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Abstract: We investigate the quantum thermodynamics of two quantum systems, a two-level
system and a four-level quantum photocell, each driven by photon pulses as a quantum heat
engine. We set these systems to be in thermal contact only with a cold reservoir while the heat
(energy) source, conventionally given from a hot thermal reservoir, is supplied by a sequence of
photon pulses. The dynamics of each system is governed by a coherent interaction due to photon
pulses in terms of the Jaynes-Cummings Hamiltonian together with the system-bath interaction
described by the Lindblad master equation. We calculate the thermodynamic quantities for the
two-level system and the quantum photocell including the change in system energy, the power
delivered by photon pulses, the power output to an external load, the heat dissipated to a cold bath,
and the entropy production. We thereby demonstrate how a quantum photocell in the cold bath
can operate as a continuum quantum heat engine with a sequence of photon pulses continuously
applied. We specifically introduce the power efficiency of the quantum photocell in terms of the ratio
of output power delivered to an external load with current and voltage to the input power delivered
by the photon pulse. Our study indicates a possibility that a quantum system driven by external
fields can act as an efficient quantum heat engine under non-equilibrium thermodynamics.

Keywords: open quantum system; photovoltaic cell; quantum heat engines; quantum
thermodynamics; master equations

1. Introduction

Thermodynamics deals with the evolution of systems, usually in contact with reservoirs,
describing the dynamics under universal laws independent of microscopic details. Among its four
laws, the second law dictates the total entropy of a closed system can never decrease over time and that
the closed system spontaneously evolves toward the state with maximum entropy. One of the possible
statements about the second law of thermodynamics is to set the upper bound on the efficiency of heat
engines. Heat engines convert heat energy, which typically flows from a hot source to a cold sink,
to mechanical energy or chemical energy. The efficiency of energy conversion is defined by the ratio
of the work output to the amount of heat energy input. The ultimate efficiency of the heat engine
is known in equilibrium thermodynamics to be determined only by temperatures of hot and cold heat
baths, Th and Tc, respectively, that is, η = 1− Tc/Th, the so-called the Carnot limit.

Photovoltaic cells (or solar cells) and photosynthesis, just like classical heat engines, convert
photon energy from the sun into electric energy and chemical energy, respectively. The upper limit of
the efficiency of p-n junction solar cells with an energy bandgap is known as the Shockley-Queisser
limit [1]. The key assumptions in deriving the Shockley-Queisser limit are (i) photons with energies less
than the bandgap are not utilized, (ii) a photon with energy greater than the bandgap produces only one
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electron-hole pair, and (iii) only the radiative recombination of electron-hole pairs is considered. While
the non-radiative loss may be minimized by the manufacturing technology, the radiative recombination
is the intrinsic energy loss governed by the law of physics. Assuming the sun and the solar
cell are described as black-bodies with temperature Ts = 6000 K and Tc = 300 K, respectively,
the maximum efficiency is about 30% for a solar cell with a bandgap of 1.137 eV [1]. Shockley
and Queisser [1] also showed that the maximum efficiency of a single p-n junction solar cell would be
approximately 44% around 1.137 eV if there is no radiative recombination loss.

Recently, many theoretical studies have suggested that noise-induced quantum coherence [2,3],
Fano-induced coherence [4] or delocalized quantum states of interacting dipoles [5–8] can reduce
the radiative recombination loss of a solar cell, thus enhancing the efficiency of solar cells. The same
idea is applied to the photosynthetic complex [9–12]. Most of these studies employ the donor-acceptor
quantum photocell model where the donor is in thermal equilibrium with a hot bath, that is, the sun
at 5800 K and the acceptor is at room temperature. The photocell operating while continuously
contacting both heat reservoirs is called a continuous quantum heat engine [13,14]. A typical example
of the continuous quantum heat engine is Scovil and Schulz-Dubois’ three-level masers whose efficiency
achieves the Carnot efficiency [15]. By solving the master equation for the quantum photocell, it was
shown that the noise-induced quantum coherence or the dark state of the donor may enhance the
power output. However, it was not clear whether the efficiency of the photocell could be enhanced by
the quantum effect. Some works assumed that the mean photon number of the hot thermal bath could
be n̄ = 60000, but the mean photon number of the sun at energy 1.8 eV as a black body at 5800 K is
only about n̄ = 0.037 [16,17]. To address this issue, Reference [16] introduced the pumping term and
showed that the dark state could enhance the power output but not its efficiency.

