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Abstract: When a quantum pure state is drawn uniformly at random from a Hilbert space, the state
is typically highly entangled. This property of a random state is known as generic entanglement of
quantum states and has been long investigated from many perspectives, ranging from the black hole
science to quantum information science. In this paper, we address the question of how symmetry of
quantum states changes the properties of generic entanglement. More specifically, we study bipartite
entanglement entropy of a quantum state that is drawn uniformly at random from an invariant subspace
of a given symmetry. We first extend the well-known concentration formula to the one applicable to any
subspace and then show that 1. quantum states in the subspaces associated with an axial symmetry are
still highly entangled, though it is less than that of the quantum states without symmetry, 2. quantum
states associated with the permutation symmetry are significantly less entangled, and 3. quantum states
with translation symmetry are as entangled as the generic one. We also numerically investigate the
phase-transition behavior of the distribution of generic entanglement, which indicates that the phase
transition seems to still exist even when random states have symmetry.

Keywords: entanglement entropy; symmetry; random states

1. Introduction

Randomness is often an important resource in information processing. This is true even in the
quantum regime, where quantum randomness is often represented by a random state, a quantum pure state
that is drawn uniformly at random from a Hilbert space. A random state is known to be extremely useful
and is used in numerous quantum information protocols, from communication [1–3] and computation
tasks [4–6] to benchmarking quantum devices [7–10]. The origin of its usefulness can be traced back to the
counter-intuitive property of a random state that it is typically extremely highly entangled.

Quantum randomness is also the key to understanding the physics in complex quantum many-body
systems. In the last decade, based on various measures of quantum randomness, such as scrambling [11,12],
operator entanglement [13,14], and out-of-time-ordered correlators [15], quantum randomness in various
complex quantum many-body systems has been intensely studied. It eventually turns out that randomness
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is indeed the key to connect the physics in quantum chaotic systems and that of quantum black hole,
revealing an exotic relation between them [16–18]. The measures used in the analyses are all to elucidate
entanglement of a random state. Hence, entanglement of a random state plays a crucial role in the approach.

The entanglement of a random state is often called generic entanglement of quantum states due to the
fact that a random state is uniformly distributed in a Hilbert space and can be considered to represent
generic properties of quantum pure states. Generic entanglement has been especially studied in terms of
a bi-partition of the system. It was first pointed out that in terms of the entanglement entropy, generic
entanglement in a large system is typically extremely concentrated around a nearly, but not exactly,
maximum value [19–23]. The analysis was then extended to a probabilistic statement [24], revealing
the relation with quantum statistical mechanics [25], and to the higher moments of the distribution of
entanglement entropy [26–33]. In particular, higher moments were studied in great detail using the
technique of random matrix theory. It was shown that the probability density function of the distribution
has two singularities, splitting the distribution into three different entanglement phases with different
entanglement spectra. Since the entanglement spectrum characterizes topological orders of the state, this
implies that there exists yet another intriguing relation between a random state and an exotic quantum
many-body physics.

There is also a close relation between generic entanglement and quantum error correction, one of the
key concepts in quantum information science. It is well-known that a randomly chosen unitary is typically
a good encoder of quantum information [34–36]. It is recently pointed out that a certain property of generic
entanglement is responsible for this [37]. Hence, revealing the properties of generic entanglement will
help our understanding of why quantum error correction works well, even providing real applications of
generic entanglement in quantum information science.

Most of these studies of generic entanglement focus on the random state that is uniformly distributed
over the whole Hilbert space. However, quantum many-body systems often have symmetry, restricting the
distribution of states into that over the invariant subspace of the symmetry. Hence, the aforementioned
results about generic entanglement cannot be directly applied to complex quantum many-body systems
with symmetry. It is also worth pointing out that symmetry is the guiding principle in many-body
physics, allowing us to understand intriguing many-body phenomena, such as thermal and quantum
phase transitions, in a unified manner. Thus, it will be interesting to take symmetry into account in the
study of generic entanglement.

In this paper, we address the question of how symmetry of quantum systems changes the properties
of generic entanglement. We specifically investigate bipartite entanglement of random states in invariant
subspaces. To this end, we first provide a general formula that is useful to analyze the distribution of
entanglement over a random state in any subspace. We then apply the formula to investigate the generic
entanglement in invariant subspaces associated with a given symmetry. We especially consider three
symmetries, 1. axial symmetry that leads to the conservation law of a component of angular momentum,
2. permutation symmetry that characterizes indistinguishable bosons and fermions, and 3. translation
symmetry that defines the structure of a lattice. We particularly focus on these symmetries since the axial
symmetry is the one used in Ref. [37] that pointed out the relation between generic entanglement and
quantum error correction, the permutation symmetry is commonly believed to result in weak entanglement,
and the translation symmetry is important in relation to the area law of entanglement. We however
note that the formula we derive can be applied to any symmetries. We then find that compared to
generic entanglement of a random state without symmetry, the axial and permutation symmetries reduce
the amount of entanglement by a constant and a significant degree, respectively, while the translation
symmetry does not lead to a significant reduction. We also numerically study whether the distribution of
entanglement over random states in invariant subspaces has phase-transition-like behaviors. Although it
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is less conclusive due to a large finite-size effect, we show that certain entanglement phases seem to exist
even when a random state has permutation or translation symmetry.

This paper is organized as follows. We start with preliminaries in Section 2 and overview properties of
generic entanglement in Section 3. In Section 4, our main technical tool in the analysis is provided. We then
investigate generic entanglement with axial, permutation, and translation symmetries in Sections 5–7,
respectively. We finally numerically analyze possible entanglement phases of random states with symmetry
in Section 8. After we make a remark on the feasibility of generic entanglement in Section 9, we conclude
with a summary and discussions in Section 10.

2. Preliminaries

Throughout the paper, we consider a quantum system Λ composed of n qudits, whose Hilbert
space is (Cd)⊗n, and its bi-partition into subsystems A and Ā, which consist of with nA and nĀ qudits,
respectively. We assume that nA ≤ nĀ. For Hilbert spaces, and operators, we often write the systems on
which they are defined in the superscript. For instance,HΛ is the Hilbert space associated with the system
Λ, and XA is an operator X acting on the system A. A reduced operator on A of ρΛ is denoted simply by
ρA, i.e., ρA = TrĀ[ρ

Λ]. We denote by I the identity operator, and by Π projection onto some subspace.

