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Abstract: This paper mainly focuses on the problem of lossy compression storage based on the data
value that represents the subjective assessment of users when the storage size is still not enough after
the conventional lossless data compression. To this end, we transform this problem to an optimization,
which pursues the least importance-weighted reconstruction error in data reconstruction within
limited total storage size, where the importance is adopted to characterize the data value from
the viewpoint of users. Based on it, this paper puts forward an optimal allocation strategy
in the storage of digital data by the exponential distortion measurement, which can make rational use
of all the storage space. In fact, the theoretical results show that it is a kind of restrictive water-filling.
It also characterizes the trade-off between the relative weighted reconstruction error and the available
storage size. Consequently, if a relatively small part of total data value is allowed to lose, this strategy
will improve the performance of data compression. Furthermore, this paper also presents that both the
users’ preferences and the special characteristics of data distribution can trigger the small-probability
event scenarios where only a fraction of data can cover the vast majority of users’ interests. Whether
it is for one of the reasons above, the data with highly clustered message importance is beneficial to
compression storage. In contrast, from the perspective of optimal storage space allocation based on
data value, the data with a uniform information distribution is incompressible, which is consistent
with that in the information theory.

Keywords: lossy compression storage; optimal allocation strategy; weighted reconstruction error;
message importance measure; importance coefficient

1. Introduction

As large amounts of mobile devices such as Internet of things (IoT) devices or smartphones
are utilized, the contradiction between limited storage space and sharply increasing data deluge
becomes increasingly serious in the era of big data [1,2]. This exceedingly massive data makes the
conventional data storage mechanisms inadequate within a tolerable time, and therefore the data
storage is one of the major challenges in big data [3]. Note that storing all the data becomes more
and more dispensable nowadays, and it is also not conducive to reduce data transmission costs [4,5].
In fact, data compression storage is widely adopted in many applications, such as IoT [2], industrial
data platform [6], bioinformatics [7], wireless networking [8]. Thus, the research on data compression
storage becomes increasingly paramount and compelling nowadays.

In conventional source coding, data compression is carried out by removing the data redundancy,
where short descriptions are assigned to the most frequent class [9]. Based on it, the tight bounds for
lossless data compression are given. In order to further increase the compression rate, one needs to use
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more information. A quintessential example is to use some side information [10]. Another possible
solution is to compress the data with quite a few losses first and then reconstruct them with acceptable
distortion, which is referred to as lossy compression [11–13]. Some adaptive compressions are adopted
extensively. For example, Reference [14] proposed an adaptive compression scheme in IoT systems, and
Reference [15] investigated the backlog-adaptive source coding system in terms of age of information.
In fact, most of the previous compression methods usually carried out compression by means of
contextual data or leveraging data transformation techniques [4].

Although these previous methods of data compression perform satisfactorily in their respective
application scenarios, there is still much room for improvement when facing rapidly growing
large-scale data. Moreover, they also do not take the data value into account. This paper focuses on
the problem of how to further compress data with acceptable distortion to implement the specified
requirements in data storage when the storage size is still not enough to guarantee the lossless storage
after the conventional lossless data compression. This paper will realize this goal by reallocating
storage space based on the data value which represents the subjective assessment of users. Here,
we take the importance-aware weighting in the weighted reconstruction error to measure the total cost
in data storage with unequal costs.

Generally, users prefer to care about the crucial part of data that attracts their attention rather
than the whole data itself. In many real-world applications, such as cost-sensitive learning [16–18] and
unequal error protection [19,20], different errors bring different costs. To be specific, the distortion
in the data that users care about may be catastrophic if the loss of some data being insignificant for
users is allowed. Similar to coresets [21], the data needing to be processed was reduced to those users as
the main focus rather than the whole data set. Unlike coresets, the data needing to be processed in this
paper no longer pursues approximately representing the raw data, and it is expected to minimize
the storage cost with respect to the importance weighting value. In fact, although the data deluge
sharply increases, the significant data that users care about is still rare in a lot of scenarios of big data.
In this sense, it can be regarded as the sparse representation from the perspective of the data value,
and we can use it to compress data.

Alternatively, it is interesting to achieve data compression by storing a fraction of data,
which preserves as much information as possible regarding the data that users care about [22,23].
This paper also employs this strategy. However, there are subtle but critical differences between
the compression storage strategy proposed in this paper with those in Reference [22,23]. In fact,
Reference [22] focused on Pareto-optimal data compression, which presents the trade-off between
retained entropy and class information. However, this paper puts forward an optimal compression
storage strategy for digital data from the viewpoint of message importance, and it gives the trade-off
between the relative weighted reconstruction error (RWRE) and the available storage size. Furthermore,
the compression method based on message importance was preliminarily discussed in Reference [23]
to solve the big data storage problem in wireless communications, while this paper will aim to discuss
the optimal storage space allocation strategy with limited storage space, in general, based on message
importance. Moreover, the constraints are also different. That is, the available storage size is limited in
this paper, while the total code length of all the events is given in Reference [23].

From users’ attention viewpoint, the data value can be considered as the subjective assessment of
users on the importance of data. Actually, much of the research in the last decade suggested that the
study from the perspective of message importance is rewarding to obtain new findings [20,24,25]. Thus,
there may be effective performance improvement in storage systems when taking message importance
into account. For example, Reference [26] discussed the lossy image compression method with the
aid of a content-weighted importance map. Since any quantity can be seen as important if it agrees
with the intuitive characterization of the user’s subjective degree of concern of data, the cost in data
reconstruction for specific user preferences is regarded as the importance in this paper, which will be
used as the weight in the weighted reconstruction error.
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Since we desire to achieve data compression by keeping only a small portion of important data
and abandoning less important data, this paper mainly focuses on the case where only a fraction
of data take up the vast majority of the users’ interests. Actually, these scenarios are not rare in big
data. A quintessential example should be cited that the minority subset detection is overwhelmingly
paramount in intrusion detection [27,28]. Moreover, this phenomenon is also exceedingly typical
in financial crime detection systems for the fact that only a few illicit identities catch our eyes to prevent
financial frauds [29]. Actually, when a certain degree of information loss can be acceptable, people
prefer to take high-probability events for granted and abandon them to maximize the compressibility.
These cases are referred to as small-probability event scenarios in this paper. In order to depict the message
importance in small-probability event scenarios, message importance measure (MIM) was proposed
in Reference [30]. Furthermore, MIM is fairly effective in many applications of big data, such as
IoT [31], mobile edge computing [32]. In addition, Reference [33] expanded MIM to the general case,
and it presented that MIM can be adopted as a special weight in designing the recommendation system.
Since there is no universal data value model, we might as well take the case where the MIM describes
the cost of the error as a quintessential example to analyze the property of the optimal storage space
allocation strategy.

In this paper, we firstly propose a particular storage space allocation strategy for digital data on
the best effort in minimizing the importance-weighted reconstruction error when the total available
storage size is provided. For digital data, we formulate this problem as an optimization problem,
and present the optimal storage strategy by means of a kind of restrictive water-filling. For the given
available storage size, the storage size is mainly determined by the values of message importance
and probability distribution of event class in a data sequence. In fact, this optimal allocation strategy
adaptively prefers to provide more storage size for crucial data classes in order to make the rational
use of resources, which is in accord with the cognitive mechanism of human beings.

Afterward, we focus on the properties of this optimal storage space allocation strategy when
the importance weights are characterized by MIM. It is noted that there is a trade-off between
the RWRE and the available storage size. The constraints on the performance of this storage
system are true, and they depend on the importance coefficient and the probability distribution
of events classes. On the one hand, the RWRE increases with the increasing of the absolute value of
importance coefficient for the fact that the overwhelming majority of important information will gather
in a fraction of data as the importance coefficient increases to negative/positive infinity, which suggests
the influence of users’ preferences. On the other hand, the compression performance is also affected by
probability distribution of event classes. In fact, the more closely the probability distribution matches
the requirement of the small-probability event scenarios, the more effective this compression strategy
becomes. Furthermore, it is also obtained that the RWRE in a uniform distribution is larger than
any other distributions for the same available storage size. In this regard, the uniform distribution is
incompressible from the perspective of optimal storage space allocation based on data value, which is
consistent with the conclusion in information theory [34].

The main contributions of this paper can be summarized as follows. (1) It proposes a new
digital data compression strategy taking message importance into account, which can help improve
the design of a big data storage system. (2) We illuminate the properties of this new method, which can
characterize the trade-off between the RWRE and the available storage size. (3) It shows that the data
with highly clustered message importance is beneficial to compression storage, and it also finds that
the data with a uniform information distribution is incompressible from the perspective of optimal
storage space allocation based on data value, which is consistent with that in information theory.

The rest of this paper is organized as follows. The system model is introduced in Section 2,
including the definition of weighted reconstruction error, distortion measure, and problem formulation.
In Section 3, we solve the problem of optimal storage space allocation in three kinds of system models
and give the solutions. The properties of this optimal storage space allocation strategy based on MIM
are fully discussed in Section 4. The effects of the importance coefficient and the probability of event
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classes on RWRE are also investigated in detail. Section 5 illuminates the properties of this optimal
storage strategy when the importance weight is characterized by Non-parametric MIM. The numerical
results are shown and discussed in Section 6, which verifies the validity of the developed theoretical
results in this paper. Finally, we give the conclusion in Section 7.

