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Abstract: Estimating the parameters of the autoregressive (AR) random process is a problem that
has been well-studied. In many applications, only noisy measurements of AR process are available.
The effect of the additive noise is that the system can be modeled as an AR model with colored noise,
even when the measurement noise is white, where the correlation matrix depends on the AR parameters.
Because of the correlation, it is expedient to compute using multiple stacked observations. Performing a
weighted least-squares estimation of the AR parameters using an inverse covariance weighting can provide
significantly better parameter estimates, with improvement increasing with the stack depth. The estimation
algorithm is essentially a vector RLS adaptive filter, with time-varying covariance matrix. Different ways
of estimating the unknown covariance are presented, as well as a method to estimate the variances of the
AR and observation noise. The notation is extended to vector autoregressive (VAR) processes. Simulation
results demonstrate performance improvements in coefficient error and in spectrum estimation.
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1. Introduction

The problem of estimating the parameters {bi, i = 1, . . . , p} of an autoregressive (AR) process

ξ(m) =
p

∑
i=1

biξ(m− i) + η(m), (1)

where the input η(n) is a white noise process, is important in many aspects of signal processing.
It plays roles a variety of applications, such as speech coding and analysis (see References [1–7]).
Autoregressive modeling is instrumental in many spectrum estimation algorithms, and algorithms for
noise-free measurements have been developed from that perspective [8–14]; see also Reference [5] for a
survey and perspective. Vector autoregressive modeling is also important in econometric modeling [15].
Among many other applications, AR models have also been used in biomedical signal processing (see, e.g.,
Reference [16]); communication (see, e.g., Reference [17]); and financial modeling (see, e.g., Reference [15]).

Because of its importance, the AR parameter estimation problem has been well-studied from a
realization of noise-free process {ξ(m)} When autocorrelations rk = E[ξ(m)ξ∗(m − k)] are known (or
estimated), the Yule-Walker equations describe the solutions [18,19]. This problem may also be considered
as the problem of finding optimal predictor coefficients, and solutions invoking adaptive filters are
well known [20]. The parameters can also be estimated using a Kalman filter applied to a statespace
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formulation ([21], Section 3.3), in which the unknown parameters are taken to be the state, and the
observation matrix is from the measurements. The Kalman filter method bears resemblance to the
approach presented here, but as will be shown there are differences between the two. First, in the case
of noisy observations, the previous AR values ξ(m− i), i = 1, . . . , p are not known, so the elements of
observation matrix are only approximately known in the Kalman filter approach. No such approximation
is used in the method here. Second, the approach presented here does not require the introduction of
the system noise with the question of what the variance should be. And thirdly, instead of a scalar
observation equation, vector observations are used, allowing the covariance structure to be used with a
time-varying covariance.

It is well known ([5], Section 6.7), [22,23] that additive noise broadens spectral peaks in autoregressive
spectral estimation and can result in loss of resolution of closely-spaced sinusoids. Dealing with noise
added to AR processes has been addressed many times in the literature, as we summarize below. None of
these previous methods use the covariance structure employed here. Some of these techniques are
related to finding rank p representations of a data matrix (using, for example, an SVD or total least
squares) [24–30]. From another perspective, it is known that white noise added to an AR(p) process
produces an ARMA(p, p) process. This has resulted in algorithms for dealing with the noisy AR process
using an ARMA estimator. For example, modified Yule-Walker (YW) equations [31] can be used to find
the ARMA model. However, this does not take advantage of the relationship between the AR and the MA
parameters in this noisy AR case. Another approach is to estimate the ARMA process using a large-order
AR model. Another approach to handling noisy AR observations is total least squares (TLS) [32–35].
None of these approaches is equivalent to the approach described here. Noisy AR estimation has been
studied over many years by Zheng [36–55], who estimates the variance of the observation noise to reduce
bias. An approach that is somewhat similar to our approach is bias-corrected RLC (BCRLS) [56–61], but the
BRCLS does not employ the covariance matrix-weighted least squares used here. Other approaches to
noisy AR parameter estimation have been investigated in References [4,62–92]

The approach described here uses the fact that the observation noise produces an AR-like process
with correlated noise, where the noise correlation depends on the AR coefficients. The correlation is
exploited by dealing with vectors of stacked observations, rather than scalar observations. A maximum
likelihood approach results in a weighted least-squares problem, in which previous estimates are used
to update the covariance matrix in an iterative fashion. We refer to this general algorithm as iterative
covariance-weighted autoregressive estimation (ICWARE). While maximum likelihood has been used for
AR parameter estimation [18] ([93], Chapter 5), [94], in previous estimators the noise is assumed white,
so the autocorrelation structure derived here is not exploited. Iterative parameter estimation has been used
for system parameter estimation. An early iterative method of fitting a given impulse response to a transfer
function, without an explicit noise model, is in Reference [95]. Iterative quadratic ML (IQML) [96] is
another iterative technique. IQML is similar to the algorithm of Reference [97] , which requires knowledge
of the input signal. IQML is also similar to the method of Reference [98]. An IQML approach [99] has been
used for noisy AR estimation. None of these make use of the covariance weighting of ICWARE.

