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Abstract: In the differential approach elaborated, we study the evolution of the parameters of Gaussian,
mixed, continuous variable density matrices, whose dynamics are given by Hermitian Hamiltonians
expressed as quadratic forms of the position and momentum operators or quadrature components.
Specifically, we obtain in generic form the differential equations for the covariance matrix, the mean
values, and the density matrix parameters of a multipartite Gaussian state, unitarily evolving according to
a Hamiltonian Ĥ. We also present the corresponding differential equations, which describe the nonunitary
evolution of the subsystems. The resulting nonlinear equations are used to solve the dynamics of the
system instead of the Schrödinger equation. The formalism elaborated allows us to define new specific
invariant and quasi-invariant states, as well as states with invariant covariance matrices, i.e., states were
only the mean values evolve according to the classical Hamilton equations. By using density matrices in
the position and in the tomographic-probability representations, we study examples of these properties.
As examples, we present novel invariant states for the two-mode frequency converter and quasi-invariant
states for the bipartite parametric amplifier.

Keywords: Gaussian states; integrals of motion; parametric processes; nonunitary evolution; quantization;
invariant states; covariance matrix

1. Introduction

The study of Gaussian states has been of essential interest in the last few decades. These types
of states, associated with classical random fields, were considered as a possibility to connect covariance
matrices of the states as quantum density matrices and, with this definition, to study the quantum–classical
relation of randomness with the quantization procedure [1,2]. The problems of the new developments
of the foundations of quantum mechanics and applications of new results in quantum information and
quantum probabilities, as well as in areas like mathematical finance and economics have attracted the
attention of the researchers; they are intensely discussed in the literature [3–5]. An important role
in this development is played by discussing the problems that appeared from the very beginning
of quantum mechanics, like the notion of quantum system states and the interpretation of the states
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associated in the conventional formulation of quantum mechanics with Hilbert space vectors and density
operators, using the quasiprobability distributions and the probability distributions containing the
complete information on quantum states. There exists increasing interest in quantum foundations since a
deeper understanding of the essence and formalism of quantum theory is needed for the development of
quantum technologies and the possibilities to extend the applications of quantum formalism in physics to
all other areas of science like the economy, finance, and social disciplines.

Some examples of the Gaussian states of quantum fields as the coherent, squeezed, and thermal
light states are regularly used in the theoretical and experimental framework of quantum mechanics,
optics, information, and computing. The use of these states in quantum information has been of particular
importance [6–8]. One can list some of the most recent applications of the use of Gaussian systems: it has
been demonstrated [9] that it is not possible to distill more entanglement from a bipartite Gaussian state,
using local Gaussian transformations. In [10], several properties of the purity of Gaussian states were
found. The connection between the symplectic invariants of bipartite Gaussian states, the von Neumann
entropy, and the mutual information was established in [11]. The extremality of entanglement measures
and secret key rates for Gaussian states was observed in [12]. It was shown [13] that Gaussian attacks
are characterized by an optimum efficiency against eavesdropping protocols. Quantum illumination of
a target using Gaussian light states was explored by Tan et al. [14]. A quantum discord for systems of
continuous variables, such as Gaussian states, was implemented in [15]. In [16], an invariant describing
the nonclassicality in a two-mode Gaussian state was reported. The entanglement of m modes with other
n modes of a Gaussian multipartite system was treated in [17]. The linear response for systems close to
steady-states under Gaussian processes was obtained in [18]. The optimal measurement of the fidelity of
multimode Gaussian states was studied in [19]. On the other hand, the study of Gaussian wave packets by
nonlinear differential equations, as the Riccati equation, was done in [20–22]. Several coherent states have
been defined by the use of quadratic operators [23]. The behavior of different quantities as covariances in
thermal relaxation phenomena was also studied in [24].

The aim of this work is to present a new way to characterize the dynamics of Gaussian states using
the differential equations for the parameters, which determine their continuous variable density matrices.
The proposed method makes use of the integrals of the motion of such systems, and it can be used to clarify
new aspects of multimode Gaussian quantum states, such as an explicit form of the nonunitary evolution
of the states of subsystems and the existence of invariant states with constant covariance matrices and
mean values.

The time evolution of a quantum system was first established by Schrödinger [25]. The dynamics of
the system given by a Hamiltonian operator Ĥ for a pure state |ψ(t)〉must follow the Schrödinger equation:

Ĥ|ψ(t)〉 = ih̄
∂

∂t
|ψ(t)〉 ;

this expression corresponds to a second-order differential equation in the position representation. In the
case of an arbitrary state represented by the density matrix ρ̂(t), which cannot be pure [26,27], the evolution
is determined by the von Neumann equation:

ih̄
∂

∂t
ρ̂(t) = [Ĥ, ρ̂(t)] ;

the general solution of this equation is given by the unitary transform Û(t), i.e., |ψ(t)〉 = Û(t)|ψ(0)〉
or ρ̂(t) = Û(t)ρ̂(0)Û†(t), where |ψ(0)〉 and ρ̂(0) describe the system at time t = 0. Furthermore, it is a
common knowledge that, when the system interacts with an environment, its dynamics is described by
the master equation [28–30].
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The Gaussian states can be determined by their covariance matrix σ and mean values 〈qj〉 and 〈pj〉.
This property also implies that the evolution of a Gaussian state can be obtained, if the time dependence
of these parameters is known. In this work, we review the differential equations that the covariance
matrix and the mean values satisfy [31,32]; employing these results, we can define differential equations
for the density matrix parameters of a general multimode state satisfying these equations and then
use the equations to discuss some physical characteristics of the unitary and nonunitary evolutions of
Gaussian states.

This paper is organized as follows.
In Section 2, the evolution of non-pure Gaussian states for a one-dimensional quadratic Hamiltonian

is presented. To obtain this evolution, we make use of the derivatives of the covariance matrix, the
mean values, and the parameters of the density operator; also, we define and obtain invariant states for
this system. The generalization of these results to the case of a multidimensional quadratic system is
explored in Section 3. Examples of the application of the general results to the nonunitary evolution of
the subsystems of a two-mode state, as well as the definition of invariant and quasi-invariant states are
given in Section 4. Furthermore, in Section 5, we obtain new invariant states for the frequency converter
and quasi-invariant states for the parametric amplifier. The detection of these invariant states using
the quantum tomographic representation of the states is discussed for single-mode Gaussian states in
Section 5 and for the bipartite system in Section 6; in these sections, the correspondence between the
time-independent states and thermal density matrices is mentioned. Finally, we give our conclusions.

2. One-Dimensional Quantum Quadratic Hamiltonian and Its Linear Invariant Operators

In this section, we analyze some properties of the one-dimensional quadratic Hamiltonian.
In particular, we are interested in the invariant operators, which in the quadratic case happen to be
linear in the quadrature operators p̂ and q̂.

The most general (in a unit system where h̄ = m = 1), one-dimensional quantum quadratic
Hamiltonian can be obtained in terms of the quadrature operators p̂ and q̂ as follows:

Ĥ = ( p̂, q̂)

(
ω1(t) ω2(t)
ω2(t) ω3(t)

)(
p̂
q̂

)
+ ( p̂, q̂)

(
δ1

δ2

)
, (1)

where the parameters ω1(t), ω2(t), ω3(t), and δ1,2 are real functions of time. The dynamics associated
with this Hamiltonian can be solved by different methods. One of them is the method of time-dependent
invariants (integrals of motion) [33,34]. These invariants are quantum operators R̂(t), whose total time

derivative is equal to zero
dR̂(t)

dt
= 0. In the quadratic case, it is known that there exist invariants linearly

depending on the quadrature operators p̂ and q̂, i.e., R̂(t) = λ1(t) p̂ + λ2(t)q̂ + λ3(t).
By substituting this expression into the von Neumann equation, which determines the dynamics of R̂,

i.e.,
dR̂(t)

dt
=

i
h̄
[Ĥ(t), R̂(t)] +

∂R̂(t)
∂t

= 0, one can show that R̂(t) is an invariant operator, if the following
differential equations are satisfied:

λ̇1 = 2(ω2λ1 −ω1λ2) , λ̇2 = 2(−ω2λ2 + ω3λ1) , λ̇3 = δ2λ1 − δ1λ2 . (2)

We point out that parameters λ1,2 can be obtained by solving the classical Hamilton equations:

ṗ = −2(ω2 p + ω3q)− δ2 , q̇ = 2(ω2q + ω1 p) + δ1 . (3)
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with δ1 = δ2 = 0. To show this, one can see that the differential equations for λ1,2 correspond to the
classical equations with the substitution λ1 → q and λ2 → −p; in other words, they correspond to the time
inversion of the classical equations. In the case of the differential equation for λ3, one can show, in view
of the Hamilton equations, that it corresponds to the classical Lagrangian (with δ1,2 6= 0) plus the time
variation of the function pq of the system, that is,

λ̇3 = −2L+ L̇ , (4)

where L = pq̇− H and L = pq. From these identifications, one can conclude that the classical dynamics
given by the Hamilton equation or the equation of motion can lead to the solution of the quantum dynamics
given by the Hamiltonian operator of Equation (2). For example, one can derive the propagator of the
system G(x, x′, t) = 〈x|Û(t)|x′〉 using each one of the solutions of the classical problem [35].

2.1. Dynamics of Non-Pure States

Here, we demonstrate that the dynamics of a generic Gaussian state, which may not be pure, can
be given by solving differential equations for the covariance matrix or the density matrix parameters.
We show that these differential equations imply the invariance of the determinant of the covariance matrix,
when the time evolution is unitary.

As discussed above, the propagator of the system can be obtained using the time-dependent invariants
resulting from the solution to Equation (2) for two sets of initial conditions: λ1(0) = 1, λ2(0) = 0, λ3(0) = 0
and λ1(0) = 0, λ2(0) = 1, λ3(0) = 0. These two sets define two different invariants called P̂ and Q̂,
respectively, which can be written as:(

P̂
Q̂

)
= Λ

(
p̂
q̂

)
+

(
λ3

λ6

)
, with Λ =

(
λ1 λ2

λ4 λ5

)
, (5)

where λ4,5,6 satisfy the same differential equations as λ1,2,3, respectively, with the different sets of initial
conditions mentioned above. The operators P̂ and Q̂ fulfill the commutation relation [Q̂, P̂] = i, implying
the relation λ1λ5 − λ2λ4 = 1 and the fact that the matrix Λ is symplectic.

Furthermore, they can be related to operators p̂ and q̂ through the evolution operator as follows:

P̂ = Û p̂ Û† , Q̂ = Ûq̂ Û† ;

it is not difficult to show [33,34] that these expressions can be used to obtain the propagator of the system
G(x, x′, t) = 〈x|Û(t)|x′〉, which reads:

G(x, x′, t) =
1√
−2πiλ4

exp
{
− i

2λ4
[λ5x2 − 2xx′ + λ1x′2 + 2xλ6 + 2x′(λ3λ4 − λ1λ6)

+ λ1λ2
6 − 2λ4

∫ t

0
λ̇3λ6dτ]

}
, (6)

which we immediately identify as a Gaussian function.
In view of this propagator, the dynamics of any initial state in the position representation can be

found by the integration of the propagator and the wave function of the initial state. In this work, we will
suppose the case of the initial state given by a generic mixed Gaussian system with the density matrix in
the position representation ρ(x, x′, t = 0) = 〈x|ρ̂|x′〉 equal to:

ρ(x, x′, t = 0) = N exp
{
−a1x2 + a12xx′ − a∗1 x′2 + b1x + b∗1 x′

}
, (7)
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with complex parameters a1 = a1R + ia1I and b1 = b1R + ib1I and the real parameter a12 ∈ R, which also
satisfy the integrability conditions a1R > a12/2 ≥ 0 and have a normalization constant N expressed as:

N =

(
a1 + a∗1 − a12

π

)1/2
exp

{
−

(b1 + b∗1)
2

4(a1 + a∗1 − a12)

}
.

As discussed above, the Gaussian states can be fully identified by their covariance matrix and the
mean values of the quadrature components. In the case of the state (7), the mean values of the operators p̂
and q̂ are:

〈 p̂〉(0) = b1I −
2a1Ib1R

2a1R − a12
, 〈q̂〉(0) = b1R

2a1R − a12
, (8)

and the initial covariance matrix of the system reads:

σ(0) =

(
σpp σpq

σpq σqq

)
=

1
2 (2a1R − a12)

(
4|a1|2 − a2

12 −2a1I
−2a1I 1

)
. (9)

Here, the covariance between arbitrary operators x̂ and ŷ is given in terms of the expectation value of

the anticommutator, i.e., σxy =
1
2

Tr (ρ̂(x̂ŷ + ŷx̂))− Tr (ρ̂x̂)Tr (ρ̂ŷ).
All properties of the Gaussian state can be obtained by the use of the covariance matrix and the mean

values of the state. For example, the purity of the Gaussian state can be obtained by the determinant of its
covariance matrix, that is,

Tr ρ̂2 =
1

2
√

det σ
. (10)

The unitary dynamics of the initial state of Equation (7) can be obtained by the integration of the
propagators multiplied by the mixed-state density matrix:

ρ(x, x′, t) =
∫ ∞

−∞

∫ ∞

−∞
dx1 dx2 G∗(x1, x, t)ρ(x1, x2, 0) G(x2, x′, t) ;

as a result, it provides a Gaussian state with the same purity as the original state (Tr ρ̂2(t) = Tr ρ̂2(0)),
since unitary transforms do not change purity, which then can infer the determinant invariance of the
covariance matrix det σ(0) = det σ(t).

In a similar way, we can write the final state in an analogous way as the initial one, that is:

ρ(x, x′, t) = N exp
{
−a1(t)x2 + a12(t)xx′ − a∗1(t)x′2 + b(t)x + b(t)∗x′

}
, (11)

where the Gaussian parameters are written in terms of the symplectic matrix associated with the invariants
of Equation (5); thus, we arrive at the following expressions:

a1(t) =
1

2λ4

(
2a∗1λ4 − iλ1

λ2
1 − 2i(a1 − a∗1)λ1λ4 + dλ2

4
+ iλ5

)
,

a12(t) =
a12

λ2
1 − 2i(a1 − a∗1)λ1λ4 + dλ2

4
, (12)

b(t) =
λ1(b− iλ3 + (a12 − 2a1)λ6) + λ4((2a∗1 − a12)λ3 + i(2a∗1b + a12b∗ − δλ6))

λ2
1 − 2i(a1 − a∗1)λ1λ4 + dλ2

4
,

with d = 4|a1|2 − a2
12.
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It is possible to obtain the differential equations, which these parameters must satisfy. This is done by
taking the time derivative of the parameters, in view of Equation (2); after some algebra, we obtain:

ȧ1(t) = i(a2
12(t)− 4a2

1(t))ω1(t)− 4a1(t)ω2(t) + iω3(t),

ȧ12(t) = 4a12(t)(i(a∗1(t)− a1(t))ω1(t)−ω2(t)), (13)

ḃ(t) = (2a1(t)− a12(t))δ1(t)− iδ2(t)− 2ia12(t)b∗(t)ω1(t)− 2b(t)(ω2(t) + 2ia1(t)ω1(t)) ,

and their corresponding complex conjugates. It is worth mentioning that these equations can be
corroborated by the use of the von Neumann equation for ρ(x, x′, t) given in Equation (11), namely

i
dρ(x, x′, t)

dt
= 〈x|[Ĥ, ρ̂]|x′〉. On the other hand, it is known that the covariance matrix of the system can be

obtained, in view of the quantum solutions of Equation (2); as we have pointed out, this corresponds to the
classical solutions (3) with δ1 = δ2 = 0, which can be also written in terms of the symplectic transformation
Λ of Equation (5), i.e., σ(t) = Λ−1σ(0)Λ̃−1. Then, the covariance matrix evolution σ(t) can be obtained as:

σ(t) =

(
σpp(t) σpq(t)
σpq(t) σqq(t)

)
=

(
λ5 −λ2

−λ4 λ1

)(
σpp(0) σpq(0)
σpq(0) σqq(0)

)(
λ5 −λ4

−λ2 λ1

)
. (14)

After differentiating each covariance σ̇pp(t), σ̇qq(t), and σ̇pq(t), by using Equation (2), the inverse
expression of Equation (14), the purity conservation condition σpp(0)σqq(0) − σ2

pq(0) = σpp(t)σqq(t) −
σ2

pq(t), and the condition λ1λ5 − λ2λ4 = 1, we arrive at the following differential equations for
the covariances:

σ̇pp(t) = −4 (ω2(t)σpp(t) + ω3(t)σpq(t)) ,

σ̇qq(t) = 4 (ω2(t)σqq(t) + ω1(t)σpq(t)), (15)

σ̇pq(t) = 2 (ω1(t)σpp(t)−ω3(t)σqq(t)) .