2. System Model

This section introduces the system model, including the definition of the weighted reconstruction
error, the modeling of distortion measure, in order to illustrate how we formulate the lossy compression
problem as an optimization problem for digital data based on message importance. In order to make
the formulation and discussion more clear, the main notations in this paper are listed in Table 1.

Table 1. Notations.

Notation Description

x = x1, x2, . . . , xk, . . . , xK The sequence of raw data
x̂ = x̂1, x̂2, . . . , x̂k, . . . , x̂K The sequence of compressed data

Sx The storage size of x
D f (Sx1, Sx2) The distortion measure function between Sx1 and Sx2 in data reconstruction

n The number of event classes
{a1, a2, . . . , an} The alphabet of raw data
{â1, â2, . . . , ân} The alphabet of compressed data

W = {W1, W2, . . . , Wn} The error cost for the reconstructed data
P = {p1, p2, . . . , pn} The probability distribution of data class

D(x, W) The weighted reconstruction error
Dr(x, W), Dr(W, L, l) The relative weighted reconstruction error

L = L1, L2, . . . , Ln The storage size of raw data
l = l1, l2, . . . , ln The storage size of compressed data

l∗i The round optimal storage size of the data belonging to the i-th class
T The maximum available average storage size
v The importance coefficient
γp γp = ∑n

i=1 p2
i

α1, α2 α1 = arg mini pi and α2 = arg maxi pi
L(v, p) The message importance measure, which is given by L(v, p) = ln ∑n

i=1 piev(1−pi)

∆ The average compressed storage size of each data, which is given by ∆ = L− T
∆∗(δ) The maximum available ∆ for the given supremum of the RWRE δ

L(P) The non-parametric message importance measure, which is given by L(P) = ln ∑n
i=1 pie(1−pi)/pi

2.1. Modeling Weighted Reconstruction Error Based on Message Importance

The data storage system may lack storage space frequently when facing a super-large scale of
data to store. When the storage size is still not enough after the lossless conventional data compression,
the optimum allocation of storage space based on data value may be imperative. For this purpose,
we consider the following storage system, which stores K pieces of data. Let x = x1, x2, . . . , xk, . . . , xK
be the sequence of raw data. Assume that all the data redundancy have been removed after the lossless
conventional data compression, and each data xk needs to take up storage space with size of Sxk if this
data can be recovered without any distortion. However, in many scenarios of big data, the storage size
is still not enough in this case. That is to say, the actual required storage space ∑K

k=1 Sxk is larger than
the maximum available storage space TK, where T is the maximum available average storage size.

In fact, users prefer to care about the paramount part of data that attracts their attention rather
than the whole data itself. In this perspective, storing all data without distortion may be unnecessary.
Considering that the natural distribution of storage space is not invariably reasonable and the high
value data in big data is usually sparse, the rational storage space allocation by minimizing the loss of
data value may solve the above problem of insufficient storage space, if a certain amount of data value
is allowed to be lost. After the data compression by means of the rational storage space allocation,
we use x̂1, x̂2, . . . , x̂k, . . . , x̂K to denote the compressed data sequence, and assume that the compressed
data x̂k takes up storage space with size of Sx̂k in practice for 1 ≤ k ≤ K.
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The lossy data compression usually pursues the least the storage cost while retaining as much
information users required as possible [22]. In the lossless conventional data compression, the costs of
different data are assumed to be the same. However, different kinds of errors may result in unequal
costs in many real-world applications [16–19]. In this model, we use the notation Wk to denote the error
cost for the reconstructed data. Namely, Wk is with respect to the data value of data xk, and it is
regarded as the message importance in this paper. Here, we define the weighted reconstruction error
to describe the total cost in data storage with unequal costs, which is given by

D(x, W) =
1
K ∑K

k=1 WkD f (Sxk, Sx̂k), (1)

where D f (Sxk, Sx̂k) characterizes the distortion between the raw data and the compressed data in data
reconstruction, which characterizes the loss degree of data value with allocated storage size.

Consider the situation where the data is stored according to its category for easier retrieval,
which can also make the recommendation system based on it more effective [33]. Since data
classification is becoming increasingly convenient and accurate nowadays due to the rapid
development of machine learning [35,36], this paper assumes that the event class can be easily detected
and known in the storage system. Moreover, assume the data that belongs to the same class has the
same importance-weight and occupies the same storage size. Hence, x can be seen as a sequence
of K symbols from an alphabet {a1, a2, . . . , an} where ai represents event class i. This storage model
is summarized and shown in Figure 1. In this case, the weighted reconstruction error based on
importance is formulated as

D(x, W) = ∑n
i=1

N(ai|x)
K

WiD f (Sai, Sâi) (2)

= ∑n
i=1 piWiD f (Sai, Sâi), (2a)

where N(ai|x) is the number of times the i-class occurs in the sequence x. Let pi = N(ai|x)/K denote
the probability of event class i in data sequence x.
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Figure 1. Pictorial representation of the system model.

2.2. Modeling Distortion between the Raw Data and the Compressed Data

We focus on the formula of D f in this part, which characterizes the distortion between the raw data
and the compressed data with specified storage size. Usually, there is no universal characterization of
distortion measure, especially in speech coding and image coding [34]. In fact, D f should characterize
the loss degree of data value with allocated storage size. In this respect, the conventional distortion
measures are not appropriate since they do not take unequal costs into account. In order to facilitate
the analysis and design, this paper proposes an exponential distortion measure to discuss the following
special case.

We assume that the data is digital and ignore the storage formats and standards in concrete
application environments. On its application fields, it may be useful in some scenarios with counting
systems, such as finance, or medicine, as the general merchandise. Let the description of the raw data
ai be Li bits, and ai = ∑Li−1

j=0 bj × rj where r is radix (r > 1). Actually, the radix represents the base of
the system in practical application, such as r = 2 in a binary system. In particular, Li will approach



Entropy 2020, 22, 591 6 of 29

the infinite number if ai is an arbitrary real number. When the storage size is still not enough after
the lossless conventional data compression, there is only li bits assigned to it in order to compress
data further based on the message importance. For convenience, the smaller (Li − li) numbers are
discarded in this process. When restoring the compressed data, the discarded digits are set to the same
pre-specified number or random numbers in the actual system. Let b∗j be the (j + 1)-th discarded digit
for j = 0, 1, · · · , Li − li − 1, and assume that b∗j is a random number in {0, . . . , r− 1}. In this case, the

compressed data is âi = ∑Li−1
j=Li−li

bj × rj + ∑Li−li−1
j=0 b∗j × rj. As a result, the absolute error is |ai − âi|,

which meets

|ai − âi| = |∑Li−li−1
j=0 (bj − b∗j )× rj| ≤ rLi−li − 1. (3)

When li = 0, which means there is no information stored, the supremum of absolute error reaches
the maximum and it is |ai − âi| ≤ rLi − 1. In order to better weigh the different costs, we define
the relative error by normalizing the absolute error to the interval [0, 1] based on the above maximum
absolute error rLi − 1. Moreover, we adopt the supremum of this relative error as the distortion
measure D f , which is given by

D f (Sai, Sâi) = D f (Li, li) =
rLi−li − 1

rLi − 1
. (4)

In particular, we obtain D f (Li, Li) = 0 and D f (Li, 0) = 1. Moreover, it is easy to check that
0 ≤ D f (Li, li) ≤ 1 and D f (Li, li) decreases with the increasing of li. In fact, D f can be regarded as
the percentage of data value loss in this case. Thus, the weighted reconstruction error in Equation (1)
represents the total cost in data storage based on the loss degree.

In this stored procedure, the compression rate is (∑n
i=1 pili)/(∑n

i=1 piLi), and the total saving
storage size is ∑n

i=1 pi(Li − li)K. Actually, K denotes the number of data, and it is extremely big due to
the sharply increasing data deluge in the era of big data. Therefore, although (Li − li) is not always
large, the saving storage size is still exceedingly substantial since K is exceedingly large.

Furthermore, to simplify the comparisons under different conditions, the weighted reconstruction
error is also normalized to the relative weighted reconstruction error (RWRE). In fact, the RWRE
characterizes the relative total cost in the data compression, and it is given by

Dr(x, W) = Dr(W, L, l) =
D(x, W)

max
li

D(x, W)
=

∑n
i=1 piWiD f (Li, li)

∑n
i=1 piWi

=
∑n

i=1 piWi
rLi−li−1

rLi−1

∑n
i=1 piWi

, (5)

where L = {L1, . . . , Ln} and l = {l1, . . . , ln}.

2.3. Problem Formulation

2.3.1. General Storage System

In fact, the actual storage size of each data after the compression can then be expressed as
∑n

i=1 pili. For each given maximum available storage space constraint ∑n
i=1 pili ≤ T, where T denotes

the maximum available average storage size, we shall optimize the storage resources allocation strategy
of this system by minimizing the RWRE, which can be expressed as

P1 : min
li

Dr(x, W) (6)

s.t.
n

∑
i=1

pili ≤ T (6a)

0 ≤ li ≤ Li for i = 1, 2, . . . , n. (6b)
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The storage systems, which can be characterized by Problem P1, are referred to as the general
storage system.