In this paper, we explore another form of a quantum heat engine. We consider two quantum
systems, a two-level system and a donor-acceptor quantum photocell, and investigate their quantum
dynamics under the coherent driving and the system-bath interaction. Each quantum system
is in thermal contact only with a cold reservoir but not with a hot reservoir. Instead, they are driven by
a sequence of photon pulses that supplies input energy to the systems, which is conventionally done
by a hot reservoir. The photon pulses represent the stream of energy source to the system and may thus
remove the unrealistic assumption of the high mean photon number of the sun by the previous works.
We solve the time-dependent Markov Lindblad master equation and investigate the thermodynamic
quantities such as the change in energy, the heat dissipation to the cold bath, the power delivered
by the photon pulse and the entropy generation. Specifically, we introduce the power efficiency of
the quantum photocell in terms of the ratio of output power delivered to an external load to input
power delivered by the photon pulses.

This paper is organized as follows. In Section 2, we review briefly the quantum dynamics
and quantum thermodynamics of an open quantum system based on the master equation approach.
In Section 3, we examine a two-level system in a cold bath driven by photon pulses and investigate
how the energy, heat current, and entropy change. In Section 4 a quantum photovoltaic cell with
donor and acceptor driven by repeated photon pulses is considered. We calculate the quantum
thermodynamic quantities and the power output by the sequence of the photon pulses together with
engine efficiency. Finally, in Section 5 we summarize our results with some discussion.

2. Quantum Thermodynamics of Open Quantum Systems

We start with a brief review of quantum thermodynamics of an open quantum system
that exchanges energy and entropy with its environment. The equations presented in this section will
be applied to those examples in the next two Sections 3 and 4. As usual, we assume the Born-Markov
approximations: a weak interaction between an open quantum system and an environment,
and the extremely short correlation time of the environment, that is, no memory effect. The density
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operator ρ(t) of the quantum system with a slowly varying time-dependent Hamiltonian obeys
the Lindblad-Gorini-Kossakowski-Sudarshan (LGKS) master equation [18–22]

d
dt

ρ(t) = L[ρ(t)] = − i
h̄
[HS(t), ρ(t)] +D[ρ(t)] , (1)

where HS(t) = H0 + H1(t) is the Hamiltonian of the system. Here H0 represents a time-independent
unperturbed Hamiltonian and H1(t) an external time-dependent perturbation. The decoherence
and the dissipation of the open quantum system due to an environmental interaction are described by
the non-unitary operator

D[ρ] = ∑
k

(
2LkρL†

k − L†
k Lρ− ρL†

k Lk

)
, (2)

where Lk are the Lindblad operators determined according to the type of interaction.
From the solution ρ(t) of Equation (1), one can calculate the quantum thermodynamic

quantities. The first law of classical thermodynamics states the energy conservation, dE = δQ + δW.
The time-dependent internal energy of the system is given by E(t) = tr {ρ(t)HS(t)}. Its derivative
with respect to time gives rise to the first law of quantum thermodynamics [23–25]

d
dt

E(t) = Q̇(t) + Ẇ(t) = J(t) + P(t) . (3)

Here J(t) is the heat current from the environment into the system

J(t) ≡ Q̇(t) = tr
(

dρ(t)
dt

HS(t)
)

, (4)

and P(t) is the power delivered to system by external forces,

P(t) ≡ Ẇ(t) = tr
(

ρ(t)
dHS
dt

)
. (5)

Since H0 is the time-independent Hamiltonian, the power can be written as P(t) = tr
(

ρ(t) dH1(t)
dt

)
.

