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Abstract: The subject of the study was the osmotic volume transport of aqueous CuSO4 and/or ethanol
solutions through a selective cellulose acetate membrane (Nephrophan). The effect of concentration
of solution components, concentration polarization of solutions and configuration of the membrane
system on the value of the volume osmotic flux (Jr

vi) in a single-membrane system in which the
polymer membrane located in the horizontal plane was examined. The investigations were carried out
under mechanical stirring conditions of the solutions and after it was turned off. Based on the obtained
measurement results Jr

vi, the effects of concentration polarization, convection polarization, asymmetry
and amplification of the volume osmotic flux and the thickness of the concentration boundary layers
were calculated. Osmotic entropy production was also calculated for solution homogeneity and
concentration polarization conditions. Using the thickness of the concentration boundary layers,
critical values of the Rayleigh concentration number (Rr

C), i.e., the switch, were estimated between
two states: convective (with higher Jr

vi) and non-convective (with lower Jr
vi). The operation of this

switch indicates the regulatory role of earthly gravity in relation to membrane transport.

Keywords: membrane transport; single-membrane system; Kedem–Katchalsky equations;
concentration polarization; osmosis; natural convection

1. Introduction

The membrane is a selective barrier separating the interior of the cell from its surroundings and
plays a key role in the biological cell [1]. Attempts have been made to apply some features of cell
membranes in membrane technologies used in various fields of science, technology and medicine as
well as in various industries for a long time. Therefore, studies on membrane transport processes
are carried out in order to learn, among others, mechanisms of transport across cell membranes or
the development of membrane technologies and techniques useful in medicine (hemodializer) and
industrial technologies (bioreactors, biorefineries, modules for food processing and water treatment,
wastewater treatment, etc.) [2]. Polymers constitute the majority of film-forming materials: polymers
highly stable (e.g., polybenzimidazole, polyamide, polytriazole, cellulose acetate, cellulose triacetate,
etc.) and biodegradable polymers (e.g., poly/lactic acid, cellulose, bacterial cellulose, chitozan, etc.) [3].
They provide membrane materials for osmotic-based membrane system [4,5].

The membrane diffusion processes occurring spontaneously in real conditions are accompanied
by the phenomenon of concentration polarization [6–9]. It consists in changing the concentration
field or density of solutions in the areas on both sides of the membrane caused by the creation of
concentration boundary layers. These layers significantly reduce membrane transport, which leads
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to a reduction in the efficiency of membrane processes in industrial technologies [2]. In biological
systems as well as microchip systems of artificial membranes, concentration creation can have positive
impact due to the spontaneous regulatory properties of the value of flux through the membrane,
which in turn translates into slowing the source of entropy, and thus, slowing down the aging of the
system [10]. S-entropy is the only general physical quantity that indicates irreversible and one-way
flow of processes, including biological processes [11]. This means that entropy is produced in any
non-equilibrium thermodynamic system, including membrane systems. Local entropy production
is the sum of four contributions: thermal, diffusion, viscous and chemical [12]. Under isothermal,
non-viscous conditions and without chemical reactions, the diffusion contribution plays a major role.
It also applies to membrane transport processes.

All “earthly phenomena” occur in the resultant gravitational field, whose main source is the Earth,
the Moon and the Sun. The research into the impact of gravity on the concentration (density) field,
generated in the environment of the separation membrane of non-mechanically mixed solutions, began
in the 1970s. In 1972, the pioneering paper of S. Przestalski and M. Kargol about the discovery of the
phenomenon of graviosmosis was published [8]. These studies were undertaken and continued by
researchers directly or indirectly associated with the scientists. So far, several hundred papers on this
issue have been published [7,13–20].

In previous papers, the results of experimental studies on the volume osmotic flux (Jr
vi, r = α,

β, i = 1, 2) and solute flux (Jr
i , r = α, β, i = 1, 2) were presented. The solutions separated by the

membrane contained aqueous solutions of glucose and/or ethanol [15,16], potassium chloride and/or
ammonia [19]. The first of these substances causes an increase in and the second decreases the density
of solutions. The characteristics of Jr

vi = f (∆Ci, r = α, β, i = 1, 2) and Jr
i = f (∆Ci, r = α, β, i = 1, 2) presented

in these papers are non-linear and show typical transitions from convective to non-convective state
and inversely. However, for the same membrane, they differ in terms of details that are related to the
physico-chemical properties of the solutions. These papers also showed that the value of the volume
osmotic flux depends on the membrane transport properties, the configuration of the membrane
system as well as the physicochemical properties and composition of the solutions separated by the
membrane. The common feature of these transports is that the value of this flux is higher in convective
than non-convective conditions.

The purpose of the present paper was to investigate the effect of earthly gravity on concentration
fields in the membrane areas. To achieve this goal, the authors will determine volume osmotic fluxes
(Jr

vi) in a single-membrane system, in which a Nephrophan membrane (used in plate hemodialyzers)
located in a horizontal plane, separates water and a ternary solution consisting of water, CuSO4

and/or ethanol. In addition, the authors will examine the effect of the concentration of individual
solution components and the configuration of the membrane system on the value of Jr

vi. The study
will be carried out under conditions of mechanical mixing of the solutions and after it has been
turned off. Based on the obtained measurement results Jr

vi, the authors will calculate the effects of:
concentration polarization, natural convection, asymmetry and amplification of the volume osmotic
flux, as well as the thickness of concentration boundary layers. The authors will also calculate the
osmotic entropy production for solution homogeneity and concentration polarization conditions as
well as interpret the results obtained using the osmotic concentration polarization factor (ζr

i ). This
factor, through the concentration permeability coefficient of the boundary layer (ωr

o), treated as a liquid
membrane with a reflection coefficient equal to zero, will be related to the thickness of the concentration
boundary layers. The thickness of these layers will be used to estimate the Rayleigh concentration
number (Rr