Remark 1. In fact, this paper focuses on allocating resources by category with taking message importance into
account, while the conventional source coding searches the shortest average description length of a random variable.

2.3.2. Ideal Storage System

In practice, the storage size of raw data is usually assigned to be the same for ease of use. Thus,
we mainly consider the case where the original storage size of each data is the same, and use L to
denote it (i.e., Li = L for i = 1, 2, . . . , n). As a result, we have

min
li

Dr(x, W) =

rL min
li

n
∑

i=1
piWir−li

(rL − 1)
n
∑

i=1
piWi

− 1
rL − 1

. (7)

Thus, the problem P1 can be rewritten as

P2 : min
li

n

∑
i=1

piWir−li (8)

s.t.
n

∑
i=1

pili ≤ T (8a)

0 ≤ li ≤ L for i = 1, 2, . . . , n. (8b)

For convenience, we use the ideal storage system to represent the storage systems, which can be
described by Problem P2. Moreover, we will mainly focus on the characteristics of the solutions
in Problem P2 in this paper.

2.3.3. Quantification Storage System

A quantification storage system quantizes and stores the real data acquired from sensors in the real
world. The data is usually a real number, which requires an infinite number of bits to describe it
accurately. That is, the original storage size of each class approaches the infinite number, (i.e., Li =

L→ +∞ for i = 1, 2, . . . , n), in this case. As a result, the RWRE can be rewritten as

Dr(x, W) = lim
L→∞


n
∑

i=1
piWir−li

(1− r−L)
n
∑

i=1
piWi

− 1
rL − 1

 =

n
∑

i=1
piWir−li

n
∑

i=1
piWi

. (9)

Therefore, the problem P1 in this case is reduced to

P3 : min
li

n

∑
i=1

piWir−li (10)

s.t.
n

∑
i=1

pili ≤ T (10a)

li ≥ 0 for i = 1, 2, . . . , n. (10b)

3. Optimal Allocation Strategy with Limited Storage Space

In this section, we shall first solve the problem P1 and give the solutions. In fact, the solutions
provide the optimal storage space allocation strategy for digital data on the best effort in minimizing
the relative weighted reconstruction error (RWRE) when the total available storage size is limited.
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Then, the problem P2 will be solved, the solutions of which characterize the optimal storage space
allocation strategy with the same original storage size. Moreover, we shall also discuss the solutions
in the case where the original storage size of each class approaches the infinite number by studying
the problem P3.

3.1. Optimal Allocation Strategy in General Storage System

Theorem 1. For a storage system with probability distribution (p1, p2, . . . , pn), Li is the storage size of the raw
data of the class i for i = 1, 2, . . . , n. For a given maximum available average storage size T (0 ≤ T ≤ ∑n

i=1 piLi),
when the radix is r (r > 1), the solution of Problem P1 is given by

li =


0 if li < 0,

ln(ln r) + ln Wi − ln(1− r−Li )− ln λ∗

ln r
if 0 ≤ li ≤ Li,

Li if li > Li,

(11)

where λ∗ is chosen so that ∑n
i=1 pili = T.

Proof. By means of Lagrange multipliers and Karush–Kuhn–Tucher conditions, when ignoring
the constant ∑n

i=1 piWi, we set up the functional

J =
n

∑
i=1

piWi
rLi−li − 1

rLi − 1
+ λ∗(

n

∑
i=1

pili − T) + µ1(l1 − L1) + · · ·+ µn(ln − Ln). (12)

Differentiating with respect to li and setting the derivative to zero, we have

∂J
∂li

= −piWi
r−li

1− r−Li
+ λ∗pi + µi = 0 for i = 1, 2, . . . , n (13)

∑n
i=1 pili − T = 0 (13a)

µi(li − Li) = 0 for i = 1, 2, . . . , n (13b)

li − Li ≤ 0 for i = 1, 2, . . . , n (13c)

µi ≥ 0 for i = 1, 2, . . . , n (13d)

li ≥ 0 for i = 1, 2, . . . , n (13e)

Hence, we obtain

li =
ln pi + ln(ln r) + ln Wi − ln(1− r−Li )− ln(λ∗pi + µi)

ln r
. (14)

First, it is easy to check that Equations (13b)–(13d) hold when µi = 0 and li ≤ Li. Hence, we have

li =
ln(ln r) + ln Wi − ln(1− r−Li )− ln λ∗

ln r
. (15)

Second, if li in Equation (14) is larger than Li, we will have µi > 0 and li = Li due to
Equations (13b)–(13d).

Third, if li < 0, we will let li = 0 according to Equation (13e).
Moreover, λ∗ is chosen so that ∑n

i=1 pili = T due to Equation (13a).
Therefore, based on the discussion above, we get Equation (11) in order to ensure 0 ≤ li ≤ Li.

Remark 2. Let Ñ be the number of li which meets 0 ≤ li ≤ Li and {Ij, j = 1, 2, . . . , Ñ} is part

of the sequence of {1, 2, . . . , N} which satisfies 0 ≤ ln(ln r) + ln WIj − ln(1− r
−LIj )− ln λ∗ ≤ LIj ln r.
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Furthermore, {Tj, j = 1, 2, . . . , ÑL} is used to denote the part of the sequence of {1, 2, . . . , N} which satisfies

ln(ln r) + ln WTj − ln(1− r
−LTj )− ln λ∗ > LTj ln r.

Substituting Equation (11) in the constraint ∑n
i=1 pili = T, we have

ln λ∗ = ln ln r +
∑Ñ

j=1 pIj ln WIj −∑Ñ
j=1 pIj ln(1− r

−LIj )− ln r(T −∑ÑL
j=1 pTj LTj)

∑Ñ
j=1 pIj

. (16)

Hence, for 0 ≤ li ≤ L, we obtain

li =
T −∑ÑL

j=1 pTj LTj

∑Ñ
j=1 pIj

+
ln Wi
ln r

−
∑Ñ

j=1 pIj ln WIj

ln r∑Ñ
j=1 pIj

+
∑Ñ

j=1 pIj ln(1− r
−LIj )

ln r∑Ñ
j=1 pIj

. (17)

In fact, T, pi, r, Li are usually constraints for a given storage system, and therefore li is only
determined by the second and the third items on the right side of Equation (17), which means
the storage size depends on the message importance and the probability distribution of class for the
given available storage size.

Remark 3. Since the actual compressed storage size l∗i must be an integer, the actual storage size allocation
strategy is

l∗i = min


T −∑ÑL

j=1 pTj LTj

∑Ñ
j=1 pIj

+
ln Wi
ln r

−
∑Ñ

j=1 pIj ln WIj

ln r∑Ñ
j=1 pIj

+
∑Ñ

j=1 pIj ln(1− r
−LIj )

ln r∑Ñ
j=1 pIj

+, Li

 , (18)

where (x)+ is equal to x when x ≥ 0, and it is zero when x < 0. In addition, bxc is the largest integer smaller
than or equal to x.

3.2. Optimal Allocation Strategy in Ideal Storage System

Then, we pay attention to the case where the original storage size of each data is the same.
Based on Theorem 1, we get the following corollary in the ideal storage system.

Corollary 1. For a storage system with probability distribution (p1, p2, . . . , pn), the original storage size of
each class is the same, which is given by Li = L for i = 1, 2, . . . , n. For a given maximum available average
storage size T (0 ≤ T ≤ L), when the radix is r (r > 1), the solution of Problem P2 is given by

li =


0 if li < 0,

ln(ln r) + ln Wi − ln λ

ln r
if 0 ≤ li ≤ L,

L if li > L,

(19)

where λ is chosen so that ∑n
i=1 pili = T.

Proof. Let λ = λ∗(1− r−L) and Li = L for i = 1, 2, . . . , n. Substituting them in Equation (11), we find
that li in this case can be rewritten as Equation (19).

Substituting Equation (19) in the constraint ∑n
i=1 pili = T, we obtain

ln λ = ln ln r +
∑Ñ

j=1 pIj ln WIj − ln r(T − TNL)

∑Ñ
j=1 pIj

, (20)
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where Ñ, ÑL, Ij, Tj is still given by Remark 2 with letting λ = λ∗(1− r−L). In addition, TNL = ∑ÑL
j=1 pTj L.

Hence, for 0 ≤ li ≤ L, we obtain

li =
T − TNL

∑Ñ
j=1 pIj

+
ln Wi
ln r

−
∑Ñ

j=1 pIj ln WIj

ln r∑Ñ
j=1 pIj

. (21)

Remark 4. Since the actual compressed storage size l∗i must be an integer, the actual storage size allocation
strategy is

l∗i = min

T − TNL

∑Ñ
j=1 pIj

+
ln Wi
ln r

−
∑Ñ

j=1 pIj ln WIj

ln r∑Ñ
j=1 pIj

+, L

 . (22)

Remark 5. When Ñ = n, 0 ≤ li ≤ L always holds for 1 ≤ i ≤ n, and the actual storage size is given by

l∗i =

⌊
T +

ln Wi −∑n
i=1 pi ln Wi

ln r

⌋
. (23)

In order to illustrate the geometric interpretation of this algorithm, let

β =
ln ln r− ln λ

ln r
. (24)

Hence, the optimal storage size can be simplified to

li =



0, if β− ln(1/Wi)

ln r
< 0.