2.1. Haar Measure, Haar Random Unitaries, and Haar Random States

On a unitary group with finite degree, there exists the unique unitarily invariant probability measure,
known as the Haar measure. We denote it by H, which satisfies the following properties: for any subset V of
unitaries and for any unitary U,

H(VU) = H(UV) = H(V) ≥ 0, and
∫

H(U)dU = 1. (1)

The integral is taken over the whole unitary group. When a unitary U is chosen from the unitary group
uniformly at random with respect to the Haar measure H, we denote it by U ∼ H and call it a Haar
random unitary.

Let U ∼ H be a Haar random unitary acting on a Hilbert spaceH. The state |φ〉 obtained by applying
U to a fixed canonical pure state |φ0〉 ∈ H is called a Haar random state. With a slight abuse of notation,
we denote a Haar random state as |φ〉 ∼ H. Due to the uniform distribution of a Haar random unitary,
the distribution of a Haar random state does not depend on the choice of the canonical state |φ0〉 and is
uniform in the Hilbert spaceH. Thus, it is often used to study generic properties of quantum pure states.
In this paper, we often use the Haar measure on the unitary group acting on a subspace K of a Hilbert
spaceH. The Haar measure on the unitary group acting only on the subspace K is denoted by HK.

Since the Haar measure is a probability measure, we can think of an average of a function f (|φ〉) of a
state |φ〉 over the Haar measure H. We denote the average by E|φ〉∼H[ f (|φ〉)]. Similarly, the probability
with respect to the Haar measure is denoted by Prob|φ〉∼H.

2.2. Entanglement Entropy, and Entanglement Spectrum

For a pure state |φ〉 inHΛ, we quantify the amount of entanglement with respect to the bi-partition A
and Ā by the von Neumann entropy of the reduced density matrix φA in A. That is, we use

EA(|φ〉) := S(φA), (2)



Entropy 2020, 22, 684 4 of 19

as a measure of bi-partite entanglement of |φ〉, where S(ρ) := −Tr[ρ log ρ] is the von Neumann entropy.
The measure EA(|φ〉) is often referred to as the entanglement entropy of |φ〉 and takes the value between 0
for separable states and nA log d for maximally entangled states.

For a given pure state |φ〉 ∈ HΛ, the distribution of the eigenvalues of the reduced density matrix φA

in decreasing order is called an entanglement spectrum of |φ〉 in A.

3. Generic Entanglement without Symmetry

It is well-known that a random state in an n-qudit system Λ = AĀ is typically extremely
highly entangled between A and Ā, which has been extensively studied in the literature [19–24,26–33].
For instance, the average entanglement entropy of a Haar random state satisfies [19–24]

E|φ〉∼H[EA(|φ〉)] > nA log d− d−n+2nA

2 ln 2
. (3)

Since the maximum value of the entanglement entropy is nA log d, this implies that the average is
exponentially close to the maximum when 1 � nA. This statement was later strengthened to the
probabilistic statement that the entanglement entropy of a random state strongly concentrates around its
average [24].

Theorem 1 (Theorem III.3 in Ref. [24]). Let Λ be a composite system, Λ = AĀ, and n and nA be the number of
qudits in Λ and A, respectively, that satisfy n/2 ≥ nA ≥ log 3/ log d. For a random state |φ〉 ∼ H inHΛ, it holds
that ∀ε > 0,

Prob|φ〉∼H

[
EA(|φ〉) ≥ nA log d− d−n+2nA

ln 2
− ε

]
> 1− exp

[
− (dn − 1)ε2

8π2 ln 2(nA log d)2

]
. (4)

Since the probability is close to 1 doubly exponentially in the number n of qudits in Λ, this clearly
shows that it is extremely unlikely that the entanglement entropy of a random state takes the value far
from its average.

Theorem 1 is not only of theoretical interest, but also has implications onto many topics in quantum
physics. In particular, in the context of the condensed-matter physics, where qudits are often aligned on a
lattice, a pure state is said to obey the volume law of entanglement when the entanglement entropy of the
state is proportional to the number of qudits in the subsystem. Although the volume law does not hold in
most many-body systems, it is expected to hold when the dynamics of the system is sufficiently scrambling,
which is likely to be the key feature bridging quantum chaos and quantum gravity. Hence, the volume
law of entanglement is considered to be one of the diagnostic features of complex many-body quantum
systems. In this context, Theorem 1, stating that a state generated by a random unitary dynamics typically
obeys the volume law of entanglement, implies that typical unitary dynamics without any restriction
should be highly chaotic.

The entanglement entropy of a Haar random state also has an intriguing property,
namely ‘phase transitions’ of the distribution [26–33]. This was first studied based on the purity of reduced
density matrices, and was then extended to the Rényi entropies and eventually to the von Neumann
entropy, i.e., the entanglement entropy. The probability density function of the entanglement entropy
EA(|φ〉) over a Haar random state |φ〉 ∼ H has two singularities when nA → ∞. Thus, the distribution
of the entanglement entropy is split into three regimes, which are sometimes called separable, typical,
and maximally entangled phases. Each entanglement phase has a different characteristic entanglement
spectrum. Thus, although the average of entanglement entropy of a Haar random state is nearly maximum,
its distribution has a rather rich structure.
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The main question in this paper is how symmetry of quantum states affects these properties of
generic entanglement. This is of crucial importance when we are interested in the implications of generic
entanglement on the physics in complex quantum many-body systems with symmetry.

4. Concentration of Entanglement Entropy of a Random State in a Subspace

To investigate the entanglement entropy of a random state with symmetry, we use the same technical
tool as used to show Theorem 1, which is the so-called concentration phenomena of the Haar measure [38].
It states that any real-valued function of a Haar random state strongly concentrates around its average if
the function is sufficiently smooth. As the entanglement entropy is a real-valued function, it can be directly
applied to the question we are interested in, leading to the following Theorem.