The change in energy of the system for finite time can be obtained by integrating the heat current
and the power as

∆E(t) = Q(t) + W(t) =
∫ t

0
J(s) ds +

∫ t

0
P(s) ds . (6)

The second law of thermodynamics describes the irreversibility of dynamics, where the entropy
plays a key role. The von Neumann entropy S(t) of the system in the state ρ(t) is given by

S(t) = −tr {ρ(t) log ρ(t)} . (7)

The thermodynamic entropy S is written as S = kBS(t) with the Boltzmann constant kB. The net
change in the entropy dSnet(entropy production) of the whole system+reservoir can be written in
terms of the entropy change of the system, dS, and the entropy flow due to heat from an environment
to a system, dSe, as

dSnet = dS− dSe . (8)
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The change in the entropy of the system, dS, over time is written as

dS
dt

= −tr {ρ̇(t) log ρ(t)} (9a)

= −tr {L[ρ(t)] log ρ(t)} , (9b)

where tr {ρ̇(t)} = 0 and the quantum Markov master Equation (1) are used. The entropy flow dSe

per unit time from the environment into the system is written as

dSe

dt
≡ JS = βQ̇(t) (10a)

= β tr {ρ̇HS(t)} = β tr {L[ρ(t)] HS(t)} , (10b)

where β = 1/kBT and T is the temperature of the environment. The net entropy production rate σ(t)
of the system is given by

σ(t) =
dSnet

dt
= Ṡ(t)− βQ̇(t) ≥ 0 , (11)

where σ(t) ≥ 0 comes from the Spohn inequality [23–26]. Equation (11) may be written as

σ ≡ − d
dt

S(ρ(t) ‖ ρss) ≥ 0 , (12)

where S(ρ(t) ‖ ρss) ≡ tr[ρ(t)(log ρ(t) − log ρss)] is the relative entropy of ρ(t) with respect to
the stationary state ρss, for example, the canonical state of the system, ρss = ρβ = e−βHs(t)/Z.
This is called the second law of nonequilibrium quantum thermodynamics in the weak coupling limit.

As an application of quantum thermodynamics of open quantum systems presented in
Section 2, we first consider a two-level quantum system which is in contact with a cold bath
at temperature Tc and driven by repeated photon pulses, as depicted in Figure 1. The hot thermal
bath supplying energy does not have direct contact with the quantum system. Its role is here replaced
by a sequence of photon pulses to the two-level system. We examine how the two-level system
absorbs and dissipates energy and generates entropy during this process in order to gain insight into
the nonequilibrium dynamics due to photon pulses.

Hot bath at Th or energy source Cold bath at Tc

E1

E0

Figure 1. A two-level system with energy levels E0 and E1 in contact with a cold thermal bath at Tc

is driven by Gaussian photon pulses serving as an energy source in our work.

3. A Two-Level System Driven by Photon Pulses

The unperturbed Hamiltonian of the two-level system with energy levels E0 and E1 may be
written as

H0 = − h̄ω0

2
σz, (13)
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where ω0 = (E1 − E0)/h̄ and σz = |0〉〈0| − |1〉〈1|. The interaction between a two-level system
and incoming photon pulses is described by the Jaynes-Cummings Hamiltonian [27]

H1(t) = ih̄ [ g∗(t)
√

γ σ− − g(t)
√

γ σ+ ] , (14)

where σ+ = |1〉〈0| and σ− = |0〉〈1| are the raising and the lowering operators, respectively.
The Jaynes-Cummings Hamiltonian is derived based on the dipole and rotating wave
approximations [28]. We set E1 − E0 = 1 eV. Here γ is the Weisskopf-Wigner spontaneous decay rate

γ =
1

4πε0

4ω3
0d2

01
3h̄c3 , (15)

where d01 is the transition dipole moment between the two states |0〉 and |1〉. A typical value of γ

for an atom or a quantum dot for visible light emission is in the order of nanoseconds corresponding
to µeV, while the energy at visible frequencies is about eV, that is, femtoseconds. As a numerical
calculation becomes demanding with a big difference between these time-scales, we use for our study
the values of parameters as listed in Table 1. We consider the photon pulses given at peak times
ti as g(t) = α ∑i ξ(t; ti) with coherent states having average photon number 〈n〉 = |α|2 and a Gaussian
pulse shape [29–31]

ξ(t; ti) ≡
(

Ω2

2π

)1/4

exp
[
−Ω2(t− ti)

2

4
− iω0t

]
. (16)

Here 1/Ω is the pulse bandwidth.
Under the Born-Markov approximation, the interaction of a two-level system and the thermal

photon bath is recast to the dissipative operator D acting on the density matrix of the system [21,32]