One can also check that these differential equations imply that the derivative of the determinant of

σ(t) is equal to zero, i.e.,
d
dt

[
σp p(t)σqq(t)− σ2

pq

]
= 0, which also implies that the purity of the state (11)

is time invariant. It is noteworthy that the time-derivative expressions for the covariance matrix can be
expressed as follows:

σ̇(t) = 2 [σ(t)B(t)Σ− ΣB(t)σ(t)] , (16)

where the matrix B(t) contains the Hamiltonian coefficients, while Σ is a symplectic matrix, i.e.,

B(t) =

(
ω1(t) ω2(t)
ω2(t) ω3(t)

)
, Σ =

(
0 1
−1 0

)
.

On the other hand, one can also check, using the inverse expression of Equation (5), that the mean
values of p̂ and q̂ follow the classical Equation (3), i.e.,

d
dt

(
〈 p̂〉
〈q̂〉

)
= 2

(
−ω2 −ω3

ω1 ω2

)(
〈 p̂〉
〈q̂〉

)
+

(
−δ1

δ2

)
. (17)

All information regarding the evolution of the Gaussian state can then be obtained by solving the
differential Equations (16) and (17). As an example, we can consider the evolution of a Gaussian state with
the initial covariance matrix σ(0) and mean values 〈 p̂〉(0) and 〈q̂〉(0).
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Example

As an example, we consider the following Hamiltonian:

Ĥ =
1
2
( p̂2 + ω2q̂2) +

ν

2
( p̂q̂ + q̂ p̂) . (18)

In view of Equations (16) and (17), the matrix B can be identified as:

B =
1
2

(
1 ν

ν ω2

)
,

and one can show that, in the case of constant frequencies (ω, ν), the evolution is determined by the same
differential equations for all the covariances:

...
σ pp = −4(ω2 − ν2)σ̇pp ,

...
σqq = −4(ω2 − ν2)σ̇qq ,

...
σ pq = −4(ω2 − ν2)σ̇pq ,

which at ω2 > ν2 describes an oscillating motion with parameter f 2 = 4(ω2 − ν2). The solution to these
equations, which satisfy the initial conditions for the derivatives and second derivatives at time t = 0
implied by Equation (16), are:

σpp(t) = −
2( f sin( f t)(w2z0+νx0)+cos( f t)(ω4y0−ω2(x0−2νz0)+2ν2x0)−ω2(ω2y0+x0+2νz0))

f 2 ,

σqq(t) =
2(− cos( f t)(ω2(−y0)+x0+2ν(νy0+z0))+ f sin( f t)(νy0+z0)+ω2y0+x0+2νz0)

f 2 , (19)

σpq(t) =
2 cos( f t)(ω2(νy0+2z0)+νx0)+ f sin( f t)(x0−ω2y0)−2ν(ω2y0+x0+2νz0)

f 2 ,

with x0 = σpp(0), y0 = σqq(0), and z0 = σpq(0). The solution for the classical equations of motion for the
mean values reads:

〈 p̂〉(t) = 〈 p̂〉(0) cos ( f t/2)− (2/ f )
[
ω2〈q̂〉(0) + ν〈 p̂〉(0)

]
sin ( f t/2) ,

(20)
〈q̂〉(t) = 〈q̂〉(0) cos ( f t/2) + (2/ f ) [ν〈q̂〉(0) + 〈 p̂〉(0)] sin ( f t/2) .

With these solutions, one can characterize the state behavior. In Figure 1, we show the evolution of
the mean values and covariance matrix given by Equations (19) and (20) for the Hamiltonian (18). Here,
we observe the oscillating behavior of the system. We would like to remark that, using these solutions for
the covariances and the correspondence between the density matrix parameters and the covariances:

σ(t) =
1

2(a1(t) + a∗1(t)− a12(t))

(
4a1(t)a∗1(t)− a2

12(t) i(a1(t)− a∗1(t))
i(a1(t)− a∗1(t)) 1

)
, (21)

one can also obtain the solution for the nonlinear Equation (13).
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Figure 1. (a) Mean values 〈 p̂〉(t) (black) and 〈q̂〉(t) (gray) for the dynamics of Hamiltonian (18) and the
state with initial conditions 〈 p̂〉(0) = 0 and 〈q̂〉(0) = 1. (b) Covariances σpp(t) (black), σqq(t) (gray),
and σpq(t) (dashed) for the initial state with σpp(0) = σqq = 1 and σpq(0) = 1/

√
2. In both cases, we took

frequencies ω = 2 and ν = 1.

2.2. Invariant States

After obtaining the differential equations determining the evolution of the covariance matrix (16),
one can ask the question: Do invariant states exist under the evolution of the quadratic Hamiltonian?
To answer this question, we should examine the properties of Equation (16). If we assume the condition
σ̇(t) = 0, then one needs to obtain all the covariance matrices, which satisfy the condition σ(t)B(t)Σ−
ΣB(t)σ(t) = 0. By taking the vector ṽ = (σpp, σpq, σqq), the equations for σ̇(t) = 0 can be written as
follows:

Mv = 0, with M =

 −4ω2 −4ω3 0
2ω1 0 −2ω3

0 4ω1 4ω2

 . (22)

As the matrix M has rank R = 2, one can conclude that there is one nontrivial vector satisfying
Equation (22). Exploring the null-space of M, one can check that the vector:

ṽ = C
(

ω3

ω1
,−ω2

ω1
, 1
)

,

with C being a constant, is the solution to Equation (22). We infer that all the states with a covariance
matrix, given by:

σ(0) = C


ω3

ω1
−ω2

ω1

−ω2

ω1
1

 , (23)

have an invariant covariance matrix. Using the inverse expressions of Equation (9), one can obtain
an explicit form of the covariance invariant density matrix function. The parameters of the density
operator (11) read:

a1 =
4C2ω1ω3 + (ω1 + 2iCω2)

2

8Cω2
1

, a12 =
4S− 1

4C
, (24)

with S = C2(ω3/ω1 − ω2
2/ω2

1) being the determinant of the invariant covariance matrix. In the case of
the Hamiltonian (18), we have S = C2(ω2 − ν2), ω3/ω1 = ω2, and ω2/ω1 = ν, which lead us to realize
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that any state with parameters, as in Equation (24) with S > 1/4, is a bonafide quantum state, which is
covariance invariant. For C = 1, ω = 2, and ν = 1, we have that the states with:

a1 =
13
8

+
i
2

, a12 =
11
4

(25)

are covariance invariant.
The states that satisfy σ̇ = 0 or equivalently have parameters according to (24) are the states that do

not change its shape on the phase space q, p; also, their mean values move following the classical equations
of motion. If we assume these types of states with initial mean values 〈 p̂〉(0) = 〈q̂〉(0) = 0, the resulting
states will be invariant, i.e., they will not change any of their properties over time (for δ1 = δ2 = 0).
An example of such states for the Hamiltonian (18) are the ones in Equation (11), with parameters given
by (25) and b(t) = b∗(t) = 0. We would like to express that, in the case of an invariant system with
vanishing mean values, the initial energy will be different from zero as the initial covariances are also
different from zero.