Theorem 2. Let HΛ be the Hilbert space of an n-qudit system Λ = AĀ, and K ⊂ HΛ be any DK-dimensional
subspace. Let ΩA

K and ΩĀ
K be a state on the subsystem A and Ā, defined by

ΩA
K := TrĀ

[
ΠΛ
K

DK

]
, and ΩĀ

K := TrA

[
ΠΛ
K

DK

]
, (5)

respectively, where ΠΛ
K is the projection onto K. Then, for a random state |φ〉 ∼ HK in K, and ∀ε > 0, it holds that

Prob|φ〉∼HK
[
EA(|φ〉) ≥ S̄(K)− ε

]
> 1− exp

[
− (DK + 1)ε2

72π3 ln 2(ln RK)2

]
, (6)

where
S̄(K) := − log

[
Tr(ΩA

K)
2 + Tr(ΩĀ

K)
2]− log

[
1− 1

DK + 1
]
, (7)

and RK = max|φ〉∈K[supp(φA)].

Theorem 2 is a slight generalization of Theorem 1, so that it is applicable to any subspace K ⊂ HΛ.
In the case of K = HΛ, Theorem 2 nearly recovers Theorem 1 except that the probability in Equation (6)
is worse than that in Equation (4). This is because the latter probability is obtained by using the median
rather than the average. Using the same technique, it will be possible to slightly improve Equation (6).

Proof of Theorem 2. The proof is based on Levy’s lemma [38]. We particularly use the lemma in the form
given in Ref. [24], which is tailored to the entanglement entropy: for any ε > 0, it holds that

Prob|φ〉∼HK
[
EA(|φ〉) ≥ EEA − ε

]
> 1− exp

[
− (DK + 1)ε2

72π3 ln 2(ln R)2

]
, (8)

where EEA := E|φ〉∼HK [EA(|φ〉)] is the average of EA over the probability measure HK on K. In the
following, we show that E|φ〉∼HK [EA(|φ〉)] ≥ S̄(K).

We first use the monotonicity of the Rényi entropy, i.e., S(ρ) ≥ − log[Trρ2]. Further using the Jensen’s
inequality, we obtain

EEA(|φ〉) ≥ − log
[
ETr[(φA)2]

]
. (9)
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We then introduce a system X′ of X for X = Λ, A, Ā, whose Hilbert space HX′ is isomorphic to HX,
and denote by IXX′ and FXX′ the identity and the swap operator on XX′, respectively. They are explicitly
given by

FXX′ =
dimHX

∑
i,j=1

|bi〉〈bj|X ⊗ |bj〉〈bi|X
′
, and IXX′ = IX ⊗ IX′ , (10)

where {|bi〉} is an orthonormal basis inHX . Note that the definition of FXX′ does not depend on the choice
of the basis. Using these operators and the so-called swap trick, i.e., Tr[PXQX ] = Tr[(PX ⊗QX′)FXX′ ] for
any operator P and Q on X, it follows that

ETr[(φA)2] = ETr[(φA ⊗ φA′)FAA′ ], (11)

= ETr[(φΛ ⊗ φΛ′)(FAA′ ⊗ IĀĀ′)], (12)

= Tr
[
E[φΛ ⊗ φΛ′ ](FAA′ ⊗ IĀĀ′)

]
. (13)

Hence, it suffices to compute E|φ〉∼HK [φ
Λ ⊗ φΛ′ ], which can be explicitly done using the unitary invariance

of the Haar measure.
For any unitary UK acting on the subspace K, it holds that

(UK ⊗UK
′
)E|φ〉∼HK [φ

Λ ⊗ φΛ′ ](UK ⊗UK
′
)† = E|φ〉∼HK [φ

Λ ⊗ φΛ′ ]. (14)

Due to the Schur-Weyl duality, this implies that E|φ〉∼HK [φ
Λ ⊗ φΛ′ ] is given by a linear combination of the

unitary representations of permutations between K and K′, or equivalently, a linear combination of IKK′

and FKK′ . In terms of the operators defined on Λ, they are respectively given by

IKK′ = ΠΛ
K ⊗ΠΛ

K′ , and FKK′ = (ΠΛ
K ⊗ΠΛ

K′)F
ΛΛ′(ΠΛ

K ⊗ΠΛ
K′). (15)

We now have E|φ〉∼HK [φ
Λ ⊗ φΛ′ ] = αIKK′ + βFKK′ for some coefficients α and β. The coefficients are

determined from the conditions that

Tr
[
E|φ〉∼HK [φ

Λ ⊗ φΛ′ ]
]
= 1, (16)

Tr
[
E|φ〉∼HK [φ

Λ ⊗ φΛ′ ]FΛΛ′] = 1. (17)

Noting that TrIKK′ = D2
K and TrFKK′ = DK, we obtain α = β = (DK(DK + 1))−1 and so,

E|φ〉∼HK [φ
Λ ⊗ φΛ′ ] =

IKK′ + FKK′

DK(DK + 1)
. (18)

We thus arrive at
ETr[(φA)2] =

1
DK(DK + 1)

Tr[(IKK′ + FKK′)(FAA′ ⊗ IĀĀ′)]. (19)

It is straightforward that

Tr[IKK′(FAA′ ⊗ IĀĀ′)] = Tr[ΠΛ
K ⊗ΠΛ

K′(F
AA′ ⊗ IĀĀ′)] (20)

= D2
KTr[(ΩA

K ⊗ΩA
K′)F

AA′ ] (21)

= D2
KTr[(ΩA

K)
2]. (22)
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To compute Tr[FKK′(FAA′ ⊗ IĀĀ′)], we expand the swap operator FKK′ as

FKK′ =
DK

∑
i,j=1
|ψi〉〈ψj|Λ ⊗ |ψj〉〈ψi|Λ

′
, (23)

where {|ψi〉}i is an orthonormal basis in K. This allows us to explicitly write down
Tr[FKK′(FAA′ ⊗ IĀĀ′)] as

Tr[FKK′(FAA′ ⊗ IĀĀ′)] =
DK

∑
i,j=1

Tr
[
TrĀ[|ψi〉〈ψj|Λ]TrĀ[|ψj〉〈ψi|Λ]