There is some similarity of this approach to the measurement error models studied in the statistical
literature [100], in which parameters of regression models such as Yt = β0 + β1xt + et are estimated when
only noisy observations of the regressors Xt = xt + ut are available. These noisy observations induce
changes to conventional minimum mean-square error (MMSE) estimators which are somewhat related to
errors-in-variables approaches to AR estimation [101–103].

Another approach to this problem makes use of coupled Kalman filters [104] or cross-coupled H∞

filters [105,106] has been developed. In essence these move beyond the Kalman filter approach referenced
above ([21], Section 3.3) and operate as follows. One Kalman filter estimates the true autoregressive value
ζ̂(m), assuming knowledge of the AR parameters {bi}, while the other Kalman filter estimates the {bi}
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using the estimates ζ̂(m) as if they were the true values. These two filters operate in conjunction to jointly
converge to the AR parameter estimate. To evaluate our method in comparison with the dual Kalman
filter method, the algorithm here is compare to models also seen in Reference [104].

Recently, Monte Carlo methods, such as particle filtering has been used for AR and ARMA
estimation [107–110]. Particle filtering methods are quite general and can track dynamical variables and
jointly estimate static parameters. These methods offer the possibility of convergence to good estimates
in situations when the noise is not Gaussian (which has been assumed in this paper), but offer the usual
drawbacks of potentially high computational complexity if many particles are used. These represent an
alternative to the methods of this paper, and a thorough comparison, while valuable, lies beyond the scope
of this paper.

This topic is relevant to its journal of publication (Entropy), since spectral analysis under a maximum
entropy criterion has (famously) been shown to be equivalent to AR modeling [11]. As this work shows,
however, when there are noisy observations particular attention must be devoted to the information
present in the autocorrelation matrix of the observations, beyond the first order equations that result from
the historical maximum entropy approach.

We present the method first for the scalar AR model. For generality, noise is assumed to be circular
complex Gaussian noise; modifications for real signals is straightforward. In addition to the coefficient
estimation problem, we also address the problem of variance estimation. Following development for scalar
AR processes, the notation is developed for the vector AR (VAR) processes. Several simulation results
demonstrate that the ICWARE method provide significant improvements over classical YW-type methods.

2. Scalar Parameter Estimation in Noise

The noisy observation equation, represented by the system in Figure 1, is

y(m) = ξ(m) + ν(m) =
p

∑
i=1

biξ(m− i) + η(m) + ν(m), (2)

where ξ(m) ∈ C and each bi ∈ C, and where ν(m) is a white noise process. The process {ξ(m)} is said to
be the noise-free AR process, and the process {y(m)} is said to be the noisy AR process.

ν(m)

H(z) = 1
1−∑N

i=1 b∗i z−i

η(m) ξ(m) y(m)

Figure 1. Noisy Autoregressive Model.

The input and observation noises are assumed to be complex circular Gaussian, so that

η(m) = ση(N (0, 1) + jN (0, 1)) and ν(m) = σν(N (0, 1) + jN (0, 1)),

where the real and imaginary parts are uncorrelated, and draws at different times are independent.
Furthermore, these noises are assumed to be uncorrelated with each other, so

E[ν(m)ν(m− l)∗] = 2σ2
ν δl E[η(m)η(m− l)∗] = 2σ2

η δl E[ν(m)η(n∗)] = 0.
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Let b =
[
b1 b2 · · · bp

]T
and y(i) =

[
y(i) y(i− 1) · · · y(i− p + 1)

]T
(this vector is

re-defined below to have a different length). The conventional least-squares approach to estimating
b (in the forward prediction error sense) would be to compute

b̂ = arg min
b

∑
i

∣∣∣y(i)− bTy(i− 1)
∣∣∣2 , (3)

which results in the conventional estimate

b̂∗ =

(
∑

i
y(i− 1)y(i− 1)H

)−1(
∑

i
y∗(i)y(i− 1)

)
.

This is essentially the covariance method [19]. The estimate (3) can be computed using recursive
formulation, resulting in a recursive least-squares (RLS) adaptive filter. This approach essentially neglects
the noise ν(m). It is known that the noise will bias the estimate results [22].

Note: The error could also be computed in a backward prediction error sense, or in a combined
forward-backward sense as is done in some spectrum estimation algorithms such as the modified
covariance method [14], ([5], Section 75). The ICWARE method we describe below can be extended
to these generalizations as well, but for brevity only forward prediction error is used.