This parametric formalism for the evolution of Gaussian states and the definition of invariant states
can be generalized to any multidimensional quadratic system as seen in the following section.

3. Multidimensional Quadratic System

In this section, we review the equations determining the evolution of the covariance matrix and
mean values 〈pj〉 and 〈qj〉 for an arbitrary system under the evolution of a quadratic Hamiltonian; also,
we mention the connection and dynamics of the continuous density matrix parameters. To obtain these
properties, we use, as in the one-dimensional case, the invariant operators defined in [33,34].

In the case of an N-dimensional quadratic system, the time evolution is characterized by
the Hamiltonian:

Ĥ = r̃B(t)r + ∆̃(t)r , (26)

where the tilde corresponds to the transposition operation and the vector r̃ = ( p̂1, q̂1, p̂2, q̂2, . . . , p̂N , q̂N)

corresponds to the vector of quadrature operators. The time dependence of this Hamiltonian is contained
in the matrices:

B(t) =


ω1,1(t) ω1,2(t) · · · ω1,2N(t)
ω1,2(t) ω2,2(t) · · · ω2,2N(t)

...
...

. . .
...

ω1,2N(t) ω2,2N(t) · · · ω2N,2N(t)

 , ∆(t) =


δ1(t)
δ2(t)

...
δ2N(t)

 , (27)

where B(t) is a real and symmetric matrix and ∆(t) is a real vector. As in the one-dimensional case,
there exist 2N linear time-dependent operators R̂j (j = 1, . . . , 2N), whose time derivatives are equal to zero(

dR̂j

dt
= 0.

)
. These operators can be arranged on a vector as follows:

R = Λ(t)r + Γ(t) , (28)
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with the matrix Λ(t) and the vector Γ̃(t) = (γ1(t), γ2(t), . . . , γ2N(t)). By taking the time-derivative of the

operator Rj = R̂j and equating it to zero

(
dR̂j

dt
= 0.

)
, one can demonstrate that Λ(t) and Γ(t) must satisfy

the following differential equations:

Λ̇(t) = 2iΛ(t)DB(t), Γ̇(t) = iΛ(t)D∆(t), with Dj,k = [rj, rk] . (29)

The solution to these differential equations with the initial conditions R̂j(0) = rj provides, as a result,
the invariant operators R̃ =

(
P̂1, Q̂1, P̂2, Q̂2, . . . , P̂N , Q̂N

)
, satisfying the standard commutation rules for

the operators r at time equal to zero: i.e., [Rj, Rk] = [rj, rk] = Dj,k. This property leads us to the conclusion
that the matrix Λ(t) must be symplectic and satisfies the equation:

Λ(t)DΛ̃(t) = D. (30)

This relation can be then used to obtain the inverse of Λ(t), which results in the expression:

Λ−1(t) = DΛ̃(t)D . (31)

The other important property of these invariant operators is that they correspond to the inverse
evolution of the original operators, in other words,

Rj = Û(t)rjÛ†(t),

which in the most cases can be obtained from the Heisenberg picture operators by assuming a time reversal
operation. This property implies that the entries of Λ̇(t) in Equation (29) satisfy the classical Hamilton
equations after the time reversal operation, that is after the change pi → −pi in the classical Hamilton
equations.

By the use of these invariant operators, one can obtain the time dependence of the mean values of the

operators in r (〈r〉(t)) and their covariances σ j,k =
1
2
〈{rj, rk}〉 − 〈rj〉〈rk〉. From the inverse of Equation (28),

one can demonstrate that:

〈r〉(t) = Λ−1(t)(〈R〉 − Γ(t)) ,

as the invariant operators in R have a time derivative equal to zero, and they are equal to the standard
operators r at zero time, then one can conclude that:

〈r〉(t) = Λ−1(t)(〈r〉(0)− Γ(t)) . (32)

From an analogous argument, one can see that the covariance matrix reads:

σ(t) = Λ−1(t)σ(0)Λ̃−1
(t) . (33)

Then, to obtain the expression for the time-derivative of the mean values 〈r〉(t) and the covariance
matrix σ(t), we make use of Equations (29) and (31)–(33) and arrive to the expressions:

d
dt
〈r〉(t) = −iD(2B(t)〈r〉(t) + ∆(t)) ,

d
dt

σ(t) = 2i(σ(t)B(t)D−DB(t)σ(t)) . (34)

These differential equations, being first obtained in [31,32], are the generalization of the
one-dimensional case discussed in the previous section. In our case, the nonlinear differential equations
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for the density matrix parameters can be obtained by explicit calculation of the covariances at time t.
The resulting equations can then be solved by the substitution of the solution of Equation (34) or by direct
integration.

To make the relation easier to see, we point out that the 2N × 2N symplectic matrix D contains in its
diagonal blocks made of the 2× 2 symplectic matrix Σ, that is,

D = −i


Σ 0 0 · · · 0
0 Σ 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 Σ 0
0 0 · · · 0 Σ

 .

One can also notice that the differential equations for the entries of the covariance matrix are linear
and can be expressed in the following matrix form:

d
dt

v = Mv , (35)

where v is an N(2N + 1)-dimensional vector, which contains all the independent covariances in the
N-partite system, and the matrix M is a square matrix of the same dimension that contains the
Hamiltonian coefficients.

4. Nonunitary Evolution for Gaussian Subsystems

Assume that the operators in the Hamiltonian of Equation (26) correspond to the ones of a multipartite
system, where the position and momentum for the jth part are given by p̂j and q̂j, respectively. Given
this, one can see that the evolution of the complete system is unitary, but each one of its parts evolves in
a nonunitary way due to the correlations between these parts. When the complete system is Gaussian,
each one of its parts is also Gaussian. To show this property, lets assume that the N-partite system can be
determined by the following density matrix at time t = 0:

〈x|ρ̂(0)|x′〉 = N exp
{
−1

2
ỹ A y + b̃ y

}
, (36)

where x̃ = (x1, x2, . . . , xN), x̃′ = (x′1, x′2, . . . , x′N), and ỹ = (x1, x2, . . . , xN , x′1, x′2, . . . , x′N) are real vectors.
Furthermore, we define the vector b̃ = (b1, b2, . . . , bN , b∗1 , b∗2 , . . . , b∗N) and the matrix:

A =

(
u −v
−ṽ u∗

)
,

where the block matrices u and v can be written as:

u =


2a1,1 −a1,2 · · · −a1,N
−a1,2 2a2,2 · · · −a2,N

...
...

. . .
...

−a1,N −a2,N · · · 2aN,N

 , v =


a1,N+1 a1,N+2 · · · a1,2N−1 a1,2N
a∗1,N+2 a2,N+2 · · · a2,2N−1 a2,2N

...
...

. . .
...

...
a∗1,2N−1 a∗2,2N−1 · · · aN−1,2N−1 aN−1,2N

a∗1,2N a∗2,2N · · · a∗N,2N−1 aN,2N

 .
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As stated earlier, the dynamics of the composite system is determined by the evolution of its covariance
matrix and the mean values of the position and momentum operators, i.e., by the solution of Equation (34)
with the initial state (36). The resulting state has the same purity as the initial state, since the evolution
is unitary. However, there exists a nonunitary evolution of the parts, which compose the N-partite system.

To obtain the dynamic evolution of one of the parts, we can use the partial trace method.
In other words, one should take the partial trace of all the subsystems in 〈x|ρ̂(t)|x′〉, except the one
we want to study. Nevertheless, as the system is Gaussian, the partial traces should give us also a Gaussian
state for the density matrix under study.

As the most general one-dimensional Gaussian state can be obtained by the 2× 2 covariance matrix
and the mean values (〈 p̂〉(t) and 〈q̂〉(t)), we can obtain the result from the solutions to Equation (34)
without the necessity of the partial trace operation.

On the other hand, once the time derivatives of these properties are established, one can derive the
differential equation that the density matrix for the subsystem must satisfy. To show this procedure, we can
take the bipartite system as an example.