β− ln(1/Wi)

ln r
if 0 ≤ β− ln(1/Wi)

ln r
≤ L.

L, if β− ln(1/Wi)

ln r
> L.

(25)

The monotonicity of optimal storage size with respect to importance weight is discussed in the
following theorem.

Theorem 2. Let (p1, p2, . . . , pn) be a probability distribution and W = W1, . . . , Wn be importance weights.
L and r are fixed positive integers (r > 1). The solution of Problem P2 meets: li ≥ lj if Wi > Wj for
∀i, j ∈ {1, 2, . . . , n}.

Proof. Refer to the Appendix A.

This gives rise to a kind of restrictive water-filling, which is presented in Figure 2. Choose a
constant β so that ∑n

i=1 pili = T. The storage size depends on the difference between β and ln(1/Wi)
ln r .

In Figure 2, we obtain that β characterizes the height of water surface, and ln(1/Wi)
ln r determines

the bottom of the pool. Actually, no storage space is assigned to the data when this difference is
less than zero. When the difference is in the interval [0, L], this difference is exactly the storage size.
Furthermore, the storage size will be truncated to L bits if the difference is larger than L. Compared
with the conventional water-filling, the lowest height of the bottom of the pool is constricted in this
restrictive water-filling.

Remark 6. The restrictive water-filling in Figure 2 is summarized as follows.

• For the data with extremely small message importance, ln(1/Wi)
ln r is so large that the bottom of the pool is

above the water surface. Thus, the storage size of this kind of data is zero.
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• For the data with small message importance, ln(1/Wi)
ln r is large, and therefore the bottom of the pool is high.

Thus, the storage size of this kind of data is small.
• For the data with large message importance, ln(1/Wi)

ln r is small, and therefore the bottom of the pool is low.
Thus, the storage size of this kind of data is large.

• For the data with extremely large message importance, ln(1/Wi)
ln r is so small that the bottom of the pool is

constricted in order to truncate the storage size to L.

Thus, this optimal storage space allocation strategy is a high efficient adaptive storage allocation
algorithm for the fact that it can make rational use of all the storage space according to message
importance to minimize the RWRE.

Data

Class

Storage

Size

b

i
li

l L=

0
i
l =

( )ln 1

ln

i
W

r
L

Figure 2. Restrictive water-filling for optimal storage sizes.

This solution can be gotten by means of the recursive algorithm in practice, which is shown
in Algorithm 1, where we define an auxiliary function as

f (i, W, P, L, T, r, Kmin, Kmax) =



L if 1 ≤ i < Kmin.

T −∑Kmin−1
j=1 pjL

∑Kmax
j=Kmin

pj
+

ln Wi
ln r

−
∑Kmax

j=Kmin
pj ln Wj

ln r∑Kmax
j=Kmin

pj
if Kmin ≤ i ≤ Kmax.

0 if Kmax < i ≤ n.

(26)

3.3. Optimal Allocation Strategy in Quantification Storage System

Corollary 2. For a given maximum available average storage size T (T ≥ 0), when probability distribution is
(p1, p2, . . . , pn) and the radix is r (r > 1), the solution of Problem P3 is given by

li =
(

ln(ln r) + ln Wi − ln λ

ln r

)+

, (27)

where λ is chosen so that ∑n
i=1 pili = T.

Proof. Let L→ ∞ in Corollary 1, the solutions in Equation (19) can be simplified to Equation (27).

In fact, the optimal storage space allocation strategy in this case can be seen as a kind of
water-filling, which gets rid of the constraint on the lowest height of the bottom of the pool.
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Algorithm 1 Storage Space Allocation Algorithm

Require:
The message importance, W = {Wi, i = 1, 2, . . . , n} (Sort it to satisfy W1 ≥W2 ≥ · · · ≥Wn)
The probability distribution of source, P = {pi, i = 1, 2, . . . , n}
The original storage size, L and L = {Li = L, i = 1, 2, . . . , n} = {L, . . . , L}
The maximum available average storage size, T
The radix, r
The auxiliary variables, Kmin, Kmax (Let Kmin = 1, Kmax = n as the original values)

Ensure:
The compressed storage size, l = {li, i = 1, . . . , n}
Denote this recursive algorithm as φ(W, P, L, T, r, Kmin, Kmax)

1: li
′ ← f (i, W, P, L, T, r, Kmin, Kmax) for i = 1, . . . , n B See Equation (26)

2: if ∀t ∈ {1, · · · , n} such that 0 ≤ l′t ≤ L and ∑n
i=1 pil′i = T

3: li ← li
′ for i = 1, . . . , n

4: else if Kmax > Kmin
5: l(1) ← φ(W, P, L, T, r, Kmin, Kmax − 1) (Make a recursive call with Kmax ← Kmax − 1)
6: ε(1) = Dr(W, L, l(1)) (Calculate the RWRE with l(1)) B See Equation (5)
7: l(2) ← φ(W, P, L, T′, r, Kmin + 1, Kmax) (Make a recursive call with Kmin ← Kmin + 1)
8: ε(2) = Dr(W, L, l(2)) (Calculate the RWRE with l(2)) B See Equation (5)
9: if ε(1) ≤ ε(2)

10: l← l(1)

11: else
12: l← l(2)

13: end
14: else
15: lKmin ← (T −∑Kmin−1

i=1 piL)/pKmin , li ← L when i < Kmin, li ← 0 when i > Kmin
16: end
17: end
18: return l

4. Property of Optimal Storage Strategy Based on Message Importance Measure

Considering that the ideal storage system can capture most of the characteristics of the lossy
compression storage model in this paper, we focus on the properties of optimal storage strategy
in it in this section for ease of analysis. Specifically, we ignore rounding and adopt li in Equation (19)
as the optimal storage size of the i-th class in this section. Moreover, we focus on a special kind of
the importance weight. Namely, the message importance measure (MIM) is adopted as the importance
weight in this part, for the fact that it can effectively measure the cost of the error in data reconstruction
in the small-probability event scenarios [23,31].

4.1. Normalized Message Importance Measure

In order to facilitate comparison under different parameters, the normalized MIM is used and
we can write

Wi =
ev(1−pi)

∑n
j=1 ev(1−pj)

, (28)

where v is the importance coefficient, whose selection is discussed in Reference [37]. In fact, the MIM
characterizes the user’s subjective concern degree of data, and v is an indicator that reflects the user
preferences. In practice, the values of v depend on the user preferences. For instance, when v is
positive, the user only focuses on the small-probability events, while the large-probability events are
focused on when v is negative [33].
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Actually, it is easy to check that 0 ≤Wi ≤ 1 for i = 1, 2, . . . , n. Moreover, it is obvious that the sum
of those in all event classes is one.

4.1.1. Positive Importance Coefficient

For positive importance coefficient (i.e., v > 0), let α1 = arg min
i

pi and assume pα1 < pi for

i 6= α1. The derivative of it with respect to the importance coefficient is

∂Wα1

∂v
=

∑n
j=1(pj − pα1)e

v(2−pα1−pj)(
∑n

j=1 ev(1−pj)
)2 ≥ 0. (29)

Therefore, Wα1 increases as v increases. In particular, as v approaches positive infinity, we have

lim
v→+∞

Wα1 = lim
v→+∞

ev(1−pα1 )

∑n
j=1 ev(1−pj)

(30)

= lim
v→+∞

ev(1−pα1 )

ev(1−pα1 ) + ∑j 6=α1
ev(1−pj)

(30a)

= lim
v→+∞

1

1 + ∑j 6=α1
ev(pα1−pj)

(30b)

=1. (30c)

Obviously, lim
v→+∞

Wi = 0 for i 6= α1.

Remark 7. As v approaches positive infinity, the importance weight with the smallest probability is one and
others are all zero, which means only a fraction of data almost contains all of the critical information that users
care about in the viewpoint of this message importance.

4.1.2. Negative Importance Coefficient

When the importance coefficient is negative (i.e., v < 0), let α2 = arg max
i

pi and assume pα2 > pi

for i 6= α2. Its derivative with respect to the importance coefficient is

∂Wα2

∂v
=

∑n
j=1(pj − pα2)e

v(2−pα2−pj)(
∑n

j=1 ev(1−pj)
)2 ≤ 0. (31)

Therefore, Wα2 decreases as v increases. In particular, as v approaches negative infinity, we have

lim
v→−∞

Wα2 = lim
v→−∞

ev(1−pα2 )

∑n
j=1 ev(1−pj)

(32)

= lim
v→−∞

ev(1−pα2 )

ev(1−pα2 ) + ∑j 6=α2
ev(1−pj)

(32a)

= lim
v→−∞

1

1 + ∑j 6=α2
ev(pα2−pj)

(32b)

=1. (32c)

Obviously, lim
v→−∞

Wi = 0 for i 6= α2.
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Remark 8. As v approaches negative infinity, the importance weight with the biggest probability is one and
others are all zero. If the biggest probability is far from 1, the majority of message importance can also be included
in those data with the highest probability, and the corresponding part of the data is not too much.