]
, (24)

where we used the swap trick. We further expand |ψi〉 as ∑dnĀ
α=1 |ψ̃α

i 〉A ⊗ |α〉Ā by using an orthogonal basis
{|α〉}α inHĀ. Note that |ψ̃α

i 〉A := (IA ⊗ 〈α|Ā)|ψi〉 are un-normalized. Using this notation, we have

TrĀ[|ψi〉〈ψj|Λ] =
dnĀ

∑
α=1
|ψ̃α

i 〉〈ψ̃α
j |A, (25)

leading to

Tr[FKK′(FAA′ ⊗ IĀĀ′)] =
DK

∑
i,j=1

dnĀ

∑
α,β=1
〈ψ̃β

i |ψ̃
α
i 〉〈ψ̃α

j |ψ̃
β
j 〉. (26)

We then use the relation that 〈ψ̃β
i |ψ̃

α
i 〉 = 〈ψi|(IA ⊗ |β〉〈α|Ā)|ψi〉 = 〈α|ψĀ

i |β〉 and obtain

Tr[FKK′(FAA′ ⊗ IĀĀ′)] =
dnĀ

∑
α,β=1

∣∣∣∣DK∑
i=1
〈α|ψĀ

i |β〉
∣∣∣∣2 (27)

=
dnĀ

∑
α,β=1

∣∣∣∣Tr
(

IA ⊗ 〈α|Ā
)(DK

∑
i=1

ψΛ
i

)(
IA ⊗ |β〉Ā

)∣∣∣∣2 (28)

=
dnĀ

∑
α,β=1

∣∣∣∣Tr
(

IA ⊗ 〈α|Ā
)
ΠK
(

IA ⊗ |β〉Ā
)∣∣∣∣2 (29)

= D2
K

dnĀ

∑
α,β=1

∣∣〈α|ΩĀ
K|β〉

)∣∣2 (30)

= D2
KTr(ΩĀ

K)
2 (31)

Altogether, we have

EEA(|φ〉) ≥ − log[ETr[(φA)2]] = − log
[(

1− 1
DK + 1

)(
Tr(ΩA

K)
2 + Tr(ΩĀ

K)
2)] = S̄(K). (32)

Substituting this into Equation (8), we obtain the desired statement.

Theorem 2 implies that when DK � (ln RK)2, the entanglement entropy of a random state |φ〉 ∼ HK
in the subspace K is typically more than S̄(K). Hence, when we are interested in the entanglement entropy
of a random state in the subspace K, what we need to do is to compute S̄(K), DK, and RK.
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5. Generic Entanglement of States with an Axial Symmetry

Based on Theorem 2, we now study generic entanglement when a random state has symmetry.
We start with a simple case of an axial symmetry of qubit-systems. This is because the relation between
generic entanglement and quantum error correcting codes [37] is particularly pointed out when the system
has an axial symmetry.

Suppose that the system consists of n-qubits and has an axial symmetry. Without loss of generality,
we assume that the symmetry is around the Z-axis. Each invariant subspace is then characterized by the
Z-component of angular momentum, or equivalently, the number m of up-spins as follows:

HΛ =
n⊕

m=0
HΛ

m, (33)

whereHΛ
m = span

{
|φ〉 : SZ|φ〉 = (m− n/2)|φ〉

}
with SZ being the spin-Z operator on n qubits, i.e., SZ =

∑n
i=1 S(i)

Z with S(i)
Z being the spin-Z operators acting on the ith qubit. The dimension Dm of each subspace

HΛ
m is given by Dm = (n

m). We consider the entanglement entropy EA(|φ〉) of a random state |φ〉 ∼ Hm,
where Hm is the Haar measured on the subspaceHΛ

m.
Since each subspaceHΛ

m can be spanned by the basis consisting of product states, ΩA
K for K = HΛ

m,
which we simply denote by ΩA

m, can be simply obtained as

ΩA
m =

1
(n

m)

m

∑
`=0

(
nĀ

m− `

)
ΠA

` , (34)

where ΠA
` is the projection onto the subspace of HA spanned by the states with ` up-spins.

We similarly have

ΩĀ
m =

1
(n

m)

m

∑
`=0

(
nA

m− `

)
ΠĀ

` . (35)

Thus, the S̄(Hm) is given by

S̄(Hm) = − log
[ m

∑
`=0

(
( nĀ

m−`)

(n
m)

)2(nA
`

)
+

m

∑
`=0

(
( nA

m−`)

(n
m)

)2(nĀ
`

)]
− log

[
1− 1

(n
m) + 1

]
. (36)

In Figure 1, we plot S̄(Hm)/nA as a function of m/n for a fixed n, and also the function
f (m/n) := 4m/n(1−m/n). Since they coincide well, we approximate S̄(Hm) by a quadratic function.

S̄(Hm) ≈ 4
m
n
(
1− m

n
)
nA. (37)

Using this expression and denoting m by γn with γ ∈ [0, 1], we obtain from Theorem 2 that a random
state |φ〉 ∼ Hγn in the subspaceHΛ

γn with a fixed Z-axis angular momentum (γ− 1/2)n satisfies

Prob|φ〉∼Hm

[
EA(|φ〉) ≥ 4γ(1− γ)nA − ε

]
> 1− exp

[
−

((n
m) + 1)ε2

72(π ln 2)3n2
A

]
, (38)

for any ε > 0. Note that we used a trivial bound 2nA on RK = max|φ〉∈K[supp(φA)]. This implies that as
far as γ is constant, the state still obeys the volume law, i.e., the entanglement entropy is proportional to
the number of qubits nA in the subsystem A. In this sense, the axial symmetry does not change the volume
law of entanglement. However, recalling that the entanglement entropy of a Haar random state of qubits
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without any symmetry is ≈nA, the axial symmetry can reduce the entanglement entropy by a constant
degree since Equation (38) shows that the coefficient of nA is 4γ(1− γ) that can be smaller than 1.

Figure 1. The function S̄(Hm)/nA is plotted by × as a function of m/n for a n = 100 and nA = 1 (A),
nA = 25 (B), and nA = 50 (C). We also provide a function f (m/n) := 4m/n(1−m/n) by a red dashed line
in each figure. It is clear that S̄(Hm)/nA ≈ f (m/n) for any nA and m.