Substituting the AR signal in terms of the observation ξ(m) = y(m)− ν(m) into the AR model (1)
and using the observation model (2) we obtain

y(m)=
p

∑
i=1

biy(m−i)+
(
η(m)+ν(m)−

p

∑
i=1

biν(m− i)
)

(4)

=
p

∑
i=1

biy(m− i) + w(m), (5)

where

w(m) =

(
η(m) + ν(m)−

p

∑
i=1

biν(m− i)

)
denotes the noise. The expression (4) is an ARMA(p, p) process and is the basis for some ARMA-based
approaches to AR estimation in noise. The expression (5) has the appearance of an AR(p) process, except
that the noise w(m) is not white, having correlation

E[w(m)w∗(m)] = E

[(
η(m) + ν(m)−

p

∑
i=1

biν(m− i)

) (
η(m) + ν(m)−

p

∑
i=1

biν(m− i)

)∗]

= 2(σ2
η + σ2

ν +
p

∑
i=1
|bi|2σ2

ν )
4
= rw(0)

E[w(m)w(m + `)∗] = E

[(
η(m) + ν(m)−

p

∑
i=1

biν(m− i)

) (
η(m+`)+ ν(m+`)−

p

∑
i=1

biν(m+`−i)

)∗]

= 2σ2
ν (

p−`

∑
i=1

bib∗i+` − b∗` )
4
= rw(−`).

(6)

If the noise w(n) were uncorrelated, the solution of (3) would be least-squares optimal. However,
since w(m) is correlated, the sample-by-sample approach of (3) is suboptimal since it does not take the
correlation into account. As we now show, there is information in the covariance structure of the signal
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that can be used to improve the estimate. To take the correlation into account, stack the observations of (5)
into vectors of length d (that is, the depth), as

y(m)

y(m− 1)
...

y(m− d + 1)

 =


y(m− 1) · · · y(m− p)
y(m− 2) · · · y(m− 1− p)

...
y(m− d) · · · y(m− d− p + 1)




b1

b2
...

bp

+


w(m)

w(m− 1)
...

w(m− d + 1)

. (7)

Write this as
y(m) = Y(m)b + w(m)

The correlation matrix of the vector noise is

E[w(m)w(m)H ] =
rw(0) rw(−1) . . . rw(−(d− 1))
rw(1) rw(0) . . . rw(−(d− 2))

...
rw(d− 1) rw(d− 2) · · · rw(0)

 4= Rw(b).
(8)

In moving through a sequence of data, the data can be advanced by a skip s to form a sequence of
vectors y(m), y(m + s), y(m + 2s), . . . , y(m + s(k− 1)) and matrices Y(m), Y(m + s), Y(m + 2s), . . . , Y(m +

s(k− 1)), which we write for convenience as y0, y1, . . . , yk−1, and Y0, Y1, . . . , Yk−1, respectively. The index
m is chosen to make it possible to use only causal data, m ≥ d + p− 1.

Assuming independence (such as when s ≥ d) and assuming that the correlation function Rw(b) is
known, the likelihood function can be written as a circular complex Gaussian as

f (y0, . . . , yk−1|b, Rw(b)) ∝
1

|det(Rw(b))|k
exp[−

k−1

∑
i=0

(yi −Yib)H Rw(b)−1(yi −Yib)]. (9)

Finding the true maximum likelihood solution by directly maximizing (9) with respect to b is difficult,
since b enters nonlinearly in Rw(b). Instead, an iterative approach is employed. An estimated value
Rw(b)i is used at the ith step. Assuming still that each Rw(b)i is known, a maximum likelihood solution
may be obtained from

b̂k = arg min
b

k

∑
i=1

λk−i‖yi −Yib‖2
Rw(b)−1

i
. (10)

Here, a forgetting factor λk−i, with λ < 1, has been introduced to allow for tracking a time-varying b.
Significantly, the norm here is weighted by the inverse covariance Rw(b)−1

i . If we take d = 1, we obtain
the regular least-squares problem, and the additional correlation structure does not appear. Taking the
gradient of the cost functional (10) results in the normal equation(

k

∑
i=1

λk−iYH
i Rw(b)−1

i Yi

)
b̂k =

(
k

∑
i=1

λk−iYH
i Rw(b)−1

i yi

)
. (11)

Write this as Φ−1
k b̂k = φk. This can be recursively updated using RLS recursions (see, e.g., References

([111], Section 8.7), [112]), starting from an initial Φ−1 = 1
δ I for a small scalar δ and propagating Φk.

Computing (11) requires knowledge of Rw(b)i, which is not available since b is to be found.
In combination with a recursively updated solution to (11), Rw(b)i is estimated using previously computed
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values of b̂ and used as a time-varying covariance matrix. That is, we write Rw(b)i = Rw(b̂i−1)i. The result
is the framework shown in Algorithm 1, similar to a vector RLS adaptive filter.

Algorithm 1: AR Parameter estimation with noisy data.
Input: yk, Yk, Rw(b̂k−1)k
Previous Conditions: Φk−1, b̂k−1
Compute

Kk = λ−1Φk−1YH
k (λ−1YkΦk−1YH

k + Rw(b̂k−1))
−1

b̂k = b̂k−1 + Kk(yk −Ykb̂k−1)

Φk = λ−1(I − λ−1KkYk)Φk−1.

Update the covariance to obtain Rw(b̂k)k+1 and compute Rw(b̂k)
−1
k+1.

Return b̂k, Φk, R(b̂k)k+1.

