A. be the cover of X by all open balls of radius 2 - € and denote by B, the cover of X
by all open balls of radius 5. Due to Lemma 4, we obtain

n

NV (fio fir1 00 fu) 1 Ae) < r(me),

i=1

SO
n

lim sup % log N(\/ (fio fix1 0. o fu) TAe) < limsup%logr(n,e)

n—co i=1 n—oo

and

htopfcov(foo) S htop(foo)«
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Applying Lemma 5, we get
(fio fix1 00 fu) ' Be),

=

s(n,e) < N(

i=1

SO

n
limsupllogs(n,e) < limsup%logN(\/(fi 0 fix10..0 fn) 1Be)

n—oo N n—00 i1

and finally we get the second inequality

htop(foo) S htop—cov(foo)-
The theorem is proved. O

4. Topological Entropy of L-Lipschitz Dynamical Solenoids

Dai, Zhou, and Geng [23] proved the following result. If X is a metric compact spaceand f : X — X
a Lipschitz continuous map, then the Hausdorff dimension of X is lower estimated by the topological
entropy of f divided by the logarithm of its Lipschitz constant. In 2004, Misiurewicz [24] provided a
new definition of topological entropy of a single transformation, which was a kind of hybrid between
the Bowen's definition and the original definition of Adler, Konheim, and McAndrew [17]. The main
theorem in [24] is similar to the result in [23]. In this section, we consider a special class of dynamical
solenoids called L-Lipschitz dynamical solenoids. We say that a dynamical solenoid foo = (fi : X — X)57 4
is a L-Lipschitz if there exists L > 0 such that each map f,, : X — X is an Lipschitz epimorphism with
Lipschitz constant L, i.e., for any x,y € X and arbitrary n € N

d(fu(x), fu(y)) < L-d(x,y).

Let us start with the following example.

Example 1. Consider the dynamical solenoid foo = (fu : T? — T?)%_,, where T?> = H%; is two-dimensional torus

and each f,, : T? — T? is the doubling map, i.e., fu(x1,%2) = 2- (x1,%2), for any (x1,x2) € T2. Then,

htop (focn Tz) htopfdim (foo/ Tz)
log(2) log(2)

Indeed, the Hausdorff dimension of the two dimensional torus is equal to two (see page 23 in [25]). Due
to Remarks 2 and 3, we get hop (foo, T2) = hiop(f2) = Iiop—aim(feo, T?). On the other hand, the doubling
map f, : T> — T2 can be considered as the Cartesian product of two doubling maps g : % — % defined by
g(x) =2-xmod1, for x € %. Moreover, htop(g) = log(2) (see Example on page 29 in [26]). Consequently,
htop(foo, T2) = 2-108(2) = hiop—dim (foo, T?).

To show the comprehensive picture of dynamics of L-Lipschitz dynamical solenoids, we rewrite the
Theorem 3 published in [11], written for nonautonomous dynamical systems, in the set up of dynamical
solenoids as follows.

= HD(T?) =

Theorem 3. Assume that foo = (fu : X — X)_, is a L-Lipschitz dynamical solenoid with L > 1. Then, for any

Y C X, we obtain
htopfdim((foo)/ Y)
> .
HD(Y) > log(L)
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For the convenience of the reader and to make the paper self-contained, we write the proof of Theorem
3 which is essentially the same as the proof of Theorem 3 in [11].

Proof. Choose a finite open cover A of Y and denote by § = Leb(.A) its Lebesgue number. It means that
for an open subset C C Y with diameter diam(C) < J, there exists A € A such that C C A. Choose an

open set B with % < diam(B) < %, for some n € N. We obtain that

diam(fi© fiy1 0 w0 fu1(B)) < 6

forany k =1,2,..n —1,s0 n4(B) > n — 1. From the inequality

6 ,
i < diam(B)

we conclude that
S log(d) — log(diam(B))

"= log(L)

Consequently,
log(6) — log(diam(B))
log(L)

SnA(B)—i—l

" log(6) — log(diam(B))
Tog(L)
exp[1— (llsgg)) )] - (diam(B)) (0.

Therefore, for an open cover B of Y consisting of open sets B with & < diam(B) < % and A > 0, we get

diam 4(B) = exp(—n_4(B)) < exp(1 — )=

DA(B,A) < expld — A (18] 5 (diam (B)) w0

log(L)" =%
Fix v > 0 and choose A such that
M M
HD(Y) > - 7.
tog(D) ~ 1P 2 fog(ry 7
By definition of the Hausdorff measure, the equality # 1, (Y) = 0 holds. Therefore, for any € > 0 there
log(L)
exists and an open cover B¢ of Y such that for any B € Be
log(d) . 1 ,
1- - (d B))ls) > d B
€>exp[ (log(L))} ( iam( )) s > lllmA< )
and
log(é

NG y (diam(B)) "0 > D 4(Bo, Ay).

€ > exp[A —Ap - ( og(D)
BeBe

—_

The inequalities
par (Y) < Da(Be, ) <e

yield p 42, (Y) = 0. According to Definition 4, we get
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hiop—dim((feo), Y, A) = inf{A : g (Y) =0} < Ay,

Taking supremum over all open finite covers of Y, we obtain

htopfdim((foo)l Y) =
sup{hiop—dgim((fe), Y, A) : A — finite open cover of Y} <
A1 <log(L)- (HD(Y) + 7).