6. Generic Entanglement of States with Permutation Symmetry

We next investigate the entanglement entropy of a random state with the permutation symmetry.
It is often argued that a state with permutation symmetry is generally weakly entangled [39,40]. Based
on Theorem 2, we here quantitatively justify that this common belief indeed holds for most permutation
symmetric states.

We especially consider the symmetric and antisymmetric subspaces in HΛ of n qudits, which are
respectively defined by

HΛ
+ := span

{
|φ〉 ∈ HΛ : Uσ|φ〉 = |φ〉, ∀σ ∈ Pn

}
, (39)

HΛ
− := span

{
|φ〉 ∈ HΛ : Uσ|φ〉 = sign(σ)|φ〉, ∀σ ∈ Pn

}
, (40)

where Pn is the permutation group of degree n, and Uσ is a unitary representation of σ ∈ Pn.
The dimensions D± of HΛ

± are given by D+ = (n+d−1
n ) and D− = (d

n), respectively. Note that HΛ
−

becomes non-trivial if and only if n ≤ d. From the physics point of view, the symmetric (antisymmetric)
subspace is a Hilbert space of indistinguishable bosons (fermions).

Let us first consider the entropy of a state ΩA
± = TrĀ[Π

Λ
±/D±], where ΠΛ

± is the projection onto the
symmetric/anti-symmetric subspace inHΛ. Due to the special properties of the permutation symmetry, it
turns out that ΩA

± = ΠA
±/Tr[ΠA

±]. To see this, we use another expression of ΠΛ
±/D±, that is

ΠΛ
±

D±
=
∫
U (d)

u⊗n|ϕ±〉〈ϕ±|u†⊗ndu, (41)

where u ∈ U (d) in the integral is a unitary acting on a single qudit, U (d) is the unitary group of degree d,
and |ϕ±〉 is any state inHΛ

±. This is a consequence of Schur’s lemma [41] and the fact that the symmetric
and anti-symmetric subspaces are irreducible representations of U (d) that acts as u⊗n ontoHΛ.
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For the symmetric subspace, we can take |ϕ+〉 as a product state |0〉⊗n. Then, we have

ΩA
+ = TrĀ

[
ΠΛ

+/D±
]

(42)

= TrĀ

[∫
U (d)

u⊗n|0〉〈0|⊗nu†⊗ndu
]

(43)

=
∫
U (d)

TrĀ
[
u⊗n|0〉〈0|⊗nu†⊗n]du (44)

=
∫
U (d)

u⊗nA |0〉〈0|⊗nA u†⊗nA du (45)

=
ΠA

+

Tr[ΠA
+]

. (46)

In the last line, we again used Shur’s lemma and the fact that |0〉〈0|⊗nA ∈ HA
+. For the anti-symmetric

subspace, we similarly obtain

ΩA
− =

∫
U (d)

TrĀ
[
u⊗n|ϕ−〉〈ϕ−|u†⊗n]du (47)

=
∫
U (d)

u⊗nA TrĀ
[
|ϕ−〉〈ϕ−|

]
u†⊗nA du. (48)

To check the support of TrĀ[|ϕ−〉〈ϕ−|], we decompose |ϕ−〉 into the form of ∑i |φi〉A ⊗ |i〉Ā,
where |i〉Ā = |i1〉 ⊗ · · · ⊗ |inĀ

〉 (i` = 0, . . . , d − 1) is an orthonormal product basis in Ā.
For any i, the state |φi〉A should be also anti-symmetric because, for any permutation σ ∈ PnA ,
(UA

σ ⊗ I Ā)|ϕ−〉 = sign(σ)|ϕ−〉 = sign(σ)∑i |φi〉A ⊗ |i〉Ā. Recalling that |φi〉A = (IA ⊗ 〈i|Ā)|ϕ−〉,
we obtain UA

σ |φi〉A = sign(σ)|φi〉, implying that |φi〉 ∈ HA
− for any i. Thus, the support of TrĀ[|φ−〉〈φ−|] is

HĀ
−. Again using the Schur’s lemma and the fact that the anti-symmetric subspace is irreducible, we obtain

ΩA
− =

ΠA
−

Tr[ΠA
−]

. (49)

It is now straightforward to compute Tr(ΩX
±)

2 for X = A, Ā as Tr(ΩX
±)

2 = 1/DX
±, where DX

± =

Tr[ΠX
±], leading to

S̄(H±) = − log
[

1
DA
±
+

1

DĀ
±

]
− log

[
1− 1

D± + 1

]
(50)

≈ log[DA
±]−

DA
±

DA
± + DĀ

±
. (51)

We also have RH± = DA
± since, by taking the partial trace, symmetric and anti-symmetric states remain

in the symmetric and anti-symmetric subspaces, respectively. Note that this also guarantees that trivial
upper bounds of the entanglement entropy for symmetric/anti-symmetric states are given by log[DA

±].
From Theorem 2, we finally obtain the following: for any ε > 0, a random state |φ〉 ∼ H± in the

symmetric/anti-symmetric subspace inHΛ satisfies

Prob|φ〉∼H±

[
log DA

± ≥ EA(|φ〉) ≥ log DA
± −

DA
±

DA
± + DĀ

±
− ε

]
> 1− exp

[
− (D± + 1)ε2

72π3 ln 2(ln DA
±)

2

]
. (52)
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Since D+ = (n+d−1
d−1 )� DA

+ = (nA+d−1
d−1 ) and D− = (d

n)� DA
− = ( d

nA
) when nA � n, the right-hand side is

extremely close to 1. Hence, we conclude that the entanglement entropy for symmetric/anti-symmetric
random states in a small subsystem A extremely concentrates between log DA

± − DA
±/(DA

± + DĀ
±) and

log DA
±.
To be more concrete, let us consider special cases of d. For simplicity, we ignore DA

±/(DA
± + DĀ

±).
We first look at the entanglement entropy of a random state in the symmetric space, which typically takes
the following value:

EA(|φ〉) ≈


(d− 1) ln[nA + 1] when d� nA,

(nA + d− 1)H
( d−1

nA+d−1

)
when d = Θ(nA),

nA ln[d− 1] when nA � d,

(53)

where H(p) = −p log p − (1− p) log(1− p) for 0 ≤ p ≤ 1 is the binary entropy. We especially note
that when d� nA, the entanglement entropy EA(|φ〉) for a random symmetric state is typically ≈log nA,
and fails to satisfy the volume law of entanglement. Thus, our result implies that the volume law fails
to hold when the many-body system is permutation symmetric and consists of the particles with a
constant degree of freedom, so that d� nA. A simple example may be many-body systems composed of
indistinguishable bosons. We however note that this result is a consequence of the facts that symmetric
states remain symmetric by taking the partial trace and that the symmetric subspace is small.