C), i.e., the parameter controlling the transition from non-convective to convective state. The
Rayleigh concentration number acts as a switch between two states: convective (with higher Jr

vi) and
non-convective (with lower Jr

vi). The operation of this switch indicates the regulatory role of earthly
gravity in relation to membrane transport.
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2. Electrochemical Membrane Cell

Let us consider membrane transport in a physicochemical cell, shown in Figure 1. In this cell,
the membrane (M), arranged in a horizontal plane, at the initial moment (t0 = 0), separated two
homogeneous solutions of the same non-electrolytic substance with concentrations Cui i Cdi (Cui >

Cdi). If the membrane in question is isotropic, symmetrical, electro-neutral and selective for water
and solute, its transport properties are characterized only by the coefficients: hydraulic permeability
(Lp), reflection (σi) and permeability of solute (ωi) [21]. For times satisfying the condition t > t0, on
both sides of the membrane, the creation of concentration boundary layers begins, which change the
concentration field in the areas around the membrane, generating concentration polarization [6,21].
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Figure 1. Single membrane system: M = membrane; Cui and Cdi (Cui > Cdi, k = 1 or 2) = solution
concentrations; Jαvi, Jvi

β (k = 1 or 2) = volume flux for the α and β configuration of the membrane
system, respectively.

The nature of the concentration field in the areas around the membrane is determined by the density
of the solutions separated by the membrane. If the density of the solution with Cui concentration
reaches a critical value in relation to the density of the solution with Cdi concentration, then the
concentration field changes its nature from diffusive to diffusion - convective. Under the conditions of
the diffusion field of concentration, the concentration of the solution, which initially was Cui, decreases
to the value Cαd

ui or Cβd
ui , and the concentration of the solution, which initially was Cd, increases to

the value of Cαd
di or Cβd

di (Cαd
ui > Cαd

di , Cβd
ui > Cβd

di ). In turn, under the conditions of diffusion-convective
concentration field, the concentration of the solution that initially amounted to Cui decreases to the
value Cαk

ui or Cβk
ui , and the concentration of the solution that initially amounted to Cdi increases to the

value of Cαk
di or Cβk

di (Cαk
ui > Cαk

di , Cβk
ui > Cβk

di ). In addition, the conditions Cαk
ui > Cαd

ui , Cαk
di > Cαd

di , Cβk
ui > Cβd

ui

and Cβk
di > Cβd

di are fullfilled.
Therefore, under the conditions of the diffusion field of concentration, on both sides of the

membranes there are concentration boundary layers lαd
u , lαd

d , lβd
u and lβd

d under conditions of the

diffusion-convective field of concentration; concentration boundary layers lαk
u , lαk

d , lβk
u and lβk

d . The

thickness of the layers lαk
u , lαk

d , lβk
u and lβk

d is much smaller than the layers lαd
u , lαd

d , lβd
u i lβd

d . The

thicknesses of layers are denoted by δαu , δαd , δβu i δβd respectively. The concentration boundary layers are
treated as pseudomembranes, whose transport properties are determined by the coefficients σαui = σαdi =

σ
β
ui = σ

β
di = 0 and ωαui, ω

α
di, ω

β
ui and ωβdi. The volume flux through the complexes lαu /M/lαd and lβu /M/lβd

will be denoted by Jαvi and Jβvi. respectively. Membrane volume transport processes occurring under
the conditions of concentration polarization of areas on both sides of the membrane can be described
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using the first Kedem–Katchalsky equation (for volume flux) [21]. For the homogeneity conditions of
diluted electrolyte solutions, this equation can be written as follows.

Jvi = Lp

(Pu − Pd) ±
2∑

i=1

σi fiRT(Cui −Cdi)

 (1)

In turn, for concentration polarization conditions, this equation will take the form [19]

Jr
vi = Lpζ

r
p

(Pu − Pd) ±
2∑

i=1

σiζ
r
i fiRT(Cui −Cdi)

 (2)

In the above equation, the coefficients of the hydrostatic permeability of the solvent and the
reflection of the solute are respectively denoted by Lp and σi. In turn, ζr

p and ζr
i are the coefficients

of pressure and osmotic concentration polarization, respectively. The symbol fi (1 ≤ fi ≤ 2) means
the Vant Hoff coefficient. Expressions (Ph; Pl) = ∆P and RT(Ch; Cl) = ∆π refer to the difference of
respectively hydrostatic pressures (Ph, Pl) and osmotic pressures on both sides of the membrane (RT is
the product of gas constant and absolute temperature and Ch and Cl; concentration of solutions). The
coefficients ωαui, ω

α
di, ω

β
ui and ωβdi and δαu , δαd , δβu and δβd are related to the following expressions ωαui = Dα

ui

(RTδαu)−1, ωαdi = Dα
di (RTδαd )−1, ωβui = Dβ

ui (RTδβu)−1 and ωβdi = Dβ
di (RTδβd)−1, where Dα

ui, Dα
di, Dβ

ui and Dβ
di

is the appropriate diffusion coefficient. The coefficients ζr
i , δ

r
u, δr

d, ωmi, Dr
ui and Dr

di are related by the
equation [22]

ζr
i =

1 + RTωmi

 δr
u(

Dr
ui

)
l

+
δr

d(
Dr

di

)
h



−1

(3)

where: r = α or β and i = 1 or 2. This equation shows that the value of the coefficient ζr
i depends on

the thickness of the concentration boundary layers δr
u i δr

d. The process of creating these layers can be
followed using a Mach-Zehnder interferometer [7,22,23]. It is also possible, based on interferograms, to
determine the time-spatial evolution of the concentration field and to determine the time dependence
of the concentration thicknesses of boundary layers [24]. The process of transition from diffusion
to convective concentration field can be controlled by the Rayleigh concentration number (RC) [25].
Assuming that δr

u = δr
d = δr

0, Dr
ui = Dr

di = Di this number for ternary solutions can be described by the
equation [26,27]

Rr
Ci = gRT(δr

0)
4

2∑
i=1

1
νiDi

{
1
ρi

(
∂ρ

∂C

)
i

[
ωi(Cui −Cdi)

2RTωiδr
0 + Di

]}
(4)

where g is the gravitational acceleration; ρi is the mass density, νi is the kinematic viscosity of fluid,
1
ρi

(
∂ρ
∂C

)
i

is the variation of density with the concentration.