4.1. Nonunitary Evolution on a Bipartite System

To exemplify the nonunitary evolution of a subsystem within a system, one can take a bipartite
Gaussian state, which evolves on the Hamiltonian:

Ĥ(t) = r̃B(t)r + Γ̃(t)r = ( p̂1, q̂1, p̂2, q̂2)


ω1,1 ω1,2 ω1,3 ω1,4

ω1,2 ω2,2 ω2,3 ω2,4

ω1,3 ω2,3 ω3,3 ω3,4

ω1,4 ω2,4 ω3,4 ω4,4




p̂1

q̂1

p̂2

q̂2



+ (γ1, γ2, γ3, γ4)


p̂1

q̂1

p̂2

q̂2

 ,

(37)

where ωj,k and γj may be functions of time. In order to determine the time evolution of the system, one can
solve the differential equations defined for the covariance matrix and the mean values of the position and
momentum operators or, similarly to the one-dimensional case, one can solve the equations for the density
matrix parameters given in Equation (A3) of Appendix A. The differential equations for the covariance
matrix and mean values of the position and momentum operators for the subsystem can be obtained using
Equation (34). To solve the time derivative equations, we express the matrices B(t), D, and σ(t) in the
2× 2 block representation; in such a case, we have:

B(t) =

(
B1(t) B1,2(t)

B̃1,2(t) B2(t)

)
, D =

(
−iΣ 0

0 −iΣ

)
, σ(t) =

(
σ1(t) σ1,2(t)

σ̃1,2(t) σ2(t)

)
,

where σ1(t) and σ2(t) are the covariance matrices for Subsystems 1 and 2, respectively, and σ1,2(t) is a
matrix containing the covariances associated with the correlations between the two subsystems. The same
can be said for the matrix linked to the Hamiltonian (37), i.e., B(t) where the block matrices B1(t) and
B2(t) are associated with Subsystems 1 and 2, respectively, while B1,2 is associated with the interactions
between these two subsystems.
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After this identification, the expression for the covariance matrices of the subsystems and the
correlations can be given as follows:

σ̇1(t) = 2
(
(σ1(t)B1(t) + σ1,2(t)B̃1,2)Σ− Σ(B1(t)σ1(t) + B1,2σ̃1,2(t))

)
,

σ̇2(t) = 2
(
(σ2(t)B2(t) + σ̃1,2(t)B1,2)Σ− Σ(B2(t)σ2(t) + B̃1,2σ1,2(t))

)
, (38)

σ̇1,2(t) = 2 ((σ1(t)B1,2(t) + σ1,2(t)B2)Σ− Σ(B1(t)σ1,2(t) + B1,2σ2(t))) .

Then, one can recognize the term 2(σ jBjΣ − ΣBjσ j) for j = 1, 2, as the term corresponding to a
unitary evolution of each subsystem (16). The extra term 2(σ1,2B̃1,2Σ− ΣB1,2σ̃1,2) is associated with the
nonunitary evolution of the subsystems.

It is worth noting that these results are in accordance with the ones described by
Sandulescu et al. [36] and Isar [37,38], where those results were obtained by solving the
Gorini–Kossakowski–Sudarshan–Lindblad master equation [28–30] for two coupled oscillators. The main
difference here is that our results were obtained exactly from the von Neumann equation without
introducing a master equation.

4.2. Invariant and Quasi-Invariant States

The expression for the derivatives of the covariance matrix can lead to the definition of different
Gaussian states, which do not evolve in the Hamiltonian dynamics. These types of states can be found
as solutions to the equation σ̇ = 0, which can be expressed in terms of the following equation regarding
the covariance and the Hamiltonian matrices σB(t)D−DB(t)σ = 0. As discussed before, this system of
differential equations can be replaced by v̇ = Mv (35) with the following correspondences:

ṽ = (σp1 p1 , σp1q1 , σp1 p2 , σp1q2 , σq1q1 , σq1 p2 , σq1q2 , σp2 p2 , σp2q2 , σq2q2) ,

and the matrix M containing the Hamiltonian coefficients is presented in Equation (A4) of Appendix B. It is
possible to see that the matrix M has a determinant det M = 0 and a rankR = 8. From these properties,
one can see that the system σ̇(t) = v̇ = 0 has at most two different nontrivial solutions, which may be
physical.

To exemplify the definition of bipartite states, which have a stationary behavior, we consider the
frequency converter and the parametric amplifier. Both of these systems are quadratic and model the
interaction between different electromagnetic fields in a nonlinear medium.

4.3. Frequency Converter

The quantum frequency converter is a device where two different unimodal electromagnetic fields,
called the input and the output, interact with a semiclassical pump field on a nonlinear material.
This interaction has the goal of interchanging the frequencies of the input and output beams at specific times.
This behavior can be modeled using the following Hamiltonian:

Ĥ(t) = h̄ω1

(
â†

1 â1 + 1/2
)
+ h̄ω2

(
â†

2 â2 + 1/2
)
− h̄κ

(
â†

1 â2e−iωt + â1 â†
2eiωt

)
, (39)

where the frequencies ω1,2 are the input and output frequencies, respectively, ω is the pump field frequency,
and the bosonic operators â1,2 are the annihilation operators of the input and output fields, respectively.
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These beams interact with an intensity κ in a nonlinear medium as, e.g., a nonlinear crystal. In this case,
the Hamiltonian matrix B(t) from (26) (in a unit system where h̄ = 1) reads:

B(t) =
1
2


1 0 − κ√

ω1ω2
cos(ωt) κ

√
ω2/ω1 sin(ωt)

0 ω2
1 −κ

√
ω1/ω2 sin(ωt) −κ

√
ω1ω2 cos(ωt)

− κ√
ω1ω2

cos(ωt) −κ
√

ω1/ω2 sin(ωt) 1 0

κ
√

ω2/ω1 sin(ωt) −κ
√

ω1ω2 cos(ωt) 0 ω2
2

 .

For this Hamiltonian, one can obtain different states that have dynamical equilibrium properties, i.e.,
states with a time derivative for the covariance matrix equal to zero. To characterize these types of states,
one should solve Equation (34) with σ̇(t) = 0. As previously discussed, σ̇(t) = 0 can be expressed in
vector form as:

Mv = 0 , (40)

where v is defined as:

v =
(
σp1 p1 , σp1q1 , σp1 p2 , σp1q2 , σq1q1 , σq1 p2 , σq1q2 , σp2 p2 , σp2q2 , σq2q2

)
,

and the matrix M is a 10× 10 matrix of rankR = 8, which contains the Hamiltonian parameters of B(t).
To solve Equation (40), one can explore the null space of matrix M. The resulting null space contains two
different vectors; one contains a non-physical solution. In this solution,

σp1 p1 = (ω3
1ω2)

1/2(ω2 −ω1) sec(ωt)/κ, σp1 p2 = ω1ω2,

σp1q2 = −ω1 tan(ωt), σq1q1 = ω1/2
2 (ω2 −ω1) sec(ωt)/(κω1/2

1 ),

σq1 p2 = ω2 tan(ωt), σq1q2 = 1,

while all the other covariances are equal to zero. In particular, it contains the nonphysical terms σp2 p2 =

σq2q2 = 0 that resemble the case where one of the subsystem is classical, as in a classical system, the values
of the covariances can be equal to zero. The null space also contains another vector, which has the following
physical values:

σp1 p1 = ω1ω2, σq1q1 = ω2/ω1, σp2 p2 = ω2
2, σq2q2 = 1 , (41)

with the remaining covariances equal to zero.
These results led us to the conclusion that a two-mode Gaussian state with initial covariances

proportional to the ones established in (41) has the same covariances for any time t > 0
(for time-independent parameters ω, ω1,2, and κ). This property has several physical implications such as,
for example, that the purity of the subsystems will always be the same regardless of the interaction between
them and despite the interchange of their frequencies. The resulting states will only have different mean
values of the quadrature components (p1, q1, p2, and q2), which evolve according to the classical Hamilton
equations.

In the case where the mean values of the quadrature components bj; j = 1, 2 are equal to zero in
Equation (36), one can obtain different states, which do not change their properties over time. In this case,
the entanglement of the system (which can be obtained by the logarithmic negativity of the covariance
matrix) will also be an invariant of the system. These properties make the evolution of these types of states
relevant to quantum computing and quantum information.