4.2. Optimal Storage Size for Each Class

Assume Ñ = n and ignore rounding, due to Equation (23), we obtain

li =T +

ln ev(1−pi)

∑n
j=1 ev(1−pj)

−
n
∑

i=1
pi ln ev(1−pi)

∑n
j=1 ev(1−pj)

ln r
(33)

=T +
v

ln r
(γp − pi), (33a)

where γp is an auxiliary variable and it is given by

γp =
n

∑
i=1

p2
i . (34)

In fact, it is a functional of the minus Rényi entropy of order two, i.e., γp = e−H2(P) where H2(P)
is the Rényi entropy Hα(·) when α = 2 [38]. Furthermore, we have the following lemma on γp.

Lemma 1. Let (p1, p2, . . . , pn) be a probability distribution, then we have

1
n
≤ γp ≤ 1, (35)

−1
4
≤ γp − pi ≤ 1. (35a)

Proof. Refer to Appendix B.

Thus, we find li > T if (1/n− pi)v > 0. Furthermore, we obtain li = T when pi = γp.

Theorem 3. Let (p1, p2, . . . , pn) be a probability distribution and Wi = ev(1−pi)/∑n
j=1 ev(1−pj) be the

importance weight. The optimal storage sizes in the ideal storage system have the following properties:

(1) li ≥ lj if pi < pj for ∀i, j ∈ {1, 2, . . . , n} when v > 0;
(2) li ≤ lj if pi < pj for ∀i, j ∈ {1, 2, . . . , n} when v < 0.

Proof. Refer to Appendix C.

Remark 9. As noted in [31], the data with smaller probability usually possesses larger importance when v > 0,
while the data with larger probability usually possesses larger importance when v < 0. Therefore, this optimal
allocation strategy makes rational use of all the storage space by providing more storage size for the paramount
data and less storage size for the insignificance data. It agrees with the intuitive idea, which is that users generally
are more concerned about the data that they need rather than the whole data itself.

Lemma 2. Let (p1, p2, . . . , pn) be a probability distribution and r be radix. L and T are positive integers,
and T < L. If v meets 0 ≤ T + v(γp − pi)/ln r ≤ L, then we have Ñ = n.

Proof. According to Equation (33a) and constraint 0 ≤ T + v(γp − pi)/ln r ≤ L, we obtain 0 ≤ li ≤ L
for ∀i ∈ {1, 2, . . . , n}. In this case, Ñ = n.
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In fact, when v ≥ 0, due to Equation (33a) and Lemma 1, we obtain

0 ≤ T − v

4 ln r
≤ T +

v(γp − pi)

ln r
≤ T +

v

ln r
≤ L. (36)

Similarly, when v < 0, we have

0 ≤ T +
v

ln r
≤ T +

v(γp − pi)

ln r
≤ T − v

4 ln r
≤ L. (37)

According to Equations (36) and (37), we find Ñ = n always holds if max(4 ln r(T − L),−T/ ln r) ≤
v ≤ min(4T ln r, ln r(L− T)).

4.3. Relative Weighted Reconstruction Error

For convenience, we also use D(x, v) to denote the relative weighted reconstruction error (RWRE)
D(x, W). Due to Equation (7), we have

Dr(x, v) =
1

rL − 1

(
∑n

i=1 piev(1−pi)rL−li

∑n
i=1 piev(1−pi)

− 1

)
. (38)

If the maximum available average storage size T is zero, then we will have li = 0 for i = 1, 2, . . . , n. In
this case, Dr(x, v) = 1. On the contrary, Dr(x, v) = 0 when li = L for i = 1, 2, . . . , n.

Theorem 4. Dr(x, v) has the following properties:

(1) Dr(x, v) is monotonically decreasing with v in (0,+∞);
(2) Dr(x, v) is monotonically increasing with v in (−∞, 0);
(3) Dr(x, v) ≤ Dr(x, 0) = (rL−T − 1)/(rL − 1).

Proof. Refer to Appendix D.

Remark 10. As shown in Remark 7 and Remark 8, the overwhelming majority of important information will
gather in a fraction of data as the importance coefficient increases to negative/positive infinity. Therefore, we can
heavily reduce the storage space with extremely small of RWRE with the increasing of the absolute value of
the importance coefficient. In fact, this special characteristic of weight reflects the effect of users’ preferences.
That is, it is beneficial for data compression that the data that users care about is highly clustered. Moreover,
when v = 0, all the importance weights are the same, which leads to the incompressibility, in a sense, for the fact
that there is no special characteristic of weight for users to make rational use of storage space.

In the following part of this section, we will discuss the cases where 0 ≤ T + v(γp − pi)/ln r ≤ L
for i = 1, . . . , n, which means all li can be given by Equation (33a) and n = Ñ due to Lemma 2.
In this case, substituting Equation (33a) in Equation (7), the RWRE is

Dr(x, v) =
ev(1−γp)r∆

(rL − 1)∑n
i=1 piev(1−pi)

− 1
rL − 1

, (39)

where ∆ = L− T, which characterizes the average compressed storage space of each data.
Since 0 ≤ T + v(γp − pi)/ln r ≤ L, we have

v(γp − pα1)

ln r
≤ L− T ≤ L +

v(γp − pα2)

ln r
if v ≥ 0.

v(γp − pα2)

ln r
≤ L− T ≤ L +

v(γp − pα1)

ln r
if v < 0.

(40)
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Hence,

δ1 ≤ Dr(x, v) ≤ δ2. (41)

where

δ1 =


ev(1−pα1 )

(rL − 1)∑n
i=1 piev(1−pi)

− 1
rL − 1

if v ≥ 0,

ev(1−pα2 )

(rL − 1)∑n
i=1 piev(1−pi)

− 1
rL − 1

if v < 0,

(42)

and

δ2 =


ev(1−pα2 )rL

(rL − 1)∑n
i=1 piev(1−pi)

− 1
rL − 1

if v ≥ 0.

ev(1−pα1 )rL

(rL − 1)∑n
i=1 piev(1−pi)

− 1
rL − 1

if v < 0.

(43)

Theorem 5. For a given storage system with the probability distribution of data sequence P = (p1, p2, . . . , pn),
let L, r be fixed positive integers (r > 1), and v meets 0 ≤ T + v(γp − pi)/ln r ≤ L for i = 1, 2, . . . , n.
For the given least upper bound of the RWRE δ (δ1 ≤ δ ≤ δ2 where δ1 and δ1 is defined in Equation (41)),
the maximum average compressed storage size of each data ∆∗(δ) is given by

∆∗(δ) =
ln
(
1 + δ(rL − 1)

)
+ L(v, P)−v + vγp

ln r
(44)

≥
ln
(
1 + δ(rL − 1)

)
ln r

, (44a)

where L(v, P) = ln ∑n
i=1 piev(1−pi), and the equality of Equation (44a) holds if the probability distribution of

the data sequence is a uniform distribution or the importance coefficient is zero.

Proof. It is easy to check that Ñ = n according to Lemma 2 for the fact that 0 ≤ T + v(γp − pi)/ln r ≤ L.
Let D(x, v) ≤ δ. By means of Equation (39), we solve this inequality and obtain

∆ ≤
ln
(
1 + δ(rL − 1)

)
+ L(v, P)−v + vγp

ln r
= ∆∗(δ), (45)

where L(v, P) = ln ∑n
i=1 piev(1−pi). Then we have the following inequality:

∆∗(δ)
(a)
≥

ln
(
1 + δ(rL − 1)

)
+ ln e∑n

i=1 piv(1−pi) −v + vγp

ln r
=

ln
(
1 + δ(rL − 1)

)
ln r

,

where (a) follows from Jensen’s inequality. Since the exponential function is strictly convex, the equality
holds only if v(1− pi) is constant everywhere, which means (p1, p2, . . . , pn) is a uniform distribution
or the importance coefficient v is zero.

Remark 11. In conventional source coding, the encoding length depends on the entropy of sequence,
and a sequence is incompressible if its probability distribution is a uniform distribution [34]. In Theorem 5,
the uniform distribution is also the worst case, since the system achieves the minimum compressed storage size.
Although the focus is different, they both show that the uniform distribution is detrimental for compression.
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Furthermore, taking v > 0 as an example, it is also noted that

∆∗(δ) ≤ ∆∗(δ2) = L +
v(γp − pα2)

ln r
≤ L, (46)

for the fact that γp ≤ pα2 . In order to make ∆∗(δ2) approaches L, γp − pα2 should be as close to zero as
possible in the range where 0 ≤ T + v(γp − pi)/ln r ≤ L for i = 1, 2, . . . , n holds.