On the other hand, for the anti-symmetric random states, we have

EA(|φ〉) ≈ dH(γ), (54)

where γ := nA/d. Note that γ ≤ 1 since the anti-symmetric space is non-trivial only when n ≤ d. Since the
entanglement entropy of the random state without any symmetry is typically γd log d in terms of γ, we
conclude that the anti-symmetric condition of the state typically reduces the entanglement entropy by the
factor Θ(log d).

7. Generic Entanglement of States with Translation Symmetry

As the last, but not least, instance of symmetry, we consider translation symmetry, which is one of
the most common symmetries in many-body systems. We especially consider the case where qudits are
aligned on a one-dimensional line with the periodic boundary condition and A is an interval of the line.
The corresponding group T is generated by the shifting operator T, which shifts every qudit to the next
site. Since Tn is the identity due to the periodic boundary condition, the Hilbert spaceHΛ is decomposed
into discrete momentum subspaces such asHΛ =

⊕
θHΛ

θ , where θ ∈ { 2πk
n : k = 0, . . . , n− 1}. Here, each

subspace is defined by
HΛ

θ := span
{
|φ〉 ∈ HΛ : UT |φ〉 = eiθ |φ〉

}
, (55)

and UT is a unitary representation of T. This decomposition corresponds to a discrete version of Bloch’s
theorem. For simplicity, we consider only the case where n is a prime number. This simplifies the analysis,
but we expect that nearly the same result holds even when n is not prime with a slight modification.

To investigate the entanglement entropy, we first provide a basis in HΛ
θ and explicitly

write down the projector ΠΛ
θ onto the subspace. Let Ĉ be the set of n-dit sequences,

Ĉ = {0 . . . 00, 0 . . . 01, . . . , d− 1 . . . d− 1}, and C be the set Ĉ \ {~a}a, where ~a for a = 0, . . . , d − 1 is the
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n-dit sequence whose components are all a. Let CT be an equivalent class of C by the translation group T ,
CT := C/T . We construct a basis inHΛ

θ using the state

|cθ〉 =
1√
n

n−1

∑
k=0

eiθkUk
T |c〉, (56)

for c ∈ CT . Note that none of |cθ〉 is a zero vector due to the assumption that n is a prime number. The basis
is given by

BΛ
0 = {|~a〉}a=0,1,...,d−1 ∪ {|c0〉}c∈CT , (57)

and, for θ 6= 0,
BΛ

θ = {|cθ〉}c∈CT . (58)

Clearly, the dimension DΛ
θ of each subspace is given by

DΛ
θ =

{
dn−d

n + d for θ = 0,
dn−d

n otherwise.
(59)

Using these bases, we derive a upper bound of Tr(ΩX
θ )

2 for X = A, Ā, from which we obtain a
lower bound of − log[Tr(ΩA

θ )
2 + Tr(ΩA

θ )
2]. Since A and Ā can be treated in the same way, we consider

only ΩA
θ , which can be expanded as ΩA

θ = ∑a,b ωθ
ab|a〉〈b|, where a = a1 . . . anA and b = b1 . . . bnA (ai, bi ∈

{0, 1, . . . , d− 1} for all i = 1, . . . , nA). The off-diagonal terms ωθ
ab (a 6= b) are non-zero if and only if there

exists v = v1 . . . vnĀ
(vi ∈ {0, . . . , d− 1} for i = 1, . . . , nĀ) such that

|a⊕ v〉 = Uk
T |b⊕ v〉 (60)

for some k ∈ {1, . . . , n− 1}. Here, we used the notation that a⊕ v = a1 . . . anA v1 . . . vnĀ
. Hence, if the

number of i’s (i = 0, . . . , d− 1) in a differs from that in b, ωθ
ab = 0. This means that ΩA

θ is decomposed
into positive operators ΩA

θ (m0, . . . , md−1) on the Hilbert spaces spanned by states with configurations c
containing mi of i’s (i = 0, . . . , d− 1);

ΩA
θ =

⊕
(m0,...,md−1)

ΩA
θ (m0, . . . , md−1), (61)

where mi runs from 0 to nA under the condition that ∑d−1
i=0 mi = nA. Thus Tr(ΩA

θ )
2 is given by

Tr(ΩA
θ )

2 = ∑
(m0,...,md−1)

Tr
[(

Ωθ(m0, . . . , md−1)
)2]. (62)

The dimension of the support of ΩA
θ (m0, . . . , md−1) is M(m0, . . . , md−1) := nA !

m0!...md−1! .

From a counting argument, the diagonal terms in ΩA
θ are obtained as

ωθ
aa =


dnĀ+mθ

nDΛ
θ

for a =~0,~1, . . . ,
−−→
d− 1,

dnĀ

nDΛ
θ

otherwise ,
(63)

where mθ = nδθ0 − 1 with δθ0 being the delta function. For the off-diagonal terms, we show that the
absolute value of each of them is not greater than 1/DΛ

θ . For a fixed a, b, and k, there exists at most one
v that satisfies Equation (60) due to the assumption that n is a prime number. Recalling that k 6= 0 since
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a 6= b, an off-diagonal term of Ωθ(m0, . . . , md−1) is a summation of at most n− 1 terms, where each term
has coefficient eiθp/(nDΛ

θ ) for some p ∈ {1, . . . , n− 1}. Thus, all off-diagonal terms of Ωθ(m0, . . . , md−1)

are bounded from above by
1

nDΛ
θ

∣∣∣∣n−1

∑
x=1

qxeiθpx

∣∣∣∣ ≤ 1
DΛ

θ

, (64)

where qx ∈ {0, 1} is an indicator function that qx = 1 if there exists v satisfying Equation (60) for k = x
and qx = 0 otherwise.