Finally,
hiop—dim((feo),Y) < log(L) - HD(Y),

as <y is an arbitrarily small positive number. [J

In particular, taking Y = X, we obtain the following corollary.

Corollary 1. Assume that feo = (fn : X — X)$°_; is a L-Lipschitz dynamical solenoid. Then, the inequality

n=1
htopfdim ( (foo)>

HD(X) = = 0D)

holds.

In the special case, for foo = (fu : X — X)7” ; being a L-Lipschitz dynamical solenoid such that all
maps f; : X — X coincide with a continuous map f : X — X, we get that

htOp(fOO) = hton(f)/

where 0, (f) is the classical topological entropy of f.X — X. Bowen proved (Proposition 1 in [20]) that
htop—dim (f) = hmp( f). Consequently, as a corollary of Theorem 3, we get the result of Misiurewicz [24].

Corollary 2 (Theorem 2.1 in [24]). If f : X — X is a continuous L-Lipschitz map of a compact metric space (X, d), then

htov(f)
log(L) "

5. Topological Entropy of Locally Expanding Dynamical Solenoids

HD(X) >

In this section, we investigate locally expanding dynamical solenoids. Ruelle [16] introduced the
notion of a locally expanding map in the following way.

Definition 5. Let (X, d) be a compact metric space and f : X — X a continuous selfmap. If for A > 1 there exists
€ > 0 such that for every pair of distinct points x,y € X

d(x,y) <e= d(f(x), f(y)) =2 A-d(xy),
then we say that f is a locally (e, A)-expanding map and A is an expanding coefficient of f.

Notice that any finite composition of locally (e;, A;)-expanding maps is an (¢, A)-locally expanding map
for some € > 0 and A > 1. We extend the notion of locally expanding map to a dynamical solenoid as follows.
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Definition 6. Given a dynamical solenoid foo = (fn : X — X)°_,. If there exists € > 0 such that all maps
fn : X — Xare locally (e, Ay)-expanding and A = inf{A, : n € N} > 1, then we say that f, is locally A-expanding.

Lemma 6. Given a locally A-expanding dynamical solenoid foo = (fn : X — X)5°_,. Then, there exists € > 0
such that for any x € X, k € N, and v € (0,€) we get

.

(fiofix1 0. Ofk)_lB(fi o fir10..0fi(x),y) CB (x,%) )

i=1

Proof. Choose € > 0 such that for any k € N and for every pair of distinct points x,y € X, we get

d(x,y) <e= d(fi(x) fi(y)) = Ak -d(x,y).

Fix v € (0,¢€) and let
k

y € ((fiofit10..0fi) 'B(fio fir1 0.0 fi(x), 7).

i=1

Then, we get inequalities

e>y>d(fiofro..ofr(x), fiofao..ofr(y)) >

A-d(fao...ofi(x), fao...ofi(y) = Ar- - Ag-d(x,y) >
AFd(x,y).
Therefore, d(x,y) < {r and y € B(x, J5). The lemma is proved. [

The notion of the box dimension is an example of fractal dimension which belongs to fractal geometry.
It was defined independently by Minkowski and Bouligard for a subset of Euclidean space. For modern
presentation of fractal dimensions see the classical books of Falconer [25,27] or the monograph written by
Przytycki and Urbanski [28].

Definition 7 (Chapter 2 in [25]). Recall that the upper box dimension of a closed subset Z of a compact metric
space X is

dimp(Z) := limsup log N(Z,7)
¥—0 —logy

where N(Z,y) denotes the smallest number of balls B(x,y) of radius -y > 0 needed to cover Z.

Lemma 7 ([28]). For a compact metric space X, the Hausdorff dimension HD (X) of X and the upper box dimension
dimp(X) of X are interrelated
HD(X) < dimp(X).

In the proof of Theorem 4 we need the following lemma.

Lemma 8 (Lemma 6.2 in [29]). Let ¢ : R — R be a decreasing function. If 5 € (0,1) and v > 0, then
log ¢(r)

n
limsup —>——+= = limsup M.
r—0 logr n—00 log(én'y)
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Theorem 4. Given a locally A-expanding dynamical solenoid feo = (fy : X — X)$*_q. Then,
top(foo) = (log A) - dimp(X) > (logA) - HD(X).

Proof. In the first part of the proof we intend to show that

htop(feo) > (log A) - dimp(X). (1)

Fix € > 0 such that for every pair of distinct points x,y € X and for every n € N,
d(x,y) <e=d(fu(x), fu(y)) 2 A-d(x,y).
By Lemma 6 and Lemma 1, for any y € (0,€) and an arbitrary n € N, we have
N (X, %) <r(n,7), (2)

consequently, applying Lemma 8 for the first equality and (2) for the subsequent inequality, we get

— log N(X, X
dimp(X) = limsup M < limsup M _
n—oo — IOg G Hn—s00 — log i
lim sup M.
log)\ n—r00 n

Therefore,

htop(foo) m lim sup M > (logA) - dimp(X).

=1
170 noeo

According to the Lemma 7, we finally get
htop(feo) > (log A) - dimp(X) > (logA) - HD(X).
O
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