The “Update the covariance” step, detailed below, is how the structure of Rb(b) can be used to
improve the parameter estimates.

We have explored several different approaches to computing and using Rw(b̂):

1. Ignore Rw(b): Neglect the correlation structure and simply assume that Rw(b̂k)i = I. This gives the
equivalent of taking a scalar measurement and is used as a sort of worst-case basis for comparison
among the different algorithms.

2. Use the correct value of Rw(b): That is, assume that b and σ2
ν and σ2

η are known and compute Rw(b̂)k
according to (6). This provides a limit on best-case performance against which other methods can
be compared.

3. Use the estimate of b: Using the correct values of σ2
ν and σ2

η , compute the autocorrelation matrix
using b̂k in (6).

4. Estimate b̂, fix σ2
ν and σ2

η : With assumed values of σ2
ν and σ2

η , compute the autocorrelation matrix
using b̂k in (6).

5. Estimate everything: Estimate the values of σ2
ν and σ2

η , then use them with b̂k in (6).

In the early stages while b̂k is poorly converged, it is best to use option 1 (assuming identity covariance
matrix) until b̂ has settled near its final value, then switch to option 4 using estimated b̂k until the moments
in Σ(b) have converged sufficiently well that reliable estimates of the variances can be obtained and
option 5 can be used. As described in Section 3, the information necessary to estimate the variances can be
accumulated without yet having a decent estimate for b̂k.

The covariance update/inverse does not necessarily need to be done at every step. Particularly as b̂k
settles towards its final value, there is little to be gained by updating Rw(b̂) at every step.

3. Estimating the Variances

As the results below will indicate, fixed values of σ2
ν and σ2

η can be used in the estimate of Rw(b)
instead of estimated values, so for the purposes of estimating b, it is not strictly necessary to estimate
these variances. But for other purposes it may be necessary to have an estimate of σ2

ν and σ2
η . A maximum

likelihood estimation approach is thus described in this section.
For a given estimate of the coefficients b̂, write Rw(b̂) as

Rw(b̂) = 2σ2
η I + 2σ2

ν B(b̂).
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For a sequence of k vectors y0, y1, . . . , yk−1, assumed to be nonoverlapping, encompassing N samples,
the joint log likelihood function is a complex (circularly symmetric) Gaussian

log f (y0, y1, . . . , yk−1|b, Rw(b), σ2
ν , σ2

η) = −N log π − k log det Rw(b)−
k−1

∑
i=0

(yi −Yib)H Rw(b)−1(yi −Yib)]. (12)

Let

Σ(b) =
1
k

k−1

∑
i=0

(yi −Yib)(yi −Yib)H (13)

denote the sample covariance. It can be shown that (see Appendix A)

∂

∂σ2
η

log f (y1, y2, . . . , yk|b, σ2
ν , σ2

η) = −k tr(Rw(b)−1) + k tr(Rw(b)−1Σ(b)Rw(b)−1. (14)

and that

∂

∂σ2
ν

log f (y1, y2, . . . , yk|b, σ2
ν , σ2

η) = −k ∑
i,j
(Rw(b)−1)i,j(B(b))ij + k ∑

i,j
(Rw(b)−1Σ(b)Rw(b)−1)i,j(B(b))i,j. (15)

The gradients (14) and (15) are equal to zero when

Rw(b) = Σ(b). (16)

The variance estimates are chosen to satisfy the condition (16) using an estimate of b from previous
estimates, that is

2σ2
η I + 2σ2

ν B(b̂) = Σ(b̂). (17)

We define the offset trace as
tr(B, `) = ∑

i
Bi,i+`,

where the usual trace is obtained when ` = 0, and for ` > 0, the sum is taken on the `th superdiagonal.
Let β` = tr(B(b̂), `) for ` = 0, 1, . . . , d− 1, where that is, the trace on the `th superdiagonal. Taking the
offset trace of (17) gives

2dσ2
η + 2σ2

ν β0 = tr(Σ(b̂), 0)

2σ2
ν β` = tr(Σ(b̂), `), ` = 1, 2, . . . , d− 1.

The ML estimates of the variances are the solutions to

2


d β0

0 β1
...
0 βd−1


[

σ̂2
η

σ̂2
ν

]
=


tr(Σ(b̂), 0)
tr(Σ(b̂), 1)

...
tr(Σ(b̂), d− 1).

 (18)

A significant number of terms of Σ(b̂) must be accumulated in order to estimate the variances well.
Initially, before reasonably accurate estimates of b are available, using inaccurate b̂s can result in a highly
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inaccurate Σ(b̂). As a result, it is desirable to accumulate moments of yi and Yi without using b̂. The trace
of the sample covariance is

tr(Σ(b), `) =
1
k

k

∑
i=1

tr(yiyH
i , `)− tr(yibHYH

i , `)− tr(YibyH
i , `) + tr(YibbHYH

i , `).