When the importance coefficient is constant, for two probability distributions P and Q, if L(v, P)+
vγp > L(v, Q) + vγq, then we will obtain ∆∗ in P is larger than that in Q. In fact, L(v, P) is defined
as MIM in [30], and γp = e−H2(P) [38]. Thus, the maximum average compressed storage size of each
data is under the control of MIM and Rényi entropy of order two. For typical small-probability event
scenarios where there is an exceedingly small probability, the MIM is usually large, and γp is also not
small simultaneously with big probability. Therefore, ∆∗(δ) is usually large in this case. As a result,
much more compressed storage space can be saved in typical small-probability event scenarios while
compared to that in uniform probability distribution. Namely, the data can be compressed by means
of the characteristic of the typical small-probability events, which may help to improve the design of
practical storage systems in big data.

5. Property of Optimal Storage Strategy Based on Non-Parametric Message Importance Measure

In this section, we define the importance weight based on the form of non-parametric message
importance measure (NMIM) to characterize the relative weighted reconstruction error (RWRE) [23].
Then, the importance weight of i-th class in this section is given by

Wi =
e(1−pi)/pi

∑n
j=1 e(1−pj)/pj

. (47)

Due to Equation (22), the optimal storage size in the ideal storage system by this importance
weight is given by

l∗i = min

T − TNL

∑Ñ
j=1 pIj

+
1

pi ln r
− 1

ln r
−

ln ∑n
j=1 e(1−pj)/pj

ln r
−

∑Ñ
j=1(1− pIj − pIj ln ∑n

j=1 e(1−pj)/pj)

ln r∑Ñ
j=1 pIj

+, L


= min

T − TNL

∑Ñ
j=1 pIj

+
1

pi ln r
− Ñ

ln r∑Ñ
j=1 pIj

+, L

 .

(48)

For two probabilities pi and pj, if pi < pj, then we will have Wi > Wj. In this case, we obtain
l∗i ≥ l∗j according to Theorem 2.

Assume Ñ = n and ignore rounding, due to Equation (23), we obtain

li = T +
1

pi ln r
− n

ln r
. (49)

Let 0 ≤ li ≤ L in this case, we find

1
n + (L− T) ln r

≤ pi ≤


1

n− T ln r
if n > T ln r.

1 if n ≤ T ln r.
(50)

Generally, this constraint does not invariably hold, and therefore we usually do not have Ñ = n.
For the quantification storage system as shown in P3 in this section, if the maximum available

average storage size satisfies n ≤ T ln r, an arbitrary probability distribution will make Equation (50)
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hold, which means Ñ = n. In this case, substituting Equation (47) in Equation (9), the RWRE can be
expressed as

Dr(x, W) =
∑n

i=1 pie(1−pi)/pi r−li

∑n
i=1 pie(1−pi)/pi

= en−1−L(P)r−T , (51)

where L(P) = ln ∑n
i=1 pie(1−pi)/pi , which is defined as the NMIM [23].

It is noted Dr(x, W) = 0 as T approaches positive infinity. Since n ≤ T ln r, we find Dr(x, W) ≤
r−1−L(P). Furthermore, since that L(P) ≥ n− 1 according to Reference [23], we obtain Dr(x, W) ≤ r−n.
Let Dr(x, W) ≤ δ, we have

T ≥ n− 1−L(P)− ln δ

ln r
. (52)

Obviously, for a given RWRE, the minimum average required storage size for the quantification
storage system decreases with increasing of L(P). That is to say, the data with large NMIM will
get a large compression ratio. In fact, the NMIM in the typical small-probability event scenarios is
generally large according to Reference [23]. Thus, this compression strategy is effective in the typical
small-probability event scenarios.

Furthermore, due to Reference [23], L(P) ≈ ln pα1 e
1−pα1

pα1 when pα1 is small. Hence, for small pα1 ,
the RWRE in this case can be reduced to

Dr(x, W) ≈ en−1/pα1

pα1

r−T . (53)

It is easy to check that Dr(x, W) increases as pα1 increases in this case.

6. Numerical Results

We now present numerical results to validate the developed theoretical results in this paper.
In this section, we assume all the data is digital, and the exponential distortion measure D f
in Equation (4) is adopted. Furthermore, the relative weighted reconstruction error (RWRE) in
Equation (5) is used to characterize the change of total data value before and after the lossy compression
based on data value, which represents the total cost of this compression.

6.1. Success Rate of Compressed Storage in General Storage System

This part presents the success rate of compressed storage in the general storage system to show
the effectiveness of our method, and it considers the following scenario of data storage.

There are eight categories of data, and the probability distribution of the data category randomly
generates in each storing. Moreover, each category of data gets a randomly generated data value,
which is in the interval (0, 100). After the lossless conventional data compression, where the data
value is assumed to be unchanged, the storage size of each data is a randomly generated number
between 10 and 30. The maximum available average storage size T is also varying from 10 to 30 bits.
It is considered as a successful data compression when the compressed storage size is not larger than
the maximum available storage size. However, when the amount of data to be stored is extremely big,
the compressed storage size may still not be enough after the lossless conventional data compression.
In this case, the optimal storage space allocation strategy in this paper can be used if a certain amount
of data value is allowed to be lost. As a contrast, we also divide up the maximum available storage
space equally among all categories of data on the basis of the lossless conventional data compression,
which is presented as the equal allocation strategy in Figure 3. Assume that it can also be seen as a
successful data compression if the RWRE in this process is less than or equal to the specified amount
that can be acceptable by users. For each value of T, this numerical simulation is repeated 10,000
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times. The success rate of compressed storage is given by Ns/10,000, where Ns is the number of times
the successful data compression happens in all the experiments.

Figure 3 shows the relationship between the success rate of compressed storage and the maximum
available average storage size T. It is observed that the success rate of conventional data compression
is almost one when the available storage size is large (T > 26 bits). However, when the available
storage size is not big (T < 26 bits), the success rate of conventional data compression decreases with
decreasing of the maximum available average storage size until it is zero. Furthermore, when a certain
amount of data value is allowed to be lost, the success rate can be improved on the basis of the lossless
conventional data compression for the same T. More important, the success rate of the optimal
allocation strategy is the largest among these three considered compression strategies. For the same
maximum available average storage size, the success rates of the optimal allocation strategy and the
equal allocation strategy increase as the maximum acceptable RWRE increases. In fact, the success
rate of equal allocation strategy is exceedingly close to that of conventional data compression when
the maximum acceptable RWRE is small (e.g., 10−7). In general, if a small quantity of total data value
is allowed to be lost, our optimal allocation strategy will further improve the performance of data
compression on the basis of the lossless conventional data compression.
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Figure 3. The success rate of compressed storage versus the maximum available average storage size.

6.2. Optimal Storage Size Based on Message Importance Measure in Ideal Storage System

We illustrate the characteristics of optimal storage size based on message importance measure
(MIM) in an ideal storage system in this part by means of a broken line graph, which demonstrates
the theoretical analyses in Section 4.2. For ease of illustrating, we ignore rounding and the optimal
storage size of the i-th class is given by li in Equation (19).

The broken line graph of the optimal storage size is shown in Figure 4, when the probability
distribution is P = (0.03, 0.07, 0.1395, 0.2205, 0.25, 0.29). In fact, 0.2205 ≈ γP and 1/n ≈ 0.167.
The maximum available average storage size T is 4 bits, and the original storage size of each data
is 10 bits. The importance coefficients are given by v1 = −35, v2 = −10, v3 = 0, v4 = 10, v5 = 35,
respectively. Some observations can be obtained. When v > 0, the optimal storage size of the i-th class
decreases with the increasing of its probability. On the contrary, the optimal storage size of the i-th class
increases as its probability increases when v < 0. In addition, the optimal storage size is invariably
equal to T (T = 4) when v = 0. Furthermore, li increases as v increases for i = 1, 2, 3, and it decreases
with v for i = 5, 6. For importance coefficients with small absolute values (v2, v3, v4), 0 < li < L
holds for i = 1, 2, . . . , 6, and l4 is extremely close to T (T = 4).
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Figure 4. Broken line graph of optimal storage size with the probability distribution
(0.03, 0.07, 0.1395, 0.2205, 0.25, 0.29), for a given maximum available average storage size T = 4 and
original storage size L = 10.

6.3. The Property of the RWRE Based on MIM in Ideal Storage System

Then we focus on the properties of the RWRE. In this part, we will give several numerical results
as quintessential examples to validate our theoretical founds in Section 4.3. Without loss of generality,
let the original storage size of each data be 16 bits, and the maximum available average storage size T
is varying from 0 to 8 bits. Although any range of T can be used, we choose this range to make the
results more clear. Moreover, the normalized MIM is adopted to describe the data value that represents
the subjective assessment of users.

Figures 5 and 6 both present the relationship between the RWRE and the maximum available
average storage size with the probability distribution (0.031, 0.052, 0.127, 0.208, 0.582). In fact,
the compression ratio is given by T/L in this case, and the RWRE represents the total cost, which
measures the compression distortion from the viewpoint of data value. Therefore, these two figures
essentially show the trade-off between the compression ratio and the total compressed storage cost.