DC[ρ] =
γ

2
(
n̄c + 1

)(
2σ−ρσ+ − σ+σ−ρ + ρσ+σ−

)
+

γ

2
n̄c (2σ+ρσ− − σ−σ+ρ + ρσ−σ+) . (17)

Here n̄c is the mean photon number of the cold bath at the frequency ω0 in thermal equilibrium
of temperature Tc

n̄c =
1

eh̄ω0/kBTc − 1
. (18)

As noted in References [32,33], at optical frequencies and room temperature, the mean photon
number n̄ is very small and negligible while it has a finite value at microwave frequencies and the room
temperature. For example, with h̄ω0 = eV and Tc = 300 K one obtains n̄ ≈ 6.5× 10−31. At the optical
frequencies, h̄ω0 = 1.8 eV and the temperature of the sun as a black body, Ts = 5800 K, the mean
photon number is n̄ ≈ 0.0317 [16,33]. With this in mind, Equation (17) reduces to

DC[ρ] ≈
γ

2
(
2σ−ρσ+ − σ+σ−ρ + ρσ+σ−

)
. (19)

With Equations (13), (17), and (14), the Lindblad equation for the two-level system, in contact
with the cold thermal bath and driven by a Gaussian photon pulse, is given by

d
dt

ρ(t) = − i
h̄
[H0 + H1(t), ρ(t)] +DC[ρ(t)] . (20)
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The quantum dynamics and the quantum thermodynamics of the two-level
system are investigated by solving Equation (20) numerically using the Runge-Kutta
method [34]. The parameters used in the numerical simulation are shown in Table 1.

Table 1. Typical parameters used in this work.

Energy gap of the two-level system E1 − E0 = h̄ω0 = 1.0 eV
Energy gap of the donor of the quantum photocell E1 − E0 = h̄ω0 = 1.8 eV
Energy gap of the acceptor of the quantum photocell E2 − E3 = 1.6 eV
Weisskopf-Winger constant γ/ω0 = γ01/ω0 = 10−3 ∼ 10−6

Phonon decay constant γ12/ω0 = γ03/ω0 = 10−2 ∼ 10−3

Photon number of a pulse 〈n〉 = |α|2 = 1 or 10
Temperature of the cold bath Tc = 300 K
Width of a Gaussian pulse Ω = ω0/4π

Figures 2 and 3 describe the thermodynamic quantities of the system when a sequence of Gaussian
photon pulses are applied at a regular interval (g(t): green curves in (a)) with 〈n〉 = 1 and 〈n〉 = 10,
respectively. Figure 2a shows the time-evolution of the density matrix elements and the sequence
of Gaussian photon pulses, which is first applied around the peak time ω0t/2π = 50 with 〈n〉 = 1.
The initial state of the two level system is assumed to be in a superposed state |ψ(0)〉 = 1√

2
(|0〉+ |1〉).

As shown in Figure 2a, the superposed state decays to the ground state, that is, the system becomes in
thermal equilibrium with the cold thermal bath before the photon pulse is applied. When the Gaussian
photon pulse is first applied around ω0t/2π = 50, the system gets excited and then becomes decayed
into the ground state after the pulse is gone. This process is repeated according to each Gaussian pulse.

-0.5

0

0.5

1

(a)
ρ00
ρ11

Re(ρ01)

Im(ρ01)

g(t)

-0.03

 0

 0.03

 0.06

(b) dE/dt

P(t)

J(t)

-5

 0

 5

(c)
E(t)

W(t)

Q(t)

S(t)

 0

 0.5

 1

 0  20  40  60  80  100  120

(d)

ω0t/2π

dS/dt

σ(t)