Entropy 2020, 22, 586 15 of 25

By the use of the inverse relations of Equations of the Appendix A: (A1) and (A2), one can then write
a general state with an invariant covariance matrix, which only changes its mean values according to the
classical motion equations. Such a state can be expressed as the one in (36), after making the identification:

A =



ω1

4Cω2
+ Cω1ω2 0

ω1

4Cω2
− Cω1ω2 0

0
1

4C
+ Cω2

2 0
1

4C
− Cω2

2
ω1

4Cω2
− Cω1ω2 0

ω1

4Cω2
+ Cω1ω2

0
1

4C
− Cω2

2 0
1

4C
+ Cω2

2


, (42)

with C being a constant, which needs to be chosen in order for the covariance matrix to be positive;
in particular, to fulfill the Schrödinger–Robertson inequalities σpi pi σqiqi − σ2

piqi
≥ 1/4 (i = 1, 2) and

det σ ≥ 1/16.

4.4. Parametric Amplifier

The other Hamiltonian, which can be taken as an example, is the nondegenerate parametric amplifier.
This system also describes the interaction of the input and output beams with the pump field in a
nonlinear medium. As a result of this interaction, one can obtain the amplification of the input beam. The
Hamiltonian associated with the parametric amplifier reads:

Ĥ = h̄ω1

(
â†

1 â1 + 1/2
)
+ h̄ω2

(
â†

2 â2 + 1/2
)
− h̄κ

(
â†

1 â†
2e−iωt + â1 â2eiωt

)
, (43)

where the frequencies ω1,2 are the frequencies of the input and output beam channels and ω is the
frequency of a pump field, which allows the amplification of the input channel. Then, the Hamiltonian
matrix B(t) is:

B(t) =
1
2


1 0 κ

cos(ωt)√
ω1ω2

κ
√

ω2/ω1 sin(ωt)

0 ω2
1 κ

√
ω1/ω2 sin(ωt) −κ

√
ω1ω2 cos(ωt)

κ
cos(ωt)√

ω1ω2
κ
√

ω1/ω2 sin(ωt) 1 0

κ
√

ω2/ω1 sin(ωt) −κ
√

ω1ω2 cos(ωt) 0 ω2
2

 . (44)

Following an analogous procedure to obtain the solutions of the equation σ̇ = 0, one can show that
the null space of the corresponding matrix M for this problem can lead us to nonphysical values for
different covariances on the system. One of the vectors of the null space for the case ω1,2 > 0 can be
written as:

σp1 p1 =
ω1
√

ω1ω2(ω1 + ω2) sec(ωt)
κ

, σp1 p2 = −ω1ω2, σp1q2 = −ω1 tan(ωt),

σq1q1 =
ω2(ω1 + ω2) sec(ωt)

κ
√

ω1ω2
, σp2q1 = −ω2 tan(ωt), σq1q2 = 1,

while all the other covariances are equal to zero. The other vector on the null space is:

σp1 p1 = −ω1ω2, σq1q1 = −ω2

ω1
, σp2 p2 = ω2

2, σq2q2 = 1.
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As the condition ω1,2 > 0 was used to obtain these results, then both vectors lead to nonphysical
covariances. Nevertheless, one can obtain states with a slow change ratio of the covariances compared
with the change of the mean value of the system Hamiltonian 〈Ĥ〉(t). These type of states can be defined
by considering the initial covariances equal to C = 1/(ω1ω2) times the ones presented in Equation (41);
in other words,

σp1,p1 = 1, σq1,q1 = 1/ω2
1, σp2,p2 = ω2/ω1, σq2,q2 = 1/(ω1ω2) .

The slow time dependence behavior of these covariances can be seen in Figure 2, where the time
dependence of the covariances and the purity of the subsystems are illustrated. The evolution of the
subsystems in the parametric amplifier normally varies very fast, as the photons from the pump field are
transformed into the photons of both subsystems. Nevertheless, it can be seen in Figure 2 that the variation
of the majority of the covariances is not as fast compared with the change of 〈Ĥ〉(t), providing the strong
coupling between the subsystems. In this particular example, one can see that σp2 p2(t) = σq2q2(t) and
σp1q1(t) = σp2q2(t) = 0.

The detection of these type of states can be done by the use of quantum tomography, as is discussed
in the next section.
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Figure 2. Time evolution for the covariances (a) σp1 p1 (black), σq1q1 (dashed), and σp2 p2 = σq2q2 (gray)
and (b) the covariances σp1 p2 (black), σp1q2 (black dashed), σp2q1 (black dot-dashed), and σq1q2 (gray),
(c) det σ1 = det σ2 for the subsystems (black) and the time dependence of the mean value 〈Ĥ〉(t) (gray).
For all the plots, the initial values are σp1 p1 (0) = 1, σq1q1 (0) = 1/4, and σp2 p2 (0) = σq2q2 (0) = 1/2. All the
other initial covariances are equal to zero. The frequencies used are ω1 = 2, ω2 = 1, ω = 7, and κ =

√
10.
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5. Gaussian States and Their Evolution in the Tomographic-Probability Representation

There exist different representations of quantum states [39–44], and among them, the probability
tomographic representation is of particular interest. In this representation, e.g., one-mode photon states are
identified with symplectic tomograms [45], which correspond to the conditional probability distribution
w(X | µ, ν) of the photon quadrature −∞ < X < ∞, to be measured in a reference frame with parameters
µ = s cos θ and ν = s−1 sin θ. Here, −∞ < µ, ν < ∞, s is a time scaling parameter, and θ is the local
oscillator phase, which is used in experiments [46] to obtain the Wigner function of the photon state.

The symplectic tomogram wρ(X | µ, ν) is determined by the photon density operator ρ̂ [45] as:

wρ(X | µ, ν) = Tr
[
ρ̂ δ(X1̂− µq̂− ν p̂)

]
, (45)

where q̂ and p̂ are quadrature components—the position and momentum operators within the framework
of the oscillator model of the one-mode electromagnetic-field photons. The symplectic tomogram satisfies
the normalization condition: ∫

wρ(X | µ, ν) dX = 1, (46)

and inversely, it determines the density operator ρ̂ of the photon state:

ρ̂ =
1

2π

∫
w(X | µ, ν) exp

[
i δ(X1̂− µq̂− ν p̂)

]
dX dµ dν. (47)

The optical tomogram of the photon state wopt(X | θ) ≡ w(X | µ = cos θ, ν = sin θ) is measured in
experiments, and in view of the homogeneity property of the Dirac delta-function, the measured optical
tomogram of the photon state determines the symplectic tomogram:

w(X | µ, ν) =
1√

µ2 + ν2
wopt

[
X√

µ2 + ν2

∣∣∣∣∣ arctan
ν

µ

]
. (48)

For Gaussian states (7), the tomographic-probability distribution of random photon quadrature X has
the conventional form of a normal distribution:

w(X | µ, ν) =
1√

2πσ(µ, ν)
exp

[
− (X− X̄(µ, ν))

2

2σ(µ, ν)

]
. (49)

In view of (45), one has the mean value of the quadrature:

X̄(µ, ν) = µ〈q̂〉+ ν〈 p̂〉 (50)

and the covariance of the quadrature σ(µ, ν) reads:

σ(µ, ν) = µ2σqq + ν2σpp + 2µνσpq. (51)

For the measured optical tomogram, the dispersion σ(θ) is:

σ(θ) = (cos2 θ)σqq + (sin2 θ)σpp + (sin 2θ)σpq. (52)

In the quantum system with Hamiltonian (18), the tomographic quadrature dispersion (51) evolves
according to the formula:

σ(µ, ν, t) = µ2σqq(t) + ν2σpp(t) + 2µνσpq(t), (53)
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where σqq(t), σpp(t), and σpq(t) are provided by the explicit expressions (19) and the parameters 〈 p̂(t)〉 and
〈q̂(t)〉 are given by (20). Thus, the properties of the Gaussian states of the oscillator with time-dependent
parameters described by the covariances of the position and momentum and their mean values can be
checked by considering the covariance of the homodyne quadrature X, as well as the mean value evolution.