The different terms can be written as

∑
i

tr(yibHYH
i , `) = ∑

j
∑
k

∑
i

yi,jb∗k Y∗i,j+`,k = ∑
k

b∗k ∑
i
[Yi,`+1:end,k]

Hyi,1:end−`

∑
i

tr(YibyH
i ) = ∑

i
∑

j
∑
k

Yi,k,jbjy∗i,k+` = ∑
j

bj ∑
i
[yi,1+`:end]

HYi,1:end−`,j.

(It is noted that, except when ` = 0, these two terms are not conjugates of each other, so that both of these
terms must be retained.)

∑
i

tr(YibbHYH
i , `) = ∑

j
∑
k

∑
l

∑
i

Yi,k,j(bbH)j,l [YH
i ]l,k+`

= ∑
j

∑
l
(bbH)j,l ∑

i
[Yi,1+`:end,:]

HYi,1:end−`,:

These terms can be computed by recursively propagating the following quantities, for k = 1, 2, . . . , p
and ` = 0, 1, . . . , p:

a0(`, k) =
1
k

k−1

∑
i=0

yH
i,1+`,endyi,1:end−`

=
1
k
(yH

k,1+̀ :endyk,1:end−`+(k−1)a0(`, k−1))

a1
k(`, k) =

1
k

k−1

∑
i=0

[Yi,`+1:end,k]
Hyi,1:end−`

=
1
k
([Yk,`+1:end,k]

Hyk,1:end−` + (k− 1)a1
k(`, k− 1))

a2
k(`, k) =

1
k

k−1

∑
i=0

yH
i, +̀1:endYi,1:end−̀ ,k

=
1
k
(yH

k, +̀1:endYk,1:end−̀ ,k+(k−1)a2
k(`, k−1))

A(`, k) =
1
k

k−1

∑
i=0

YH
i,`+1:end,:Yi,1:end−`,:

=
1
k
(YH

k, +̀1:end,:Yk,1:end−̀ ,:+(k−1)A(`, k−1)).

Then
tr(Σ(b̂), `) = a0(`, k)− b̂Ha1(`, k)− b̂Ta2(`, k) + tr((b̂b̂H)A(`, k)).

Figure 2 shows the result of this estimation in an example with p = 3 and d = 5. The mean and
standard deviation over 50 independent runs is shown, for up 2000 samples averaged to produce Σ(b).
The true value of b is used. The least-squares solution to (18) can produce variance estimates for σ2

η which
are negative, which is nonphysical. Solutions constrained so that the variances are constrained to the range
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[0.1, 5] were also computed using CVX [113]. From these results, about 500 samples are needed before the
variance estimate converges to a value somewhat close to the true value.

k
0 500 1000 1500 2000

<
2 2
 e

st
im

at
e

-2

0

2

4
bounded solution
least-squares sol.
true

k
0 500 1000 1500 2000

<
2 8
 e

st
im

at
e

0

0.5

1

1.5

bounded solution
least-squares sol.
true

Figure 2. Example of estimating the variances σ2
ν (top plot) and σ2

η (bottom plot), using true b. k indicates
the number of points used in the estimates. Shading indicates standard deviation of the estimates over 50
iterations. Bounded solution is computed using CVX to avoid negative estimates.

4. Vector Autoregressive Formulation

In this section we extend the results of the previous section to vector autoregressive random processes
in noise, where at each time vector of length K is produced, and the coefficients are K× K matrices. In the
interest of generality, a constant offset v is also included. The noisy observations can be written as

y(m) = ξ(m) + ν(m) = v +
p

∑
i=1

Biξ(m− i) + η(m) + ν(m).

As in the scalar case, the noisy observations can be written as

y(m) = v +
p

∑
i=1

Biy(m− i) + w(m),

where

w(m) = η(m) + ν(m)−
p

∑
i=1

Biν(m− i).
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Following the usual practice [15], this is vectorized to obtain a vector of unknown parameters
as follows.

y(m) =
[
v B1 · · · Bp

]


1
y(m− 1)

...
y(m− p)

+ w(m).

Applying the vec operator ([114], Chapter 9) we obtain

y(m) = (


1

y(m− 1)
...

y(m− p)


T

⊗ IK) vec(
[
v B1 · · · Bp

]
) + w(m).

Let
b = vec(

[
v B1 · · · Bp

]
) ∈ C(K2 p+K)×1

and

Y(m) = (


1

y(m− 1)
...

y(t− p)


T

⊗ IK) ∈ CK×(K2 p+K).

Then
y(m) = Y(m)b + w(m).

The noise structure for a single vector can be written as

w(m) =
[

I I −B1 −B2 · · · −Bp

]


η(m)

ν(m)

ν(m− 1)
ν(m− 2)

...
ν(m− p)


.

Then

E[w(m)wH(m)] = 2(σ2
η I + σ2

ν (I +
p

∑
i=1

BiBH
i )
4
= Rw(0).

We also find

E[w(m)wH(m + `)] = 2σ2
ν (−BH

` +
p−`

∑
i=1

BiBH
i+`)

4
= Rw(`).