Entropy is produced in every membrane system, including the biological one. In the case where
the driving forces in the membrane system are the differences in hydrostatic pressure (∆p) and osmotic
pressure (∆πk), entropy production (Pr

S) can be described by the equation [10,11]

Pr
S = T−1

Jr
vi(∆p±

∑
i

∆πi) +
∑

i

(
Jr
i ∆πiCi

−1
) (5)

where: Jr
i is the flux of i-th solute, Ci = (Cui −Cdi)

[
ln(CuiCdi

−1
)
]−1 is the average solution concentration.

3. Methodology for Measuring the Volume Flux

The study of the volume osmotic flux (Jr
vi) was carried out using the measuring set described

in the previous paper [18]. This set consisted of two cylindrical measuring vessels (U, D) made of
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Plexiglas with a volume of 200 cm3 each. Vessel U contained the tested binary or ternary solution,
while vessel D had pure water. As binary solutions, aqueous CuSO4 solutions or aqueous ethanol
solutions were used. The ternary solutions were ethanol solutions in an aqueous CuSO4 solution or
CuSO4 solutions in an aqueous ethanol solution. It should be noted that the density of aqueous ethanol
solutions is less than the density of water, and the density of the aqueous solution of CuSO4 is greater
than the density of water. In turn, the density of ethanol solutions in aqueous CuSO4 and the density
of CuSO4 solutions in aqueous ethanol may be less than, equal to or greater than the density of water.

The U and D vessels were separated by a cellulose acetate membrane called Nephrophan situated
in a horizontal plane with an area of S = 3.36 cm2 and transport properties determined, in accordance
with Kedem and Katchalsky formalism, by the factors: hydraulic permeability (Lp), reflection (σi)
and diffusion permeability (ωi). The Nephrophan membrane is the microporous, highly hydrophilic
polymeric filter used in medicine (VEB Filmfabrik, Wolfen, Germany). This membrane is made of
cellulose acetate (cello-triacetate (OCO-CH3)n) [28,29]. The electron microscope image of surface and
cross-section of these membrane it was presented in ref. [18]. The values of these coefficients for CuSO4
(index 1) and ethanol (index 2), determined in a series of independent experiments, are: Lp = 5 × 10−12

m3N−1s−1, σ1 = 0.17, σ2 = 0.025, ω1 = 0.6 × 10−9 mol N−1s−1 and ω2 = 1.52 × 10−9 mol N−1s−1. The
U vessel was connected to a graduated pipette (K) positioned in a plane parallel to the membrane
plane, which was used to measure the volume increase of the solution (∆V) filling the vessel. In turn,
the vessel D was connected to the water reservoir (N) with adjustable height relative to the pipette K,
which served to compensate for the hydrostatic pressure (∆p = 0) present in the measuring set.

Each experiment was performed for the α and β configuration of the membrane system. In
the α configuration, the test solution was in the vessel above the membrane, and the water, in the
vessel under the membrane. In the β configuration, the order in which the solution and water were
positioned relative to the membrane was reversed. The flow tests consisted of measuring the volume
increase (∆V) of the solution in the pipette K at 10 min intervals (∆t). For each configuration, the
tests were carried out according to a two-step procedure [15]. In the first stage, the volume flux was
determined under mechanical mixing conditions of the solutions separated through the membrane
at a speed of 500 rpm. until steady state was achieved. The second stage began with switching off

the mechanical stirring of the solutions and consisted in testing the flux until the second steady state
was obtained. All the investigations of volume osmotic flows were carried out under isothermal
conditions for T = (295 ± 0.5) K. The volume osmotic flux, which is a measure of the volume osmotic
flows, was calculated on the basis of the measurement of the change in volume (∆V) in the pipette K
occurring during ∆t, through the membrane surface area S, using the formula Jr

vi = (∆Vr
i )S−1(∆t)−1

for conditions ∆p = 0. The volume osmotic fluxes always occurred from the solution with a lower
concentration to the solution with a higher concentration. Investigations of volume osmotic flux in
both configurations consisted in determining the Jαv1 = f (t), Jβv1 = f (t), Jαv2 = f (t) and Jβv2 = f (t)
for different concentrations and composition of solutions. Each measurement series was repeated
three times. The relative error made in determining Jr

vi was not greater than 3%. Based on these

characteristics, for the steady state, the characteristics Jαv1 = f (∆C1, ∆C2 = constant), Jβv1 = f (∆C1, ∆C2

= constant), Jαv2 = f (∆C2, ∆C1 = constant) and Jβv2 = f (∆C2, ∆C1 = constant) were compiled.

4. Results and Discussion

The results of the volume osmotic flux study for the conditions of homogeneity of solutions and
conditions of concentration polarization of solutions separated by the membrane are presented in
Figures 2 and 3. Figure 2 shows the experimental dependences Jαv1 = f (∆C1, ∆C2 = constant) and

Jβv1 = f (∆C1, ∆C2 = constant) and in Figure 3; experimental dependences Jαv2 = f (∆C2, ∆C1 = constant)

and Jβv2 = f (∆C2, ∆C1 = constant) for the α (r = α) and β (r = β) configurations of the membrane
system, respectively. The dependences shown in Figures 1 and 2 were obtained under mechanical
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mixing of solutions at a speed of 500 rpm. These dependences for aqueous CuSO4 solutions (Figure 2)
and aqueous ethanol solutions (Figure 3) are linear.
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for ∆C2 = 0, except for the segment 0 < ∆C1 ≤ 50 mol m−3, causes a linear increase in the fluxes Jαv1

and Jβv1 (Jαv1 > Jβv1). In turn, graphs 4α and 4β show that, unlike binary solutions, an increase in ∆C1 in
ternary solutions (∆C2 = 750 mol m−3), causes a non-linear increase in the value of the flux Jαv1 for the