The properties of the invariant Gaussian states can be visualized by the properties of either the
Wigner function or the tomographic-probability distributions. There are examples of the time-dependent
Gaussian-packet solutions of the kinetic equation for the symplectic tomogram [47,48] in the case of the
harmonic oscillator Hamiltonian (18) with ν = 0. Since the dispersion matrix for the quadrature X is
the linear combination of covariances σqq(t), σpp(t), and σpq(t), which in the case of invariant Gaussian
states, do not depend on time, the state tomogram also does not depend on time. The invariant states
with density operators | En〉〈En | have the oscillator tomograms obtained from energy states | En〉,
where Ĥ | En〉 = En | En〉. Tomograms of invariant Gaussian states satisfy the equality:

Pn
G =

1
2π

∫
wG(X | µ, ν)wEn(Y | µ, ν) ei(X+Y) dX dY dµ dν, (54)

where the parameter Pn
G is the probability to detect the properties of the stationary state | En〉 with energy

value En in the Gaussian state with the time-dependent tomogram wG(X | µ, ν). This state also does not
depend on time.

Any convex sum of states | En〉〈En | is a density operator. One can conjecture that there is the
decomposition of normal distribution wG(X | µ, ν) corresponding, e.g., to a thermal state with ρ̂ =

exp(−Ĥ/(kT))/Tr(exp(−Ĥ/(kT))) (T being the temperature and k the Boltzmann constant), which can
be presented as:

wG(X | µ, ν) = ∑
n
Pn

G wEn(X | µ, ν), ∑
n
Pn

G = 1. (55)

An analogous relation can be then written also for the Wigner function of the invariant Gaussian state
of the oscillator, as well as for the density matrix in the position representation.

Now, we consider a harmonic oscillator with the Hamiltonian Ĥ =
p̂2

2
+

q̂2

2
. The density matrix of

the thermal equilibrium state with temperature T = β−1 in the position representation reads (here, we
assume h̄ = ω = m = k = 1):

ρ(x, x′, β) =
[
π−1 tan2(β/2)

]1/2
exp

[
xx′

sinh β
− x2 + x′2

2
coth β

]
. (56)

The Green function of the oscillator has the Gaussian form:

G(x, x′, t) = 〈x | e−itĤ | x′〉 = 1√
2πi sin t

exp
[

i(x2 + x′2)
2

cot t− ixx′

sin t

]
. (57)

Since the density matrix (56) is determined by the Green function (57), i.e.,

ρ(x, x′, β) =
G(x, x′,−iβ)

Z(β)
, (58)

with the partition function Z(β) given by the formula:

Z(β) =
∞

∑
n=0

Tr
[
exp

(
−βĤ

)
| n〉〈n |

]
=

1
2 sinh(β/2)

; (59)
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here, we use the property Ĥ | n〉 = (n + 1/2) | n〉. The density matrix (56) does not depend on
time; this means that in all other representations, as the Wigner function or tomographic-probability
representation, it is time-invariant. The density matrices of Fock states | n〉〈n | do not depend on time.

In the position representation, the density matrix of Fock state | n〉〈n | reads:

〈x | n〉〈n | x′〉 = Hn(x)Hn(x′)
2nn!
√

π
exp

(
− x2

2
− x′2

2

)
, (60)

and it does not depend on time.
The density matrix (56), being described by an invariant Gaussian function, is the convex sum of the

Fock state density matrices. One has the relation:

ρ(x, x′, β) =
1√
π

exp
(
− x2

2
− x′2

2

) ∞

∑
n=0

e−(n+1/2)β

Z(β)2nn!
Hn(x)Hn(x′), (61)

where Z(β) is given in (59).
In the tomographic-probability representation of the thermal equilibrium oscillator and Fock states,

we can calculate the tomograms in explicit form. For Fock states,

wn(X | µ, ν, β) =
[
π(µ2 + ν2)

]−1/2 1
2nn!

exp
(
− X2

µ2 + ν2

)
H2

n

(
X√

µ2 + ν2

)
. (62)

With all these properties, one can check that the thermal equilibrium Gaussian state of Equation (58)
has a symplectic tomogram in the form of the normal distribution:

w(X | µ, ν, β) =
1√

2πσ(µ, ν)
exp

(
− X2

2σ(µ, ν)

)
. (63)

The dispersion of quadrature 〈X2〉 = σ(µ, ν) given by Equation (63) reads:

σ(µ, ν) = µ2〈q̂2〉+ ν2〈 p̂2〉, (64)

where the state with density matrix (56):

〈q̂2〉 = 〈 p̂2〉 = 1
2

coth2(β/2). (65)

Thus, the symplectic tomogram (63) is given by an invariant normal probability distribution:

w(X | µ, ν, β) =
coth(β/2)√
π(µ2 + ν2)

exp
(
− X2

µ2 + ν2 coth2(β/2)
)

. (66)

Since for optical tomogram µ = cos θ, ν = sin θ, and µ2 + ν2 = 1, in the case of the thermal
single-mode photon state, its optical tomogram is:

w(X | θ, β) =
coth(β/2)√

π
exp

(
−X2 coth2(β/2)

)
; (67)

it depends neither on the local oscillator phase, nor on time. These types of states are Gaussian and
time-independent, so there is a connection between them and the invariant states discussed above.
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This connection can be checked by equaling the covariance matrices in both cases, which can be also
checked experimentally, for example, by preparing an initial Gaussian state according to the invariance
condition σ̇ = 0. As seen in previous examples, this condition implies a value for the initial covariances in
terms of the Hamiltonian parameters. Then, using the tomographic representation discussed here, the
relation of these states with thermal states can be corroborated. As the result of this comparison, one can
obtain certain thermodynamic properties such as the temperature of the system. This can also be extended
for the bipartite harmonic oscillator, as seen in the next section.

6. Two-Mode Gaussian States in the Tomographic-Probability Representation

For a two-mode harmonic oscillator, the Gaussian-state tomogram is determined by the normal
probability distribution of quadratures X1 and X2; it is expressed in terms of the state density operator
ρ̂(1, 2) as follows:

w(X1, X2 | µ1, ν1, µ2, ν2) = Tr [ρ̂(1, 2) δ(X1 − µ1q̂1 − ν1 p̂1) δ(X2 − µ2q̂2 − ν2 p̂2)] ; (68)

in the case of 〈q̂1〉 = 〈q̂2〉 = 〈 p̂1〉 = 〈 p̂2〉 = 0, it reads:

w(X1, X2 | µ1, ν1, µ2, ν2) =
1

2π
√

det σ(µ1, µ2, ν1, ν2)
exp

[
−1

2

(
X̃σ−1(µ1, ν1, µ2, ν2)X

)]
. (69)

Here, X̃ = (X1, X2) and σ(µ1, ν1, µ2, ν2) =

(
〈X2

1〉 〈X1X2〉
〈X1X2〉 〈X2

2〉

)
, with:

〈X2
1〉 = µ2

1〈q̂2
1〉+ ν2

1〈 p̂2
1〉+ µ1ν1(〈q̂1 p̂1〉+ 〈 p̂1q̂1〉), 〈X2

2〉 = µ2
2〈q̂2

2〉+ ν2
2〈 p̂2

2〉+ µ2ν2(〈q̂2 p̂2〉+ 〈 p̂2q̂2〉),
〈X1X2〉 = µ1µ2〈q̂1q̂2〉+ ν1ν2〈 p̂1 p̂2〉+ µ1ν2〈q̂1 p̂1〉+ µ2ν1〈q̂2 p̂1〉.