As in the scalar case, stack up multiple observations so that the correlation structure may be exploited:
y(m)

y(m− 1)
...

y(m− d + 1)

 =


Y(m)

Y(m− 1)
...

Y(m− d + 1)

 b +


w(m)

w(m− 1)
...

w(m− d + 1)

 .
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Write this as
y(m) = Y(m)b +w(m).

The correlation structure of the stacked noise vector is

E[w(m)w(m)H ] =
Rw(0) Rw(−1) · · · Rw(−d + 1)
Rw(1) Rw(0) · · · Rw(−d + 2)

...
Rw(d− 1) Rw(d− 2) · · · Rw(0)


4
= R(b).

Let y(m), y(m + s), . . . , y(m + sk) and Y(m),Y(m + s), . . . ,Y(m + sk) be a sequence of vectors and
matrices where the vector samples are skipped by s samples at each step, and for convenience denote
these as y1, y2, . . . , yk and Y1,Y2, . . . ,Yk. Following the method of section 2, the estimate

b̂k = arg max
b

k

∑
i=1

λk−i‖yi −Yib‖R(b)−1

is determined by the solution to the normal equations(
k

∑
i=0

λk−iYH
i R(b̂)−1Yi

)−1

b =

(
k

∑
i=0

λk−iYH
i Rw(b)−1.yi

)

With the appropriate use of vectorized data, Algorithm 1 can be used for the VAR as well.

5. Some Results

Several test cases were examined to determine the performance of the ICWARE approach; these are
summarized in Table 1, where the pole locations are given in polar form ρejθ .

Table 1. Parameters for test cases.

Case Order Pole Locations

1 3 0.95ej2π0.65, 0.95ej2π0.7, 0.95ej2π0.75

2 3 0.9ej2π0.65, 0.9ej2π0.7, 0.9ej2π0.75

3 3 ej2π0.65, ej2π0.7, ej2π0.75

4 6 0.75e±j2π0.1, 0.8e±j2π0.2, 0.85e±j2π0.35

5 6 0.98e±j2π0.05, 0.97e±j2π0.15, 0.8e±j2π0.35

6 6 0.98e±j2π0.1, 0.97e±j2π0.1, 0.98e±j2π0.15

The first example, designated Case 1, is a system with p = 3 having poles at ρejθ1 , ρejθ2 , ρejθ3 ,
with ρ = 0.95 and (θ1, θ2, θ3) = (0.65, 0.7, 0.75). resulting in a fairly narrowband complex AR signal.
The noise variances are σ2

η = 1, and σ2
ν = 1. This case is used to explore some of variations in performance

as parameters of the algorithm are varied. Figure 3 shows ‖b− b̂‖2
2 as a function of iteration using various

forms of Rb(b) and values of d (the stack height) from 1 to 7. The “skip” is set to s = 3. The results are
obtained by averaging the results of 50 independent runs. In these plots, “Iteration number” refers to
the number of blocks of data used in an online scheme, each iteration of the algorithm corresponding to



Entropy 2020, 22, 572 12 of 26

one data block. The results are compared with ‖b− b̂‖2
2 for YW with noisy measurements and noise-free

measurements and scalar AR estimation. The autocorrelation values for the YW method are computed
using 30000 points. The Burg method was also used, but with this many points there is little difference
between Burg and conventional YW. The scalar AR estimation (black dotted line) converges to the YW
performance, as does the ICWARE with d = 1, as expected.

In Figure 3, three different ways of determining Rb(b) are used. The solid lines (subplot (a)) use the
true Rb(b). This is, of course, unavailable in practice, but these plots serve as a basis for comparison against
real algorithms. The dashed lines (subplot (b)) use an identity matrix for Rb(b) for the first 30 iterations (to
establish an estimate of b), following which Rb(b̂) is computed using estimated b and the correct variances
σ2

ν and σ2
ε . The dotted lines (subplot (c)) are similar, except that fixed (but wrong) values of σ2

ν = 5 and
σ2

ε = 5 are used in the computation of Rb(b̂). It is clear that as d increases, the performance significantly
improves, especially for the first few values of d. Interestingly, for d = 7, the error performance is on the
order of the error in the noise-free YW.
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(a)  s=3 YW
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d=3

d=4

d=5

d=6

d=7

YW no noise
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Iteration number

10-2
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(c)

Figure 3. Case 1: Error performance fo different values of d with s = 3. (a) Solid: True Rb(b); (b) Dashed:
Rb(b̂) estimated from b̂ and correct variances; (c) Dotted: Rb(b) estimated from b̂ and fixed incorrect
variances. Comparison: Black dotted: conventional least-squares; Solid black: Yule-Walker (YW) with noisy
observations; Dashed black: NW with noise-free observations.