α configuration and an initial increase followed by a non-linear decrease in value Jβv1 flux for the β

configuration of the membrane system. In the case of the 4α curve shown in Figure 2 (∆C2 = 750 mol
m−3), Jαv1 achieves relatively small values slightly dependent on the value of ∆C1 up to ∆C1 ≤ 50 mol
m−3. For ∆C1 > 50 mol m−3 Jαv1 reaches much higher values and strongly dependent on the value of
∆C1. The largest increase in the value of Jαv1 falls within the range of 37.5 mol m−3 < ∆C1 ≤ 62.5 mol
m−3. In addition, for ∆C1 > 62.5 mol m−3), Jαv1 increases linearly as the ∆C1 value increases. In turn,
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the 4β curve shows that Jβv1 initially decreases and for ∆C1 = 18.75 mol m−3 it reaches the minimum
value, and then increases non-linearly with an increase in the value of ∆C1 up to ∆C1 = 100 mol m−3.
The largest increase in the value of Jβv1 falls within the range of 50 mol m−3 < ∆C1 ≥ 62.5 mol m−3.

Graphs 3α and 3β presented in Figure 3 show that an increase in the ∆C2 value in binary solutions
(aqueous ethanol solutions) for the zero value of the concentration of CuSO4 (∆C1 = 0), apart from the
segment 0 < ∆C2 ≤ 200 mol m−3, causes a linear increase in fluxes Jαv2 and Jβv2 (Jαv2 < Jβv2). In turn, graphs
4α and 4β show that an increase in the value of ∆C2 in ternary solutions (∆C1 = 50 mol m−3), causes a
non-linear increase in the value of the flux Jαv2 for the α configuration and an initial increase followed

by a non-linear decrease in the value of the flux Jβv2 for the configuration β of membrane system. In the
case of the 4α curve shown in Figure 3 (∆C1 = 50 mol m−3), Jαv2 increases linearly until the maximum
value is Jαv2 = 9.4 × 10−8 m s−1 for ∆C2 = 540 mol m−3 and then decreases linearly. It should be noted
that the increments Jαv2 of the first segment of the 2α graph and the decreases in the value of the second
segment of this graph are the same. In turn, the 2β curve shown in this figure shows that the value of
Jβv2 is initially independent of ∆C2, and then decreases non-linearly for ∆C2 ≥ 500 mol m−3. The largest

increase in the value of Jβv2 occurs in the range of 625 mol m−3 < ∆C2 ≥ 750 mol m−3. To sum up, the
creation of concentration boundary layers, which is a consequence of turning off mechanical mixing
of solutions, reduces the value of the volume osmotic flux by up to 97%. The appearance of natural
convection reduces the reduction by up to 52%.

4.1. The Effect of Concentration Polarization

The measure of the concentration polarization effect (∆Jr
vk) is the equation

∆Jr
vk = Jvk − Jr

vk (6)

where Jvk is the volume osmotic flux determined for mechanical stirring conditions of solutions, Jr
vk is

the volume osmotic flux determined for concentration polarization conditions, k = 1 or 2 and r = α or
β. Figure 4 shows the dependence ∆Jr

v1 = f (∆C1, ∆C2 = constant). This graph shows that for binary

solutions ∆Jβv1 > ∆Jαv1 in the whole range of ∆C1. In the case of ternary solutions ∆Jβv1 > ∆Jαv1, for ∆C1 <

47 mol m−3 and ∆Jβv1< ∆Jαv1, for ∆C1 > 47 mol m−3.
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Figure 4. Graphic illustration of the dependence ∆Jr
v1 = f (∆C1, ∆C2 = constant), (r = α, β) for CuSO4

solutions in aqueous ethanol and the α and β configurations of the membrane system. Graphs 1α and
1β were obtained for ∆C2 = 0, graphs 2α and 2β; for ∆C2 = 750 mol m−3.
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Figure 5 shows the dependencies ∆Jr
v2 = f (∆C2, ∆C1 = constant). From this graph it follows that

for binary solutions (∆C1 = 0) ∆Jβv2 > ∆Jαv2 in the whole range of ∆C2. In the case of ternary solutions

(∆C1 = 50 mol m−3) ∆Jβv2 < ∆Jαv2 for ∆C2 < 750 mol m−3 and ∆Jβv2 > ∆Jαv2, for ∆C1 > 750 mol m−3.

Entropy 2020, 20, x 8 of 18 

 

 
Figure 5. Graphic illustration of the dependence Δ𝐽 = 𝑓(∆𝐶 , ∆𝐶 = constant), (r = α, β) for ethanol 
solutions in the aqueous solution of CuSO4 and α and β configurations of the membrane system. 
Graphs 1α and 1β were obtained for ΔC1 = 0, graphs 2α and 2β; for ΔC1 = 50 mol m−3. 

4.2. Convection Effect 

The measure of convective effect (Δ𝐽 ) is an equation Δ𝐽 = 𝐽 − 𝐽  (7) 

where 𝐽  is the volume flux determined for concentration polarization conditions of solutions and 
α configuration of the membrane system, 𝐽  is the volume flux determined for the conditions of 
concentration polarization of solutions and configuration of the membrane system, k = 1 or 2. 

Figure 6 shows the dependence Δ𝐽 = 𝑓(∆𝐶 , ∆𝐶 = constant). This graph shows that for binary 
solutions (ΔC2 = 0) Δ𝐽  > 0 in the whole range of ΔC1. For ternary solutions (ΔC2 = 750 mol m−3), Δ𝐽  
< 0 for ΔC1 < 47 mol m−3 and Δ𝐽  > 0, for ΔC1 > 47 mol m−3. 