The inverse transform provides the density operator ρ̂(1, 2) expressed in terms of the
tomographic-probability distribution:

ρ̂(1, 2) =
1

4π2

∫
w (X1, X2 | µ1, ν1, µ2, ν2)

× exp [i (X1 + X2 − µ1q̂1 − ν1 p̂1 − µ2q̂2 − ν2 p̂2)] dX1 dX2 dµ1 dµ2 dν1 dν2. (70)

The subsystem tomogram given by the partial trace of the density operator ρ̂(1) = Tr2 ρ̂(1, 2) reads:

w1(X1 | µ1, ν1) =
∫

w (X1, X2 | µ1, ν1, µ2, ν2) dX2; (71)

it is also given by the normal distribution discussed in the previous section.
If the tomogram of the two-mode oscillator state corresponds to the solution of the time evolution

equation with a quadratic Hamiltonian, the unitary evolution of the system can induce the nonunitary
evolution of tomogram (71). These evolutions can be used to obtain the shape of the invariant states, which
we discussed above using the matrix M shown in Appendix B.

7. Summary and Conclusions

A differential formalism to obtain the time evolution of a multidimensional, multipartite Gaussian
state was defined and studied. This new formalism used the time derivative of the parameters of the
continuous variable density matrix of the system. The general procedure to obtain the time evolution
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can be summarized as follows: using the derivative of the covariance matrix for the Gaussian state and
the expressions for the covariances in terms of the parameters of the density matrix, the differential
equations for the parameters of the density function of the system were obtained. The resulting nonlinear
differential equations could be used to obtain new physical information of the state instead of the use of
the Schrödinger equation.

This differential formalism can also be used to describe exactly the nonunitary evolution of the
subsystems of a composite Gaussian state. As an example, we considered a two-mode Gaussian state
and demonstrated that the resulting derivatives of the covariance matrices for the subsystems contained
unitary and nonunitary terms.

This study also allowed us to define invariant states, i.e., states that do not change their properties
over time. To show this, we considered unimodal and bipartite Gaussian systems with density
matrices in the position representation and the corresponding tomographic-probability representation.
As explicit examples, we presented the invariant states for the one-dimensional quadratic Hamiltonian and
the invariant states for the two-mode frequency converter and mentioned the applicability of these type
of states in quantum information and computing. Furthermore, quasi-invariant states for the two-mode
parametric amplifier were presented. We pointed out that the discussed examples of studying parametric
systems could be used to apply the results associated with the behavior of physical systems like photons
in cavities with time-dependent locations of boundaries to the dynamical Casimir effect (see [49]) and its
analog in superconducting circuits [50,51]. One can discuss the nonunitary evolution of systems, which
have no subsystems, using hidden correlations [52], which are present in noncomposite systems.
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Appendix A. Correspondence between the Gaussian Density Matrix Parameters and the
Covariance Matrix

In this Appendix, the expressions of the covariance matrix and the mean values of the Gaussian
system given in Section 4 are expressed in terms of the density matrix parameters. For the bipartite system,
one can obtain the following formulas in terms of the density operator parameters (36) and the three
covariances σq1,q1 , σq1,q2 , and σq2,q2 :

σp1,p1 = 2a11 − (−2a11 + a13)
2σq1,q1 − (a12 + a14)

2σq2,q2 + 2(2a11 − a13)(a12 + a14)σq1,q2 ,

σp1,q1 = i{(2a11 − a13)σq1,q1 − (a12 + a14)σq1,q2 − 1/2} ,

σp1,p2 = −a12 + (2a22 − a24)(a12 + a14)σq2,q2 + (2a11 − a13)(a12 + a∗14)σq1,q1

−{(−2a22 + a24)(−2a11 + a13) + (a12 + a∗14)(a12 + a14)}σq1,q2 ,
(A1)

σp1,q2 = i{(2a11 − a13)σq1,q2 − (a12 + a14)σq2,q2} ,

σq1,p2 = i{(2a22 − a24)σq1,q2 − (a12 + a∗14)σq1,q1} ,

σp2,p2 = 2a22 − (−2a22 + a24)
2σq2,q2 − (a12 + a∗14)

2σq1,q1 − 2(−2a22 + a24)(a12 + a∗14)σq1,q2 ,

σp2,q2 = i{(2a22 − a24)σq2,q2 − (a12 + a∗14)σq1,q2 − 1/2} ,
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where the values of the rest of the covariances read:

σq1,q1 =
2(a22 + a∗22 − a24)

4(a11 + a∗11 − a13)(a22 + a∗22 − a24)− (a12 + a∗12 + a14 + a∗14)
2 ,

σq1,q2 =
a12 + a∗12 + a14 + a∗14

4(a11 + a∗11 − a13)(a22 + a∗22 − a24)− (a12 + a∗12 + a14 + a∗14)
2 , (A2)

σq2,q2 =
2(a11 + a∗11 − a13)

4(a11 + a∗11 − a13)(a22 + a∗22 − a24)− (a12 + a∗12 + a14 + a∗14)
2 ,

By the use of the time derivatives of the covariance matrix of Equation (34), it can be demonstrated
that the density matrix parameters satisfy the following differential equations:

ȧ11 = iω22 − 4ω12a11 + 2ω23a12 + iω11(−4a2
11 + a2

13) + 2iω13(2a11a12 + a13a14)− iω33(a2
12 − a2

14) ,

ȧ22 = iω44 + 2ω14a12 − iω11(a2
12 − a∗214)− 4ω34a22 + 2iω13(2a12a22 + a∗14a24) + iω33(−4a2

22 + a2
24) ,

ȧ12 = −2iω24 + 4ω14a11 − 2ω12a12 − 2ω34a12 − 2iω11(2a11a12 + a13a∗14) + 4ω23a22

+2iω13(a2
12 − a14a∗14 + 4a11a22 − a13a24)− 2iω33(2a12a22 + a14a24) ,

ȧ13 = −4ω12a13 − 4iω11(a11 − a∗11)a13 − 2ω23(a14 + a∗14) + 2iω13((a12 − a∗12)a13 (A3)

+2a∗11a14 − 2a11a∗14) + 2iω33(−a∗12a14 + a12a∗14) ,

ȧ14 = −2ω14a13 − 2ω12a14 − 2ω34a14 − 2iω11(a∗12a13 + 2a11a14)− 2ω23a24

+2iω13((a12 − a∗12)a14 + 2a13a∗22 − 2a11a24) + 2iω33(2a14a∗22 + a12a24) ,

ȧ24 = −2ω14(a14 + a∗14) + 2iω11(a12a14 − a∗12a∗14)− 4ω34a24 + 4iω33(−a22 + a∗22)a24

+2iω13(−2a14a22 + 2a∗14a∗22 + (a12 − a∗12)a24),

which can be used to determine the time evolution of the Gaussian system at any time.

Appendix B. Matrix M for Bipartite System

As discussed in Section 4.2, the evolution of the covariance matrix of a bipartite system can be written
as the linear system of equations:

Mv = 0 ,

where the vector containing the different covariances reads:

ṽ =
(
σp1 p1 , σp1q1 , σp1 p2 , σp1q2 , σq1q1 , σq1 p2 , σq1q2 , σp2 p2 , σp2q2 , σq2q2

)
,

and the matrix M is obtained by analyzing the derivatives of the covariance matrix; this results in an
expression for M given by:

M =



−4ω12 −4ω22 −4ω23 −4ω24 0 0 0 0 0 0
2ω11 0 2ω13 2ω14 −2ω22 −2ω23 −2ω24 0 0 0
−2ω14 −2ω24 −2(ω12 + ω34) −2ω44 0 −2ω22 0 −2ω23 −2ω24 0
2ω13 2ω23 2ω33 2(ω34 −ω12) 0 0 −2ω22 0 −2ω23 −2ω24

0 4ω11 0 0 4ω12 4ω13 4ω14 0 0 0
0 −2ω14 2ω11 0 −2ω24 2(ω12 −ω34) −2ω44 2ω13 2ω14 0
0 2ω13 0 2ω11 2ω23 2ω33 2(ω12 + ω34) 0 2ω13 2ω14

0 0 −4ω14 0 0 −4ω24 0 −4ω34 −4ω44 0
0 0 2ω13 −2ω14 0 2ω23 −2ω24 2ω33 0 −2ω44

0 0 0 4ω13 0 0 4ω23 0 4ω33 4ω34


(A4)
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