Figure 5 focuses on the error of RWRE by rounding number with different values of the importance
coefficient v (v = −20, 0,−12, 20). In Figure 5, the RWRE Dr is acquired by substituting Equation (19)
in Equation (38), while the RWRE D∗r is obtained by substituting Equation (22) in Equation (38).
In this figure, D∗r has a tiered descent as the available average storage size increases, while Dr

monotonically decreases with increasing in the available average storage size. Figure 5 also shows that
Dr is always less than or equal to D∗r and they are very close to each other for the same importance
coefficient, which means that Dr can be used as the lower bound of D∗r to reflect the characteristics
of D∗r .

Furthermore, some other observations can be obtained in Figure 6. For the same T, the RWRE
increases as v increases when v < 0, while the RWRE decreases with increasing of v when v > 0.
In addition, the RWRE is the largest when v = 0. These results prove the validity of Theorem 4.
It is also observed that the RWRE always decreases with increasing of T for given v. Furthermore,
for any importance coefficient, the RWRE will be 1 if available average storage size is zero. Generally,
there is a trade-off between the RWRE and the available storage size, and the results in this paper
propose an alternative lossy compression strategy based on message importance.



Entropy 2020, 22, 591 21 of 29

0 1 2 3 4 5 6 7 8

Maximum available average storage size T

10-5

10-4

10-3

10-2

10-1

100

R
el
a
ti
v
e
w
ei
g
h
te
d
re
co
n
st
ru
ct
io
n
er
ro
r

Dr,̟ = −20

Dr,̟ = 0

Dr,̟ = 12

Dr,̟ = 20

D∗

r ,̟ = −20

D∗

r ,̟ = 0

D∗

r ,̟ = 12

D∗

r ,̟ = 20

Figure 5. Relative weighted reconstruction error (RWRE) Dr(x, v) versus maximum available
average storage size T with the probability distribution (0.031, 0.052, 0.127, 0.208, 0.582) in the case of
the value of importance coefficient v = −20, 0,−12, 20. Dr is acquired by substituting Equation (19)
in Equation (38), while D∗r is obtained by substituting Equation (22) in Equation (38).
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Figure 6. RWRE Dr(x, v) versus maximum available average storage size T with the probability
distribution (0.031, 0.052, 0.127, 0.208, 0.582) in the case of the value of importance coefficient
v = −30,−20,−10, 0, 10, 20, 30.

Then let the importance coefficient v be five and the maximum available average storage size
T be varying from two to eight bits. Although any range of T can be used, we choose this range
to make the results more clear. In addition, the original storage size is still 16 bits. Furthermore,
the average compressed storage space of each data is given by ∆ = L− T. In this case, Figure 7 shows
that the relationship between the RWRE and the average compressed storage space of each data ∆ for
different probability distributions. In fact, it can also be seen as reflecting the relationship between
the total compressed storage cost and the average saving storage size. The probability distributions
and some auxiliary variables are listed in Table 2. In fact, we take these five probability distributions
as examples, and L(v, P) + ve−H2(P) of them decreases monotonously. Obviously, all probability
distributions satisfy 0 ≤ T + v(γp − pi)/ln r ≤ L. It is observed that the RWRE always increases
with increasing of ∆ for a given probability distribution. Some other observations are also obtained.
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For the same ∆, the RWRE of uniform distribution is the largest all the time. Furthermore, if the
RWRE is required to be less than a specified value, which is exceedingly common in actual systems
in order to make the difference between the raw data and the stored data accepted, the maximum
average compressed storage size of each data will increase with increasing of L(v, P) + ve−H2(P).
As an example, when the RWRE is required to be smaller than 0.01, the maximum average compressed
storage size of P1, P2, P3, P4, P5 of each data is 11.85, 10.97, 9.99, 9.73, 9.36, respectively. In particular,
the maximum average compressed storage size of each data in a uniform distribution is the smallest,
which suggests the data with a uniform distribution is incompressible from the perspective of optimal
storage space allocation based on the data value.
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Figure 7. RWRE Dr(x, v) vs. average compressed storage size of each data ∆ with importance
coefficient v = 5.

Table 2. The auxiliary variables in ideal storage system.

Variable Probability Distribution v(γp− pα1)/ln r v(γp− pα2)/ln r L(v, P) + ve−H2(P)

P1 (0.01, 0.02, 0.03, 0.04, 0.9) 5.7924 −0.6276 6.7234
P2 (0.003, 0.007, 0.108, 0.132, 0.752) 4.2679 −1.1350 6.1305
P3 (0.001, 0.001, 0.001, 0.001, 0.996) 7.1487 −0.0287 5.4344
P4 (0.021, 0.086, 0.103, 0.378, 0.412) 2.2367 −0.5838 5.2530
P5 (0.2, 0.2, 0.2, 0.2, 0.2) 0 0 5

6.4. The Property of the RWRE Based on Non-Parametric MIM in a Quantification Storage System

Figure 8 presents the relationship between the RWRE and the maximum available average
storage size T for different probability distributions in a quantification storage system, which proves
the validity of theoretical results in Section 5. In this part, we use the normalized non-parametric
message importance measure (NMIM) to characterize the data value that represents the subjective
assessment of users. The probability distributions and some auxiliary variables are listed in Table 3.

Some observations can be obtained. First, the RWRE always decreases with the increasing of the
maximum available average storage size for a given probability distribution, and there is a trade-off
between the RWRE and the maximum available average storage size. When the maximum available
average storage size is small (T < n/ ln r), the RWRE decreases largely compared to the case where
T is large. In addition, when the maximum available average storage size is large (T > n/ ln r),
the difference between these RWREs remains the same at the logarithmic Y-axis. In fact, according
to Equation (51), this difference between two probabilities in this figure is the difference of NMIM
divided by log 10. As an example, the difference between P1 and P4 in this figure is 30, which satisfies
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this conclusion for the fact that (L(P1)− L(P4))/ log 10 ≈ 30. Moreover, the RWRE in P1 is very
close to that in P2, and the minimum probabilities in these two probability distributions are the same,
i.e., pα1 = 0.007. It suggests that the data with the same minimum probability will have the same
compression performance no matter how the distribution changes, if the minimum probability is very
small. In addition, it is also observed that the RWRE decreases as NMIM L(P) increases for the same
T, which means this compression strategy is more effective in the large NMIM cases.
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Figure 8. RWRE versus maximum available average storage size T.

Table 3. The auxiliary variables in the quantification storage system.

Variable Probability Distribution pα1 L(P)

P1 (0.007, 0.24, 0.24, 0.24, 0.273) 0.007 136.8953
P2 (0.007, 0.009, 0.106, 0.129, 0.749) 0.007 136.8953
P3 (0.01, 0.02, 0.03, 0.04, 0.9) 0.01 94.3948
P4 (0.014, 0.086, 0.113, 0.375, 0.412) 0.014 66.1599
P5 (0.2, 0.2, 0.2, 0.2, 0.2) 0.2 4.0000

7. Conclusions

In this paper, we focused on the problem of lossy compression storage when the storage size is
still not enough after conventional lossless data compression. By means of the message importance
to characterize the data value, we define the weighted reconstruction error to describe the total cost
in data storage. Based on it, we presented an optimal storage space allocation strategy for digital data
from the perspective of data value by the exponential distortion measure, which pursues the least
error with respect to the data value for restricted storage size. We gave the solutions by a kind
of restrictive water-filling, which presented an alternative way to design an effective storage space
allocation strategy. In fact, this optimal allocation strategy prefers to provide more storage size for
crucial event classes in order to make the rational use of resources, which agrees with the individuals’
cognitive mechanism.

Then, we presented the properties of this strategy based on the message importance measure
(MIM) detailedly. It is obtained that there is a trade-off between the relative weighted reconstruction
error (RWRE) and available storage size. In fact, if a small quantity of loss of total data value is
accepted by users, this strategy will further compress data based on the conventional methods of data
compression. Moreover, the compression performance of this storage system improves as the absolute
value of importance coefficient increases. This is due to the fact that a fraction of data can contain
the overwhelming majority of useful information that exerts a tremendous fascination on users as
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the importance coefficient approaches negative/positive infinity, which suggests that the users’ interest
is highly-concentrated. On the other hand, the probability distribution of event classes also has an effect
on the compression results. When the useful information is only highly enriched in a small portion
of raw data naturally from the viewpoint of users, such as the small-probability event scenarios, it is
obvious that we can compress the data greatly with the aid of these characteristics of distribution.
Furthermore, the properties of storage size and RWRE based on non-parametric MIM were also
discussed. In fact, the RWRE in the data with a uniform distribution was invariably the largest in any
case. Therefore, this paper harbors the idea that the data with uniform information distribution is
incompressible from the perspective of optimal storage size allocation based on data value, which is
consistent with the well known conclusion in information theory in a sense.

Proposing a more general distortion measure between the raw data and the compressed data,
which no longer only applies to digital data, and using it to acquire the high-efficiency lossy
data compression systems from the perspective of message importance are of our future interests.
In addition, we are also interested in using this optimal storage space allocation strategy in a real
application with a real data stream in the future.
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Appendix A. Proof of Theorem 2

In fact, Equation (25) can be rewritten as

li =


0 if Wi < e−β ln r.