 
Figure 6. Graphic illustration of the dependence Δ𝐽 = 𝑓(∆𝐶 , ∆𝐶 = constant), (r = α, β) for CuSO4 
solutions in aqueous ethanol and the α and β configurations of the membrane system. Graph 1 was 
obtained for ΔC2 = 0, graph 2; ΔC2 = 750 mol m−3. 

Figure 5. Graphic illustration of the dependence ∆Jr
v2 = f (∆C2, ∆C1 = constant), (r = α, β) for ethanol

solutions in the aqueous solution of CuSO4 and α and β configurations of the membrane system.
Graphs 1α and 1β were obtained for ∆C1 = 0, graphs 2α and 2β; for ∆C1 = 50 mol m−3.

4.2. Convection Effect

The measure of convective effect (∆Jvk) is an equation

∆Jvk = Jαvk − Jβvk (7)

where Jαvk is the volume flux determined for concentration polarization conditions of solutions and

α configuration of the membrane system, Jβvk is the volume flux determined for the conditions of
concentration polarization of solutions and configuration of the membrane system, k = 1 or 2.

Figure 6 shows the dependence ∆Jv1 = f (∆C1, ∆C2 = constant). This graph shows that for binary
solutions (∆C2 = 0) ∆Jvk > 0 in the whole range of ∆C1. For ternary solutions (∆C2 = 750 mol m−3),
∆Jvk < 0 for ∆C1 < 47 mol m−3 and ∆Jvk > 0, for ∆C1 > 47 mol m−3.
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Figure 6. Graphic illustration of the dependence ∆Jv1 = f (∆C1, ∆C2 = constant), (r = α, β) for CuSO4

solutions in aqueous ethanol and the α and β configurations of the membrane system. Graph 1 was
obtained for ∆C2 = 0, graph 2; ∆C2 = 750 mol m−3.

Figure 7 shows the dependence ∆Jv2 = f (∆C2, ∆C1 = constant). This graph shows that for binary
solutions (∆C1 = 0), ∆Jv2 < 0 in the whole range of ∆C2. For ternary solutions (∆C1 = 50 mol m−3), ∆Jv2

> 0, for ∆C2 < 750 mol m−3, and ∆Jv2 < 0, for ∆C2 > 750 mol m−3. It should be noted that the test results
presented in Figures 6 and 7 are similar to the results of studies on the gravity-osmotic flux measured
in a two-membrane system [14,15]. The membranes in this system were horizontally oriented and
separated aqueous solutions of glucose and/or ethanol. The concentrations of these solutions met the
condition Cui = Cdi < Cmi (Cui, Cdi; solution concentrations in the external compartments, Cmi; solution
concentration in the inter-membrane compartment). The equivalent of such a membrane system is two
single-membrane systems connected in parallel.

Entropy 2020, 20, x 9 of 18 

 

Figure 7 shows the dependence Δ𝐽 = 𝑓(∆𝐶 , ∆𝐶 = constant). This graph shows that for binary 
solutions (ΔC1 = 0), Δ𝐽  < 0 in the whole range of ΔC2. For ternary solutions (ΔC1 = 50 mol m−3), Δ𝐽  
> 0, for ΔC2 < 750 mol m−3, and Δ𝐽  < 0, for ΔC2 > 750 mol m−3. It should be noted that the test results 
presented in Figures 6 and 7 are similar to the results of studies on the gravity-osmotic flux measured 
in a two-membrane system [14,15]. The membranes in this system were horizontally oriented and 
separated aqueous solutions of glucose and/or ethanol. The concentrations of these solutions met the 
condition Cui = Cdi < Cmi (Cui, Cdi; solution concentrations in the external compartments, Cmi; solution 
concentration in the inter-membrane compartment). The equivalent of such a membrane system is 
two single-membrane systems connected in parallel. 

 
Figure 7. Graphic illustration of the dependence Δ𝐽 = 𝑓(∆𝐶 , ∆𝐶 = constant), (r = α, β) for ethanol 
solutions in aqueous CuSO4 solution and α and β configurations of the membrane system. Graph 1 
was obtained for ΔC1 = 0, graph 2; for ΔC1 = 50 mol m−3. 

4.3. The Effect of Asymmetry of the Volume Osmotic Flux 

The comparison of the 3α and 3β and 4α and 4β plots presented in Figures 2 and 3 shows the 
asymmetry of the volume osmotic fluxes, which is the evidence of the osmotic rectifying properties 
of the membrane system. The measure of this asymmetry is the asymmetry coefficients k1= 𝐽 /𝐽  
and k2 = 𝐽 /𝐽 . The curves in Figures 8 and 9 show the characteristics of k1 = f(ΔC1, ΔC2 = constant) 
and k2 = f(ΔC2, ΔC1 = constant). Graphs 1 in Figures 8 and 9 illustrate the dependences k1 = f(ΔC1, ΔC2 
= 0) and k2 = f(ΔC2, ΔC1 = 0). respectively. In turn, graphs 2 presented in these graphs illustrate the k1 
= f(ΔC1, ΔC2 = 750 mol m−3) and k2 = f(ΔC2, ΔC1 = 50 mol m−3). The values of k1 and k2 coefficients, 
different from unity, indicate that the tested membrane system has rectifying properties, which are 
manifested as the asymmetry of the volume osmotic flux. 

Figure 7. Graphic illustration of the dependence ∆Jv2 = f (∆C2, ∆C1 = constant), (r = α, β) for ethanol
solutions in aqueous CuSO4 solution and α and β configurations of the membrane system. Graph 1
was obtained for ∆C1 = 0, graph 2; for ∆C1 = 50 mol m−3.