The improvements of the new method after 1000 iterations (denoted by ‖b− b̂k‖2
d) compared with

the YW result ‖b− b̂YW‖2
2 tabulated in Table 2 for s = 2, 3 and 4. There is little difference between s = 2

and s = 3, but when s = 4, that is, s > p, the performance declines.
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Table 2. Comparison of ‖b− b̂k‖2 computed for d = 1, . . . , 7 with ‖b− b̂YW‖2 for YW.

d 10 log10 ‖b− b̂k‖2
2/‖b− b̂YW‖2

s = 2 s = 3 s = 4

2 −5.9 −5.8 11.1
3 −12.4 −12.5 4.5
4 −17.5 −17.5 −0.6
5 −20.6 −20.6 −3.9
6 −22.6 −22.7 −5.9
7 −23.9 −24.0 −7.2

Figure 4 shows the influence of the skip s on the performance, with the same methods of estimating
Rb(b) as shown in Figure 3. For a fixed value of d = 7, the error curves for different values of s are shown.
Larger s for s ≤ p does improve the performance, but only slightly.

(a) Solid: True Rb(b); (b) Dashed: Rb(b̂) estimated from b̂ and correct variances; (c) Dotted: Rb(b)
estimated from b̂ and fixed incorrect variances.
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Figure 4. Case 1: Error performance for different values of s with d = 7. (a) Solid: True Rb(b);
(b) Dashed: Rb(b) estimated from b̂ and variances; (c) Dotted: Rb(b) estimated from b̂ and fixed incorrect
variances. Comparison: Black dotted: conventional least-squares; Solid black: Yule-Walker (YW) with noisy
observations; Dashed black: NW with noise-free observations.

Figure 5 shows estimates of the variances σ2
ν and σ2

η for different values of d. Obviously we need
d > 2 (in order to have two equations). However, when d = 2 there is a very large variance. By the point
d ≥ 4, the variance estimates are very close to the true variances.
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Figure 5. Case 1: Estimated variances for different values of d. Top: Estimated σ2
η ; Bottom: Estimated σ2

ν .

Figure 6 shows the magnitude frequency response for the true spectrum, the YW spectrum, and the
spectrum computed from b̂ obtained using d = 7 and d = 3 after convergence. (The spectrum is not an
average, but only a single outcome.) The ICWARE estimated spectrum is very close to the true spectrum
while the YW spectrum has considerable bias, exhibiting strong peaks not present in the true spectrum.

Normalized frequency (# : rad/sample)
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true spect
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Figure 6. Case 1: Comparison of ICWARE estimated spectrum with true spectrum, and the YW
estimated spectrum.
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As a point of comparison, TLS is used to estimate the AR parameters. In TLS, the equation
y(m) y(m− 1) · · · y(m− p + 1)

y(m + 1) y(m) · · · y(m− p + 2)
...

y(m + M) y(m + M− 1) · · · y(m + M− p)




b1

b2
...

bp

 =


y(m + 1)
y(m + 2)

...
y(m + M + 1)

+


ν(m + 1)
ν(m + 2)

...
ν(m + M + 1)

 (19)

(for some m and M) is perturbed in both the matrix on the left and the vector of observations on the right.
TLS can be computed using the singular value decomposition (SVD), making it computationally complex.
It also makes it more difficult to create algorithms which track changing parameters, and, as shown
below, gives inferior parameter estimates than the method presented here. Figure 7 shows the error for
b̂ computed using TLS. The parameter M is the height of the linear system that is solved using the TLS
method described in Reference [114]. The values M ∈ {20, 60, 100, 140} are examined. At each iteration,
a different set of points are used in the TLS equations, each of which is computed using a (relatively
complicated) singular value decomposition. Even with 20 rows in the TLS equations, performance only
roughly comparable to the YW equations is obtained. For 60 or more equations, the improvement of the
performance quickly saturates, so that 60 or 140 perform rather comparably. The computational complexity
is rather high. For each solution (at each iteration), the SVD of a M× 3 matrix is computed. Despite the
computational complexity, the ICWARE method performs superior to the TLS for d ≥ 4. (The method of
estimating Rb(b) in is the same as used for Figure 3b.)
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Figure 7. Case 1: Comparison of new method with total least squares (TLS) solutions for different TLS sizes.
Dashed: ICWARE for different values of d; Solid: TLS for different matrix sizes.
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The results presented to this point take 1000 blocks of data. A consideration is whether it is possible
to iteratively re-use data so that less data is required, but the reduced error from the ICWARE algorithm
can be obtained. In Figure 8, k = 100 blocks of data are employed, and the processing is repeated 10 times
on each block. Figure 9 shows the error as a result of each iteration. Each line in the plot corresponds
to one pass through the data. The top plot uses Rb(b̂) estimated using b̂ and true variances; the bottom
plot uses Rb(b̂) using b̂ and fixed variances. These figures show that iterating over the data provides
essentially the same performance as longer data.
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Figure 8. Case 1: Error performance of 10 repetitions on blocks of length 100. (a) Solid: True Rb(b);
(b) Dashed: Rb(b) estimated from b̂ and variances; (c) Dotted: Rb(b) estimated from b̂ and fixed incorrect
variances. Comparison: Black dotted: conventional least-squares; Solid black: Yule-Walker (YW) with noisy
observations; Dashed black: NW with noise-free observations.