By substituting the diagonal terms, Equation (63), and the upper bounds of off-diagonal terms,
Equation (64), into Equation (62), we obtain an upper bound of Tr(ΩA

θ )
2 as

Tr(ΩA
θ )

2 ≤ 1
dnA(1 + mθd1−n)2

(
1 +

2mθ

dn−1 +
m2

θd + n2ΓA

dn+nĀ

)
, (65)

where

ΓA = ∑
(m0,...,md−1)

[(
nA!

m0! . . . md−1!

)2

− nA!
m0! . . . md−1!

]
. (66)

As dnA < ΓA < d2nA , we have

Tr[(ΩA
θ )

2] ≤ d−nA(1 + n2d−nĀ) + o(d−n). (67)

Similarly, we can derive an upper bound for Tr[(ΩĀ
θ )

2] as

Tr[(ΩĀ
θ )

2] ≤ d−nĀ(1 + n2d−nA) + o(d−n). (68)

Based on these lower bounds, we obtain

S̄(HΛ
θ ) ≥ nA log d− d−n+2nA + o(d−n+nA). (69)

Using a trivial upper bound dnA on RHΛ
θ

for any θ, we arrive at our conclusion: for any ε > 0 and for
n/2 ≥ nA, it holds that

Prob|φ〉∼Hθ

[
EA(|φ〉) ≥ nA log d− d−n+2nA + o(d−n+nA)− ε

]
> 1− exp

[
− Cε2

72π3 ln 2

]
, (70)

for any θ, where C = O(dn/(nn2
A)). Since the entanglement entropy for any state is bounded from above

by nA log d, this implies that the entanglement entropy of a random state with translation symmetry
concentrates between nA log d− d−n+2nA and nA log d. Hence, translation symmetry changes the generic
entanglement only slightly.

8. Entanglement Phases and Symmetries

We finally investigate how symmetries affect the entanglement phases. The original analyses of
entanglement phases are based on the technique of the random matrix theory [26–33]. We here present
numerical calculations of the entanglement entropy of random states in various invariant subspaces
associated with symmetry. We especially consider a random symmetric state, and a random translation
invariant state for d = 2, n = 10, and nA = 5. All numerics are done by sampling pure states from an
invariant subspace of the symmetry. We have used the so-called Hurwitz parametrization of a state, based
on which a parametrization of a Haar random state is known [42].
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In Figure 2, we provide the distributions of entanglement of random states in the subspaces. Panel (A)
is in terms of the entanglement entropy, where we depict the distribution over a Haar random state in the
whole Hilbert space HΛ (red), that in the symmetric subspace HΛ

+ (purple), and that in the translation
invariant subspaceHΛ

0 with θ = 0 (blue). As we showed analytically, the distribution of random symmetric
state significantly differs from the fully random one, whereas that of the random translation invariant
state does not. It is however hard to observe any features of entanglement phases since the distribution is
highly concentrated.

Panels (B), (C), (D-I), and (D-II) are the distribution of entanglement in terms of the rescaled purity R
of a reduced density matrix defined by

R(|φ〉) := dnA Tr[(φA)2]. (71)

Note that R(|φ〉) ∈ [1, dnA ] and is less when the state |φ〉Λ is more entangled. Panels (B), (C), (D-I),
and (D-II) are, respectively, for a random state in the whole Hilbert space, a random symmetric state,
a random translation invariant state with θ = 0, and a translation invariant state with θ = π.

Figure 2. The distributions of entanglement over the random states without/with symmetry, which are
numerically obtained for d = 2, n = 10, and nA = 5. The number of samples is 105, binned in intervals
of 0.02 for Panels (A,B,D-I, D-II), 0.2 for Panel (C). Panel (A) shows the distribution of the entanglement
entropy EA over a Haar random state without symmetry (red), that over a random symmetric state
(purple), and that over a random translation invariant state for θ = 0 (blue). We observe that only a
random symmetric state has significantly less entanglement entropy, which is consistent with our analytical
investigations. Panels (B,C,D-I,D-II) show the rescaled purity R(|φ〉) of a random state without symmetry,
a random symmetric state, a random translation invariant state for θ = 0, and that for θ = π, respectively.
The rescaled purity is more suitable to see the entanglement phases. The insets numerically provide
− ln[p(R(|φ〉 = s)]/22nA+1 as a function of s, where p(R(|φ〉 = s) is the probability density function. In the
insets, we also plotted quadratic functions (brown dotted lines) fitted to the numerical data as a reference,
which may be useful to detect the phase transition. See the main text for the detail.

Let us first check the distribution in the whole Hilbert space (Panel (B)). In this case, the probability
density function was studied in great detail [31], with which we compare our numerical result. In terms of
the rescaled purity, it is known that the probability density function p(R(|φ〉 = s) over a random state in
the whole space has two singularities in the asymptotic limit nA → ∞: one is at s = s1 = 5/4, and the other
is at s = s2 = 2 + 24/3/2nA/3 ≈ 2.79. These two singularities split the distribution into three entangled
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phases, namely the maximally entangled phase for s ∈ [1, s1), the typical phase for s ∈ [s1, s2), and the
separable phase s ∈ [s2, 2nA ]. In our numerics, it is hard to clearly observe the singularities. In particular,
there is no feature of the phase transition at s = s1 at all. This is simply because the probability density
function p(R(|φ〉 = s) for s ∈ [1, s1) scales as (s− 1)22nA−1

. Thus, for nA = 5, p(R(|φ〉 = s) = O((s− 1)500),
which is intractable by a numerical sampling method. On the other hand, a trace of the phase transition at
s = s2 can be observed from our numerical plot. In particular, by looking at the inset of Panel (B), where
we plotted − ln[p(R(|φ〉 = s)]/22nA+1 as a function of s, we observe that the function is quadratic when
s ≤ 2, but gradually becomes less for s > 2. This is consistent with the analysis in Ref. [31] and can be
considered as a feature of the phase transition at s = s2. Note that the phase transition at s = s2 is pointed
out to be sensitive to the finite-size effect, resulting in the feature less drastic in our numerics with nA
being 5.