4.3. The Effect of Asymmetry of the Volume Osmotic Flux

The comparison of the 3α and 3β and 4α and 4β plots presented in Figures 2 and 3 shows the
asymmetry of the volume osmotic fluxes, which is the evidence of the osmotic rectifying properties of
the membrane system. The measure of this asymmetry is the asymmetry coefficients k1= Jαv1/Jβv1 and k2
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= Jαv2/Jβv2. The curves in Figures 8 and 9 show the characteristics of k1 = f (∆C1, ∆C2 = constant) and
k2 = f (∆C2, ∆C1 = constant). Graphs 1 in Figures 8 and 9 illustrate the dependences k1 = f (∆C1, ∆C2 =

0) and k2 = f (∆C2, ∆C1 = 0). respectively. In turn, graphs 2 presented in these graphs illustrate the k1 =

f (∆C1, ∆C2 = 750 mol m−3) and k2 = f (∆C2, ∆C1 = 50 mol m−3). The values of k1 and k2 coefficients,
different from unity, indicate that the tested membrane system has rectifying properties, which are
manifested as the asymmetry of the volume osmotic flux.
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4.4. The Effect of Amplification the Volume Osmotic Flux

The measure of the amplification effect of the osmotic volume flux is the amplification coefficient,
the definition of which is the equation

ar
vk =

(∆Jr
vk)ternary

(∆Jr
vk)binary

(8)
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where (∆Jr
vk)ternary

is the volume flux increase for ternary solutions, (∆Jr
vk)binary

is the volume flux
increase for ternary solutions, k = 1 or 2 and r = α or β.

Figures 10 and 11 show the dependencies ar
vk = f

(
C1, ∆C2 = constant

)
, where C1 = 0.5(Cj + Cj+1),

j = 1, 2, . . . ). Figure 10 shows that for binary solutions (∆C2 = 0) ar
v1 > 0 in the whole range C1 and takes

values from ar
v1 = 2.1 to ar

v1 = 3.3. In the case of ternary solutions (∆C2 = 750 mol m−3), the dependence

ar
vk = f

(
C1, ∆C2 = constant

)
is nonlinear, with a clearly marked minimum, and the coefficient ar

v1 is

negative. The minimum of this dependence has the coordinates C1 = 43.75 mol m−3 and ar
v1 = −54.
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In turn, Figure 11 shows that for binary solutions (∆C1 = 0), ar
v2 > 0 in the whole range C2 and takes

values from ar
v2 = 0.5 to ar

v2 = 1.4. In the case of ternary solutions (∆C1 = 50 mol m−3), the dependence

ar
v2 = f

(
C2, ∆C1 = constant

)
is non-linear, with the maximum clearly indicated, and the coefficient ar

v2
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assumes positive values for C2 < 760 mol m−3 and negative for C2 < 760 mol m−3. The maximum of this
dependence has the coordinates C2 = 515.75 mol m−3 and ar

v2 = 36.7. Rectifying properties along with
amplification properties and oscillation generation belong to the group of regulatory phenomena [19].

4.5. Evaluation of Osmotic Entropy Production

The osmotic entropy production (Pr
S) will be calculated using Equation (5), omitting the term∑

i

(
Jr
i ∆πiCi

−1
)

and assuming that ∆p = 0 and i = 1, 2. With such assumptions the Equation (5) will take

the form
Pr

S = Jr
viR[(Cu1 −Cd1) + (Cu2 −Cd2)] (9)

This equation shows that Pr
S is directly proportional to, among others, Jr

vi. Taking into
account the results of Jr

vi presented in Figures 2 and 3 in the above equation, the relationships
Pr

S1 = f (∆C1, ∆C2 = constant) and Pr
S2 = f (∆C1, ∆C2 = constant), (r = α, β). The results of the

calculations are presented in Figures 12 and 13. These figures show that for the same values ∆C1 i ∆C2,
both Pr

S1 and Pr
S2 follow the changes in the values of Jr

v1 or Jr
v2. Under the conditions of homogeneity of

the solutions Pr
S1 and Pr

S2 they increase with the increase of the values of Jr
v1 and Jr

v2, respectively. On
the other hand, under the conditions of concentration polarization, the values Pr

S1 and Pr
S2 increase

when free convection appears in the membrane system and decreases when convection disappears.
Due to the fact that concentration polarization reduces Jr

v1 and Jr
v2, it also reduces Pr

S1 and Pr
S2.
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S1 = f (∆C1, ∆C2 = constant), (r = α, β) for

CuSO4 solutions in aqueous ethanol and the α and β configurations of the membrane system. Graphs 1,
3α and 3β were obtained for ∆C2 = 0, graphs 2, 4α and 4β; for ∆C2 = 750 mol m−3.
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ethanol solutions in aqueous CuSO4 and the α and β configurations of the membrane system. Graphs 1,
3α and 3β were obtained for ∆C1 = 0, graphs 2, 4α i 4β; for ∆C1 = 50 mol m−3.

Equations (2)–(4) will be used to interpret the results of osmotic volume flux tests for concentration
polarization conditions and presented in Figures 2 and 3. For this purpose, Equation (2), for pu; pd = 0,
will be transformed into the form

ζr
i =

Jr
vi

RTLp[σ1 f1(Cu1 −Cd1) + σ2 f2(Cu2 −Cd2)]
(10)

Having Equation (3) in the above equation, we get

1

1 + RTωmi

(
δr

u
Dr

ui
+

δr
d

Dr
di

) =
Jr
vi

RTLp
∑2

i=1 σi fi(Cui −Cdi)
(11)

Assuming that δr
u = δr

u = δr
i , Dr

ui = Dr
di = Di and f 2 = 1, the equation can be written in a simplified

form, namely

δr
i =

Di
2RTωmi

RTLp
∑2

i=1 σi fi(Cui −Cdi)

Jr
vi

− 1

 (12)

Based on Equation (10), the dependencies δα1 = f (∆C1, ∆C2 = constant), δβ1 = f (∆C1, ∆C2 =

constant), δα2 = f (∆C2, ∆C1 = 50 mol m−3) and δβ2 = f (∆C2, ∆C1 = 50 mol m−3) were calculated. The
following data was used for RC calculations: D1 = 0.73 × 10−9 m2s−1, D2 = 1.37 × 10−9 m2s−1, R = 8.31
J mol−1K−1, T = 295 K, Lp = 5 × 10−12 m3N−1s−1, σ1 = 0.17, σ2 = 0.025, ωm1 = 0.6 × 10−9 mol N−1s−1

and ωm2 = 1.52 × 10−9 mol N−1s−1, f 1 = 2 and f 2 = 1. The results of the calculations are illustrated in
Figures 14 and 15.
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Figure 14. Graphic illustration of the dependencies δr
i = f (∆C1, ∆C2 = constant), (r = α, β; i = 1, 2) for