Figure 2. (a) The density matrix elements of the two-level system and the sequence of Gaussian photon
pulses g(t) are plotted over time. (b) The rate of energy change dE(t)

dt , the power P(t), and the heat
current J(t) are calculated as functions of time. (c) The energy E(t), the work W(t), the heat transfer
Q(t), and the system entropy S(t) are plotted as functions of time. (d) The rate of system entropy
change dS

dt and the entropy production σ(t) are plotted over time. The parameters are taken as 〈n〉 = 1,
γ = 10−2ω0, Ω = ω0/4π, and h̄ω0 = 1 eV.
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(d)
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Figure 3. (a) The density matrix elements of the two-level system and the sequence of Gaussian photon
pulses g(t) are plotted over time. (b) The rate of energy change dE(t)

dt , the power P(t), and the heat
current J(t) are plotted as functions of time. (c) The energy E(t), the work W(t), the heat transfer Q(t),
and the system entropy S(t) are calculated as functions of time. (d) The rate of system entropy change
dS
dt and the entropy production σ(t) are shown over time. The parameters are 〈n〉 = 10, γ = 10−2ω0,
Ω = ω0/4π, and h̄ω0 = 1 eV.

With regard to the first law of quantum thermodynamics, Figure 2b plots the rate of energy
change, the power, and the heat current. The heat current J(t) from the environment to the system
is always negative. This means the excited state of the two-level system releases its energy to the cold
bath. In contrast, the power P(t) and Ė(t) oscillate out of phase while the photon pulse is applied.
Figure 2c shows the entropy S(t) of the two-level system together with its energy E(t), the work
done W(t) on the system and the heat transfer Q(t). Figure 2d shows the entropy production
σ(t) = Ṡ(t)− βQ̇ as a function of time in relation to the second law of thermodynamics. The entropy
production σ(t) is always positive confirming the second law.

In Figure 3, we see more oscillatory behaviors in the quantities due to a stronger photon pulse
with 〈n〉 = 10 than those with 〈n〉 = 1 in Figure 2. Nevertheless, the overall trend is similar to that
explained above for Figure 2.

We now examine how the quantum thermodynamic quantities depend on the temporal shapes
of a Gaussian pulse sequence. In Figures 4 and 5, we plot the same quantities as those in Figures 2
and 3, but compare two cases, that is, regularly spaced (Figure 4) and irregularly spaced (Figure 5)
sequence of Gaussian pulses with the same mean number 〈n〉 = |α|2 = 1. As described by the curve
g(t), the peak times ti’s in Equation (16) are regularly (not regularly) spaced in the left (right) panel. In
both cases, the overall trend of the thermodynamic quantities are similar to that explained for Figure 2
while the actual response of the system does depend on the temporal shape of the pulse sequence.
Remarkably, we see that the output power P(t) (blue curves in Figures 4b and 5b) and the accumulated
work W(t) (blue curves in Figures 4c and 5c) depend on the temporal shape of the incoming pulses
even with the same |α|2 = 1, which can have implications for practical photocell operation. In
particular, we find that the case of regular sequencing of pulses yields a higher value of work.
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Figure 4. When a Gaussian photon pulse is overlapped with the subsequent Gaussian photon pulse
and the interval between them is regular, (a) the density matrix elements of the two-level system,
(b) the rate of energy change dE(t)

dt , the power P(t), the heat current J(t), (c) energy E(t), work W(t),
heat Q(t) system entropy S(t), (d) the rate of system entropy change dS

dt and the entropy production
σ(t) are plotted as a function of time. The parameters are taken as 〈n〉 = 1, γ = 10−2ω0, Ω = ω0/4π,
and h̄ω0 = 1 eV.
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Figure 5. When an irregularly spaced sequence of photon pulses is applied, (a) the density matrix
elements of the two-level system and the sequence of Gaussian photon pulses g(t), (b) the rate of energy
change dE(t)

dt , the power P(t), and the heat current J(t), (c) the energy E(t), work W(t), and heat Q(t),
and the system entropy S(t), (d) the rate of system entropy change dS

dt and the entropy production σ(t)
are plotted as functions of time. Parameters: 〈n〉 = 1, γ = 10−2ω0, Ω = ω0/4π, and h̄ω0 = 1 eV.
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4. Quantum Photocell Driven by Photon Pulses

For a quantum heat engine, let us now consider a quantum photovoltaics cell driven by photon
pulses, as shown in Figure 6. The quantum photocell we consider is a 4-level quantum system
composed of a donor and an acceptor. In 1959, Scovil and Du-Bois [15] consider the 3-level system as
the simplest quantum heat engine where one part of the 3-level system is in thermal equilibrium with
a hot bath and the other part with a cold bath. Many previous studies [2–10] took a similar assumption
that the donor of the quantum photocell is in contact with the hot bath, that is, the sun, and the acceptor
is in thermal contact with the cold bath. In contrast to the previous works, we assume that the quantum
photocell is in thermal contact only with the cold bath. In our previous work [16], the pumping term
was introduced in the Lindblad master equation to describe the energy flow from the hot bath. Here
the input energy is supplied by the sequence of incoming photon pulses.