The next example, designated Case 2, is also a third order system with poles at the same angles as
Case 1, but with ρ = 0.9. The following figures show examples of the same sort of results shown for Case 1.
In Figure 10 the various methods are compared. In this case, however, the minimum error does not reach
as low as the noise-free YW case. Figure 11 shows the resulting spectrum, again showing that the ICWARE
spectrum is closer than the YW spectrum.
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Figure 9. Performance on 10 repetitions on blocks of length 100, with the results folded for each iteration.
Top: Estimated Rb(b̂) using b̂ and true variances; Bottom: Estimated Rb(b̂) using b̂ and fixed variances.

Case 3 involves a system having poles at ρ = 1—that is, pure sinusoidal signals—and angles
(θ1, θ2, θ3) = (0.65, 0.655, 0.66). The estimated spectra are shown in Figure 12. The spectral peaks are
clearly evident in the ICWARE estimate.

As another comparison, ICWARE spectral estimates are compared to the spectra from dual Kalman
filters using the examples from Reference [104], shown as Cases 4,5, and 6 in Table 1. Figure 13 shows the
results. Spectra for twenty realizations are plotted, along with the true spectrum and the mean. The values
of d = p + 3 and s = 3 were selected, since simulations for Case 1 (above) suggest these are reasonable
values. Comparison of these results with figures 3, 4, and 6 of Reference [104] shows fairly comparable
performance. When the poles are not near the unit circle (Case 4), the ICWARE estimate tend to have
smoother spectra (estimated poles with smaller magnitude). When the poles are nearer the units circle
(Case 5, Case 6), ICWARE seems to do a comparable job at capturing the peaks, and does somewhat better
at representing the high-frequency dropoff of the spectrum. In all of these simulations, an estimated Rb(b)
was employed.
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Figure 10. Case 2: Error performance for different values of d with s = 3. (a) Solid: True Rb(b);
(b) Dashed: Rb(b) estimated from b̂ and variances; (c) Dotted: Rb(b) estimated from b̂ and fixed incorrect
variances. Comparison: Black dotted: conventional least-squares; Solid black: Yule-Walker (YW) with noisy
observations; Dashed black: NW with noise-free observations.
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Figure 11. Case 2: Comparison of ICWARE estimated spectrum with true spectrum, and the YW
estimated spectrum.
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Figure 12. Case 3: Comparison of ICWARE estimated spectrum with true spectrum, and the YW
estimated spectrum.
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Figure 13. Cont.
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Figure 13. Spectral estimation results for examples from Reference [104]. (a) Case 4; (b) Case 5; (c) Case 6.
σ2

η = 1,

6. Summary and Conclusions

In this paper, we have shown that accounting for observation noise added to a pure AR(p) process
results in noise which is correlated across lags. This makes it expedient to employ stacked observation
vectors, and estimating the parameters in a vector sense. This results in an algorithm that is essentially
a vector RLS adaptive filter. Several different methods were described to obtain information about the
correlation matrix Rw(b). Also, estimating the variances of the AR and observation noise was described.

It was shown by simulation that the method can be applied repetitively to the same block of data,
providing accurate results with data of moderate length.

The improvement of the technique compared with Yule-Walker is a function of the depth d to which
the observations are stacked. Values even greater than p continue to yield improvement. The improvement
relative to YW also is system dependent. Based on simulations, a depth d = p + 3, where p is the order of
the system, seems a reasonable choice.

Comparisons were made against a dual Kalman filter approach, with comparable or slightly
superior results.
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Appendix A. Maximizing The Log Likelihood Function for Estimating Variances

In this section we present details on the computation of the derivative of the likelihood (12) with
respect to σ2

ν . We note that

∂

∂σ2
η

Rw(b) = 2I
∂

∂σ2
ν

Rw(b) = 2σ2
ν B(b).

The derivative of the second term of (12) is

∂

∂σ2
η

log det Rw(b) = ∑
i,j

(
∂

∂Rw(b)
log det Rw(b)

)
i,j

(
∂

∂σ2
η

Rw(b)

)
i,j

= ∑
i,j
(Rw(b)−1)i,j(I)i,j = tr(Rw(b)−1). (A1)
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The summation term of (12) can be written as

k

∑
i=1

(yi −Yib)H Rw(b)−1(yi −Yib) = tr

(
k

∑
i=1

(yi −Yib)H Rw(b)−1(yi −Yib)

)
= k tr

(
Rw(b)−1Σ(b)

)
so that the derivative is

∂

∂σ2
η

k

∑
i=1

(yi −Yib)H Rw(b)−1(yi −Yib) =

k ∑
i,j

(
∂

∂Rw(b)
tr(Rw(b)−1Σ(b))

)
i,j

(
∂

∂σ2
η

Rw(b)

)
i,j

= k ∑
i,j
(−Rw(b)−1Σ(b)Rw(b)−1)H(I)i,j

= − tr(Rw(b)−1Σ(b)Rw(b)−1).

(A2)

Combining (A1) and (A2) gives (14).
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