CuSO4 solutions in aqueous ethanol solution and α and β configurations of membrane system. Graphs
1α and 1β were obtained for ∆C2 = 0, graphs 2α and 2β; for ∆C2 = 750 mol m−3.
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Figure 15. Graphic illustration of the dependencies δr
2 = f (∆C1, ∆C2 = constant) (r = α, β) for ethanol

solutions in aqueous CuSO4 solution and α and β configurations of the membrane system. Graphs 1α
and 1β were obtained for ∆C1 = 0, graphs 2α and 2β; for ∆C1 = 50 mol m−3.

The curves 1α and 1β presented in Figure 14 illustrate the dependencies δα1 = f (∆C1, ∆C2 = 0)

and δβ1 = f (∆C1, ∆C2 = 0), while the curves 2α and 2β–dependencies δα1 = f (∆C1, ∆C2 = 750 mol

m−3) and δβ1 = f (∆C1, ∆C2 = 750 mol m−3). From the course of the 1α and 1β curves, it can be seen

that the values of δα1 decrease and δβ1–increase non-linearly. For ∆C1 = 5.1 mol m−3 δα1 = δ
β
1= 1.02 × 10−3

m, which means that the value of δr
1 is independent of the configuration of the membrane system and

thus also of the dependence between the gravity vector and the density gradient of binary solutions
separated through the membrane. For ∆C1 ≥ 25 mol m−3, the value of δα1 is approximately constant

and amounts to about δα1 = 0.9 × 10−3 m and for ∆C1 ≥ 50 mol m−3 δ
β
1 = 12.7 × 10−3 m = constant, and

therefore δα1 < δ
β
1. This means that for ∆C1 ≥ 25 mol m−3 and the α configuration of the membrane

system, convection fluxes generated in the membrane areas destroy the concentration boundary layers,
increasing the volume flux through the membrane.

For the 2α and 2β curves in this figure, the values of δα1 initially increase linearly and then, after
reaching the maximum value δα1 = 9.9 × 10−3 m for ∆C1 = 6.25 mol m−3 decrease non-linearly. In turn,
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the values of δβ1 increase non-linearly. For ∆C1 = 50 mol m−3 δα1 = δ
β
1= 1.02 × 10−3 m, which means

that the value of δr
1 is independent of the configuration of the membrane system and thus also of the

dependence between the gravity vector and the density gradient of ternary solutions separated through
the membrane. Comparing graphs 2α and 2β, it can be seen that for ∆C1 < 50 mol m−3, δα1 < δ

β
1 while

for ∆C1 > 50 mol m−3, δα1 > δ
β
1. This means that for ∆C1 > 50 mol m−3 and the β configuration of the

membrane system (curve 2β), and for ∆C1 < 50 mol m−3 and the configuration of the membrane system
(curve 2α), the convection fluxes generated in the membrane areas cause concentration destruction of
boundary layers, increasing the volume flow through the membrane.

The curves 1α and 1β presented in Figure 15 illustrate the dependencies δα2 = f (∆C2, ∆C1 =0)

and δβ2 = f (∆C1, ∆C2 = 0), while the curves 2α and 2β–dependencies δα2 = f (∆C2, ∆C1 = 50 mol m−3)

and δβ2 = f (∆C2, ∆C1 = 50 mol m−3). From the course of the 1α and 1β curves, it can be seen that the

values of δα2 initially increase non-linearly and δβ2–decrease non-linearly. For ∆C2 = 50 mol m−3, δα2 = δ
β
2

= 0.94 × 10−3 m, which means that the value of δr
2 is independent of the configuration of the membrane

system and thus also of the dependence between the gravity vector and the density gradient of binary
solutions separated through the membrane. For ∆C2 ≥ 375 mol m−3 δα2 = 6.8 × 10−3 m = const. and for

∆C2 ≥ 375 mol m−3 δ
β
2 = 0.2 × 10−3 m = const., and therefore δα2 > δ

β
2. This means that for ∆C2 ≥ 375

mol m−3 in the β configuration of the membrane system, convection fluxes generated in the membrane
regions destroy the concentration boundary layers, increasing the volume flow through the membrane.

In the case of the 2α and 2β curves in this figure, the values of δβ2 initially increase and then, after

reaching the maximum value δβ2 = 5.1 × 10−3 m for ∆C2 = 250 mol m−3 decrease non-linearly. In turn,

the values of δα2 change non-linearly. For ∆C2 = 850 mol m−3 δα2 = δ
β
2 = 0.92 ×10−3 m, which means

that the value of δr
2 is independent of the configuration of the membrane system and thus also of

the dependence between the gravity vector and the density gradient of ternary solutions separated
through the membrane. Comparing graphs 2α and 2β, it can be seen that for ∆C2 < 840 mol m−3

δα2 < δ
β
2, while for ∆C2 > 840 mol m−3, δα2 > δ

β
2. This means that for ∆C1 > 840 mol m−3 and the β

configuration of the membrane system (graph 2β), and for ∆C1 < 840 mol m−3 and the α configuration
of the membrane system (graph 2 α), the convection fluxes generated in the membrane areas cause
concentration destruction of the boundary layers, increasing the volume flux through the membrane.