β− − ln Wi
ln r

if e−β ln r ≤Wi ≤ e(L−β) ln r.

L if Wi > e(L−β) ln r.

(A1)

When Wi > Wj, we have

li − lj =



0 if pi > e(L−β) ln r, pj > e(L−β) ln r.

L− β−
ln Wj

ln r
if pi > e(L−β) ln r, e−β ln r ≤ pj ≤ e(L−β) ln r.

L if pi > e(L−β) ln r, pj < e−β ln r.

ln Wi − ln Wj

ln r
if e−β ln r ≤ pi ≤ e(L−β) ln r, e−β ln r ≤ pj ≤ e(L−β) ln r.

β− − ln Wi
ln r

if e−β ln r ≤ pi ≤ e(L−β) ln r, pj < e−β ln r.

0 if pi < e−β ln r, pj < e−β ln r.

(A2)
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Due to Equation (8b), we obtain that 0 ≤ β− − ln Wi
ln r ≤ L, and therefore L− β− ln Wj

ln r ≥ 0. Furthermore,

it is easy to check that
ln Wi−ln Wj

ln r since that Wi > Wj. Thus, li − lj ≥ 0 if Wi > Wj for ∀i, j ∈ {1, 2, . . . , n}.
The proof is completed.

Appendix B. Proof of Lemma 1

(1) For γp, it is noted that

n

∑
i=1

p2
i =

1
n

(
n

∑
i=1

p2
i

n

∑
i=1

12

)
≥ 1

n

(
n

∑
i=1

pi

)2

=
1
n

, (A3)

where the equality holds only if (p1, p2, . . . , pn) is a uniform distribution. Moreover,

∑n
i=1 p2

i ≤∑n
i=1 pi = 1, (A4)

where the equality holds only if there is only pt = 1 (t ∈ {1, 2, . . . , n}) and pk = 0 for k 6= t.
(2) For γp − pi, we have ∑n

i=1 p2
i − pi ≤ ∑n

i=1 p2
i ≤ 1. We have equality if and only if pt = 1 and

pi = 0 for i 6= t. Therefore, we only need to check ∑n
i=1 p2

i − pi ≥ −1/4.
First, if n = 1, we obtain ∑n

i=1 p2
i − pi = 0.

Second, if n = 2, we obtain ∑n
i=1 p2

i − pi = 2(p1 − 3/4)2 − 1/8. It is easy to check that ∑n
i=1 p2

i −
pi ≥ −1/8.

Third, if n > 3, we use the method of Lagrange multipliers. Let

J(p) =
n

∑
j=1

p2
j − pi − λ(

n

∑
j=1

pj − 1). (A5)

Setting the derivative to 0, we obtain

2p∗j − λ = 0 for j 6= i (A6)

2p∗j − 1− λ = 0 for j = i. (A6a)

Substituting p∗j in the constraint ∑n
j=1 p∗j = 1, we have

λ(n− 1)
2

+
λ + 1

2
= 1. (A7)

Hence, we find λ = 1/n and

p∗j =


n + 1

2n
if j = i,

1
2n

if j 6= i.
(A8)

In this case, we get

n

∑
j=1

p2
j − pi =

n− 1
4n2 +

(n + 1)2

4n2 − n + 1
2n

=
−n2 + n

4n2 ≥ −1
4

. (A9)

Thus, Lemma 1 is proved.
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Appendix C. Proof of Theorem 3

(1) First, let pi < pj when v > 0. It is noted that

Wi =
ev(1−pi)

∑n
k=1 ev(1−pk)

>
ev(1−pj)

∑n
k=1 ev(1−pk)

= Wj. (A10)

Therefore, we find li ≥ lj since that Wi > Wj, due to Theorem 2.
(2) Second, let pi < pj when v < 0. It is noted that

Wi =
ev(1−pi)

∑n
k=1 ev(1−pk)

<
ev(1−pj)

∑n
k=1 ev(1−pk)

= Wj. (A11)

Therefore, we find li ≤ lj since that Wi < Wj, due to Theorem 2. The proof is completed.

Appendix D. Proof of Theorem 4

We define an auxiliary function as

f (v) =
∑i=1 piev(1−pi)r−li

∑n
j=1 pje

v(1−pj)
. (A12)

According to Equation (38), it is noted that the the monotonicity of Dr(x, v) with respect to v is the
same with that of f (v).

Without loss of generality, let li of pi be

li =


L if i = 1, 2, . . . , t1,

ln(ln r) + ln Wi − ln λ

ln r
if i = t1 + 1, . . . , t2,

0 if i = t2 + 1, t2 + 2, . . . , n,

(A13)

where λ is given by Equation (20) where {Tj, j = 1, . . . , ÑL} = {1, 2, . . . , t1} and {Ij, j = 1, . . . , Ñ} =
{t1 + 1, . . . , t2}.

The derivative of li with respect to v is given by

l′i =


∑t2

k=t1+1 pk(pk − pi)

ln r(∑t2
k=t1+1 pk)

if i = t1 + 1, . . . , t2.

0 else.

(A14)

Hence,

f ′(v) =
∑i ∑j pi pje

v(2−pi−pj)r−li (pj − pi − l′i ln r)(
∑j pje

v(1−pj)
)2 =

F1 + F2(
∑j pje

v(1−pj)
)2 , (A15)

where F1 = ∑i ∑j pi pje
v(2−pi−pj)r−li (pj − pi) and F2 = ∑i ∑j pi pje

v(2−pi−pj)r−li (−l′i ln r).
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(1) When v > 0, we have

F1 = ∑
pj<pi

pi pje
v(2−pi−pj)r−li (pj − pi) + ∑

pj>pi

pi pje
v(2−pi−pj)r−li (pj − pi) (A16)

≤ ∑
pj<pi

pi pje
v(2−pi−pj)r−lj(pj − pi) + ∑

pj>pi

pi pje
v(2−pi−pj)r−li (pj − pi) (A16a)

= ∑
pj<pi

pi pje
v(2−pi−pj)r−lj(pj − pi) + ∑

pi>pj

pi pje
v(2−pi−pj)r−lj(pi − pj) (A16b)

= ∑
pj<pi

pi pje
v(2−pi−pj)r−lj(pj − pi + pi − pj) (A16c)

= 0. (A16d)

In fact, if pi > pj, then we will have li ≤ lj due to Theorem 3. Thus, r−li (pj − pi) ≤ r−lj(pj − pi)

in this case. With taking pi pje
v(2−pi−pj) ≥ 0 into account, we have Equation (A16a). Furthermore,

Equation (A16b) is obtained by exchanging the notation of subscript in the second item.
For t1 < i ≤ t2 and 1 ≤ j ≤ n, we have

F2 =
t2

∑
i=t1+1

n

∑
j=1

pi pje
v(2−pi−pj)r−li (−l′i ln r) (A17)

=
t2

∑
i=t1+1

n

∑
j=1

pi pje
v(1−pj)−ln ln r+ln λ(−l′i ln r) (A17a)

=
n

∑
j=1

(
pjBj

(
t2

∑
i=t1+1

pi(−l′i ln r)

))
(A17b)

=
n

∑
j=1

pjBj


t2
∑

i=t1+1
p2

i

t2
∑

k=t1+1
pk −

t2
∑

k=t1+1
p2

k

t2
∑

i=t1+1
pi

t2
∑

k=t1+1
pk


 (A17c)

= 0, (A17d)

where Bj = exp{v(1− pj)− ln ln r + ln λ}.
Based on the discussions above, we have

f ′(v) =
F1 + F2(

∑n
i=1 piev(1−pi)

)2 ≤ 0. (A18)

Since that f ′(v) ≤ 0 when v > 0, Dr(x, v) is monotonically decreasing with v in (0,+∞).
(2) Similarly, when v < 0, if 0 < pj < pi, then we will have li > lj due to Theorem 3. Thus,

r−li (pj − pi) ≥ r−lj(pj − pi) in this case. With taking pi pje
v(2−pi−pj) ≥ 0 into account, we have

F1 ≥ ∑
pj<pi

pi pje
v(2−pi−pj)r−lj(pj − pi) + ∑

pj>pi

pi pje
v(2−pi−pj)r−li (pj − pi) (A19)

= ∑
pj<pi

pi pje
v(2−pi−pj)r−lj(pj − pi) + ∑

pi>pj

pi pje
v(2−pi−pj)r−lj(pi − pj) (A19a)

= ∑
pj<pi

pi pje
v(2−pi−pj)r−lj(pj − pi + pi − pj) (A19b)

= 0, (A19c)

where Equation (A19a) is obtained by exchanging the notation of subscript in the second item.
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In addition, F2 is still given by Equation (A17), and F2 = 0. As a result, f ′(v) ≥ 0 when v < 0.
Therefore Dr(x, v) is monotonically increasing with v in (−∞, 0).

(3) When v = 0, the storage size li for i = 1, 2, . . . , n will be all equal to T, and therefore
Dr(x, 0) = (rL−T − 1)/(rL − 1). Based on the discussion in (1) and (2), we obtain Dr(x, v) ≤ Dr(x, 0).
The proof is completed.
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