The cyclic operation of the quantum photocell can be performed with the sequence as follows:
(i) The donor absorbs incoming photons and the electron becomes excited with the transition from
the ground state |0〉 to the excited state |1〉. (ii) The phonon vibration makes the excited electron
at the donor transfer to the acceptor state |2〉. (iii) The acceptor is coupled to an external load and
the current flow (electric work) is represented by the transition decay from the state |2〉 to the state
|3〉. (iv) The electron in the state |3〉 of the acceptor returns to the ground state |0〉 of the donor by a
vibrational or non-radiative decay.

|1〉

|0〉

γ01

γ21
|2〉

|3〉

Γ

γ03
Donor Acceptor

Figure 6. Schematic diagram of a donor-acceptor photocell. γ01 is the spontaneous decay due
to the coupling with the cold thermal bath. γ21 and γ03 are the transfer rate between the donor
and the acceptor. Γ stands for the external load or electrical resistance.

The unperturbed Hamiltonian of the quantum photocell with 4-levels is written as

H0 = −E0|0〉〈0| − E1|1〉〈1| − E2|2〉〈2| − E3|3〉〈3| . (21)

Similar to Equation (14), the interaction of the donor of the photocell with the incoming photon
pulses is again described by the Jaynes-Cummings Hamiltonian

H1(t) = ih̄ [g∗(t)
√

γ σ− − g(t)
√

γ σ+] , (22)

where σ+ = |1〉〈0| and σ+ = |0〉〈1|. Same as Equation (17), the interaction of the donor of the quantum
photocell with the cold thermal bath is represented by the Lindblad operator,

Dc[ρ] =
γ01

2
(
n̄c + 1

)(
2σ−ρσ+ − σ+σ−ρ + ρσ+σ−

)
+

γ01

2
n̄c (2σ+ρσ− − σ−σ+ρ + ρσ−σ+) . (23)
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The electron transfer between the states |1〉 and |2〉 and that between the state |3〉 and |0〉
are described by the Lindblad operator Dph[ρ] = D(1,2)

ph [ρ] +D(3,0)
ph [ρ], where

D(i,j)
ph [ρ] =

γij

2
(
n̄ph + 1

)(
2LijρL†

ij − L†
ijLijρ + ρL†

ijLij
)

+
γij

2
n̄ph

(
2L†

ijρLij − LijL†
ijρ + ρLijL†

ij

)
. (24)

Here γ12 and γ30 represents the transition rate between |1〉 and |2〉 and between |3〉 and |0〉, respectively.
Lij = |i〉〈j| and L†

ij = |j〉〈i| are the lowering and raising operators, respectively. n̄ph is the phonon
occupation number at h̄ω = E1 − E2 = E3 − E0 and Tc = 300 K. The work done by the quantum
photocell to the external load is described by the ohmic dissipation

Dohm[ρ] =
Γ
2

(
2L3ρL†

3 − L†
3 L3ρ + ρL†

3 L3

)
, (25)

where L3 = |3〉〈2|. Here Γ represent the conductance of the external load and may be changed from zero
corresponding to the open circuit and to a big number representing the short-circuit of the quantum
photocell. With Equations (21)–(25), the LGKS equation for the quantum photocell is written as

d
dt

ρ(t) = − i
h̄
[H0 + H1(t), ρ(t)] +Dc[ρ] +D(1,2)

ph [ρ] +D(3,0)
ph [ρ] +Dohm[ρ] . (26)

Since the quantum photocell has no direct interaction Hamiltonian between the donor
and the acceptor, the Hamiltonian HS(t) = H0 + H1(t) of the quantum photocell can be written
as the sum of the time-dependent donor Hamiltonian HD and the time-independent acceptor
Hamiltonian HA,