As already mentioned, the Rayleigh concentration number (Rr
C), which is the parameter controlling

the transition from non-convective to convective state can be expressed using Equation (4). We assume
that at the point where δαi = δ

β
i = (δi)crit., (i = 1, 2) the concentration number meets the condition RαCi

= RβCi = (RCi)crit.. Calculations (RCi)crit. will be made for the following data D1 = 0.73 × 10−9 m2s−1,
D2 = 1.37 × 10−9 m2s−1, ω1 = 0.6 × 10−9 mol N−1s−1, ω2 = 1.52 × 10−9 mol N−1s−1, ρ0 = 998 kg m−3,
ν0 = 1.012 × 10−6 m2s−1, (∂ρ/∂C1)bin. = 0.06 kg mol−1 (for ∆C2 = 0), (∂ρ/∂C1)ter. = 0.05 kg mol−1 (for
∆C2 = 750 mol m−3), (∂ρ/∂C2)bin. = −0.0095 kg mol−1 (for ∆C1 = 0) and (∂ρ/∂C2)ter. = −0.0035 kg mol−1

(for ∆C1 = 50 mol m−3). It should be noted that ∂ρ/∂Ci (i = 1, 2) is added for solutions whose density
increases with increasing concentration and negative–when the density of solutions decreases with
increasing concentration. Therefore, the indication (RCi)crit. is determined by the indication ∂ρ/∂Ci.
For calculations the values of δαi = δ

β
i = (δi)crit. (i = 1, 2) will be used, taken from the curves presented

in Figures 14 and 15. Graphs 1α and 1β intersect at a point with coordinates ∆C1 = 5.1 mol m−3 and δα1
= δ

β
1= 1.02 × 10−3 m. Taking the relevant data into Equation (4) gives (RC1)crit.= 1737.89. In turn, the

curves 2α and 2β presented in Figure 14 intersect at a point with coordinates ∆C1 = 50 mol m−3 and
δα1 = δ

β
1= 1.02 × 10−3 m. Therefore, taking into account relevant data in Equation (4) gives (RC2)crit. =

1335.69. Figure 15 shows that the diagrams 1α and 1β intersect at a point with the coordinates ∆C2 =

50 mol m−3 δα2 = δ
β
2 = 0.92 × 10−3 m. Therefore, taking into account the relevant data in Equation (4)

gives (RC2)crit. = −1169.79. Figure 15 also shows that the graphs 2α and 2β intersect at a point with the
coordinates ∆C2 = 850 mol m−3 δα2 = δ

β
2 = 0.92 ×10−3 m. Therefore, taking into account relevant data in

Equation (4) we get (RC2)crit. = −1408.68.
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Graphs 1α and 1β show that for RC1 < (RC1)kryt. and RC2 > (RC2)kryt. non-convective state in both
configurations of the membrane system is being dealt with. RC1 > (RC1)kryt. in the α configuration
(graphs 1α and 2α) a convective state is obtained and in the β configuration (graphs 1β and 2β)–the
non-convective state. On the other hand, for RC2 < (RC2)kryt. in the α configuration (graphs 1α and
2α) a non-convective state is obtained, and for the β configuration (graphs 1β and 2β); the convective
state. Therefore, the authors have shown that the concentration Rayleigh number (Rr

C) is a parameter
controlling the transition from non-convective to convective state. This number also acts as a switch
between two convective states (with a higher Jr

vi value) and non-convective states (with a lower Jr
vi

value). The operation of this switch indicates the regulatory role of earthly gravity in relation to
membrane transport.

Investigations on membrane transport are one of the most forward-looking directions in
biotechnology, biomedical engineering and environmental protection and engineering, especially in
water treatment and purification. Moreover, in recent years the research on integrated membrane
processes has also been carried out [30]. The research results presented in the paper may also be
relevant for nature-inspired chemical engineering (NICE) [31].

5. Conclusions

In this article, the authors presented the results of studies on the impact of the concentration
of individual solution components and the configuration of the membrane system on the value of
the volume osmotic flux (Jr

vi) in a single-membrane system, in which the polymer membrane was
positioned in a horizontal plane and separated water and a ternary solution consisting of water, ethanol
and/or CuSO4. From the studies it results, that for conditions of concentration polarization and binary
solutions Jr

vi is a linear and for ternary solutions a non-linear function of the solution concentration
differences. In addition, Jr

vi depends on the configuration of the membrane system. For mechanically
stirred solutions, Jr

vi is independent of the membrane system configuration and is a linear function
of the difference in solution concentrations. The effects of concentration polarization, convective
polarization, asymmetry and amplification of the volume osmotic flux calculated on the basis of
Jr
vi measurements are a consequence of the concentration polarization of solutions adjacent to the

membrane. The effects of concentration polarization and convective polarization for binary solutions
are linear and for ternary ones a non-linear function of the concentration difference. The measures of
asymmetry and amplification of the volume osmotic flux (which are a consequence of concentration
polarization) are the corresponding asymmetry coefficients k1 and k2 and the amplification coefficients
av1 and av2. The k1 coefficient for both binary and ternary solutions is a non-linear function of the
difference in concentration of CuSO4. In turn, the value of the coefficient k2 for binary solutions is
independent of the concentration and for ternary solutions; it is a non-linear function of the difference
in ethanol concentration. For binary solutions, the values of av1 and av2 coefficients are constant and
positive. In turn, for ternary solutions, these coefficients are a non-linear function of the respective
concentration differences and assume both positive and negative values.

It has been shown that entropy production occurs in the single-membrane system study, which is
a consequence of two thermodynamic forces (one variable and the other constant) and the generation
of an osmotic flux. It has been shown, that the factor ζr

i , by the thickness of the concentration
boundary layer (δr

i ), can be associated with the Rayleigh concentration number (Rr
C), i.e., the parameter

controlling the transition from non-convection (diffusion) to convective concentration field. Four
different concentration Rayleigh number, which differ in values and signs were obtained.

The Rr
C signs is conditioned by the relationship between the gravity vector and the solution

density gradient. It has been shown that this number also acts as a switch between two states of
the concentration field: convective (with a higher Jr

vi value) and non-convective (with a lower Jr
vi

value). The operation of this switch indicates the regulatory role of earthly gravity in relation to
membrane transport.
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