We now move onto the distributions of the rescaled purity for a random symmetric state and random
translation invariant states, which are shown in Panels (C) and (D), respectively. For random translation
invariant states, the θ is chosen to be 0 and π in Panels (D-I) and (D-II), respectively, but similar behaviors
are observed for other θ’s. Although we do not observe clear singularities, which is similar to the case of a
random state in the whole space, the insets show that

− ln[p(R(|φ〉 = s)]
22nA+1 =

{
quadratic in s for s ≤ smin,

linear in s for s > smin,
(72)

where smin = argmin
[
− ln[p(R(|φ〉=s)]

22nA+1

]
. This change of the scaling in terms of s shall indicate the presence

of the phase transition between the typical and the separable phases. Hence, it seems that even when the
state has permutation or translation symmetry, the typical and the separable phases exist. On the other
hand, it remains open whether the maximally entangled phase exists for random symmetric/translation
invariant states.

9. Is Generic Entanglement with Symmetry Physical?

Before we conclude the paper, we make a remark on the question of whether generic entanglement
is physically feasible. In the case of generic entanglement without symmetry, this question arises from
the fact that a Haar random state cannot be efficiently generated by quantum circuits even approximately.
Hence, it takes exponentially long time for the distribution of a Haar random state to be achieved by any
physical dynamics as far as it consists of a-few-body interactions.

Although it is true that a Haar random state is not physically feasible, recent developments of
the theory of unitary designs [43] show that the distribution mimicking lower statistical moments of
a Haar random state can be quickly generated by quantum circuits [44–48] or even by Hamiltonian
dynamics [49,50]. Also, much evidence was obtained that showed that chaotic dynamics result in properties
similar to those of a Haar random state [16–18,51–53]. In particular, entanglement properties of a
Haar random state can be approximately reproduced in many different ways [54–57]. Thus, generic
entanglement, although it is an idealization in a strict sense, shall be considered to capture characteristic
properties of complex quantum many-body systems and hence, physically feasible.

Regarding the generic entanglement of quantum states with symmetry, an interesting question from
this perspective is that: is it possible to efficiently implement a random state with symmetry by quantum
circuits or by the dynamics of quantum many-body systems? A natural way to achieve this is to first
generate a random state by the aforementioned means and then change the basis into symmetric one.
It will be however more interesting from the physics perspective if one can find a way that has natural
interpretations in terms of Hamiltonian dynamics with reasonably physical Hamiltonian, such as those
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with few-body interactions and with less time-dependence. To do so in a rigorous manner, it is highly
desired to investigate physically feasible constructions of unitary designs with symmetry, which we may
call symmetric unitary designs. Since unitary designs transform any pure state to the one that has similar
properties of Haar random states, applying a symmetric unitary design to a pure state will reproduce
generic entanglement of random states with symmetry that we clarified in this paper. Hence, by exploiting
physically natural constructions of symmetric unitary designs, the connection of our analysis to complex
quantum many-body systems with symmetry will be much more elaborated. Note, however, that a
couple of results have been obtained along a similar line [58,59], which already indicates that generic
entanglement of random states with symmetry reveals characteristic features in those systems.

10. Summary and Discussions

In this paper, we studied how symmetry affects the properties of generic entanglement. Specifically,
we investigated the entanglement entropy of a Haar random state in the invariant subspace with respect
to a given symmetry. The main technical tool is the concentration formula for the entanglement entropy
of a random state. We have first extended it to the one applicable for any subspace, and then applied it
to invariant subspaces of axial, permutation, and translation symmetries. It turns out that compared to
the entanglement entropy of a random state in the whole Hilbert space, the axial symmetry often reduces
entanglement by a constant degree, and that there is a significant reduction by the permutation symmetry.
In contrast, the translation symmetry does not reduce entanglement entropy so much, implying that the
same properties of generic entanglement without symmetry shall be observed even in the systems with
translation symmetry.

Towards the problem of how symmetry affects generic entanglement, these results imply that
even when a random state has symmetry, the concentration formula still holds as shown in Theorem 2.
In contrast, it is likely that imposing symmetry reduces entanglement, at least for the symmetries we
considered in this paper. The degree of reduction is, however, highly dependent on what symmetry is
imposed. By closely looking at our results, it is observed that the degree of reduction is related to the size
of the invariant subspaces of the symmetry. Whether this is always the case for any symmetry will be left
open as a future problem.

We have also numerically studied the presence of the entanglement phases that are observed for a
Haar random state without symmetry. Our numerical analysis is far from conclusive due to the fact that
the entanglement phases are sensitive to the finite-size effect, we showed that the typical and separable
phases seem to exist even when the state has permutation or the translation symmetry.

We think that our analysis opens a number of open questions. First, as we mentioned above, it is
important to clarify whether or not imposing symmetry always reduces entanglement entropy and, if so,
whether the degree of reduction is always determined by the size of the invariant subspaces. Although we
may naturally expect these to be true, we dealt only with abelian symmetries in this paper. Hence, there
still remains a possibility that a random state with non-abelian symmetry may result in more exotic features
of entanglement.

It will be also interesting to investigate multipartite entanglement of a random state with symmetry.
In the case of a Haar random state without symmetry, this is addressed in Refence [60], where it was
shown that most Haar random states are too entangled to be useful as computational resources. Recalling
that entanglement is likely to be reduced by imposing symmetry, it may be possible to use random states
with symmetry, for instance the one with permutation symmetry, as a computational resource. Thus,
investigating multipartite entanglement of random states is not only of theoretical interest but may also be
of practical use.
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It is also important to address generic entanglement of mixed states. There are however a number of
difficulties around the question. First, unlike the pure state, where a random state can be uniquely defined
using the uniqueness of the Haar measure, there is no unique or a priori way to define random mixed
states. Although there are several attempts to define random mixed states, e.g., in Ref. [24], it seems that
no consensus has been made yet. It is also difficult to evaluate entanglement of mixed states since the
entropy of a reduced density matrix is no longer a measure of entanglement. Hence, addressing generic
entanglement of mixed states, though it is an interesting problem, may need more elaborate technique.
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