HS(t) = HD(t) + HA , (27)

where HD(t) ≡ −E0|0〉〈0| − E1|1〉〈1|+ H1(t) and HA ≡ −E2|2〉〈2| − E3|3〉〈3|. This partition makes
it possible to express some quantum thermodynamic quantities as the sum of the donor and acceptor
parts. The energy of the quantum photocell is given by the sum of the energies of the donor and acceptor

E(t) = tr {ρ(t)HS(t)} = ED(t) + EA(t) , (28)

where the donor energy ED(t) and the acceptor energy EA(t) are given by

ED(t) = trD{ρD(t)HD(t)} , (29a)

EA(t) = trA{ρA(t)HA}, (29b)

respectively. Here ρA = trD{ρ} and ρD = trA{ρ} are the density operators of the donor and acceptor,
respectively. Since the photon pulse delivers the power only to the donor, the power P(t) is given by
the power of the donor

P(t) = tr{ρ(t)ḢS(t)} = trD{ρD Ḣ1(t)} ≡ PD(t) . (30)

The heat dissipation occurs at the donor and acceptor. Thus the heat current J(t) is written as
the sum of the two parts

J(t) = trD{ρ̇D(t)HD(t)}+ trA{ρ̇A(t)HA}
= JD(t) + JA(t) . (31)
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Finally, the entropy of the quantum photocell S(t) = tr{ρ log ρ} can be written as the sum of
the entropies of the donor and acceptor, SD(t) = −trD{ρD log ρD} and SA(t) = −trA{ρA log ρA}, too.
This is because there is no coherent interaction between the donor and the acceptor so the whole
density operator of the system has a structure ρ = ρD ⊕ ρA.

We calculate the current through the external load as

I = eΓ · ρ22, (32)

and the voltage across the external load

eV = E2 − E3 + kBTC log
(

ρ22

ρ33

)
. (33)

The latter comes from the relation ρ22/ρ33 = exp(−(E2 − E3 − eV)/kBTC). The electric power
delivered to the external load by the photocell is written as Pout = I(t) · V(t) which depends on
the external conductance Γ. Now that we have the power delivered by the photon pulse, Equation (30)
and the electric power output Pout(t), we can define the power efficiency of the quantum photocell as

We solve numerically the LGKS Equation (26) using the Runge-Kutta method for different
sequences of photon pulses to obtain the quantum thermodynamic quantities. Figure 7a plots
the population of each level of the quantum photocell as a function of dimensionless time when
the sequences of the Gaussian pulses are applied one immediately after another almost in a continuum
limit. Figure 7b shows the change in energies of the donor and acceptor, ĖD(t) and ĖA(t), the power
PD(t) delivered to the donor by the photon, the power output Pout, the heat dissipation at the donor
and the acceptor, JD(t) and JA(t). Note that PD(t) becomes equal to JD(t) in the steady state. The heat
dissipation JD(t) of the donor is mainly associated with the transfer of electrons from the donor
to the acceptor. The heat flow from the donor to the environment is relatively small because the decay
rate γ01 to the environment is much smaller than the electron transfer rate γ12 from the donor to the
acceptor. We note that only the fraction of the transferred heat energy is converted to the power output
Pout. JD(t) mainly plays the role of populating the acceptor level 2, which generates the acceptor current
for power output as indicated by Equation (32). It would be interesting to see whether the coherent
transfer between the donor and the acceptor may give rise to a different result.

Figure 7c shows the total entropy S(t) of the system and the entropies of the donor and the
acceptor, SD(t) and SA(t). Our numerical calculation confirms that the total entropy is the sum of
those of the donor and the acceptor, S(t) = SD(t) + SA(t), as explained before.

Figure 7d depicts the current I(t), the voltage V(t), and the power efficiency η defined by the ratio
of the electric power output Pout(t) and the power delivered by the photon PD(t). From the figures,
we see that these quantities initially show an oscillatory behavior then become saturated in the long time
limit. In particular, the asymptotic value of power efficiency is as high as ηp ∼ 0.36, which can also be
interpreted as the work efficiency, that is, work output divided by energy input, when ηp is constant.

There are different types of quantum heat engines like continuous engine, two-stroke engine and
four-stroke engine. Many other studies considered the quantum photocell as the continuous heat
engine where the donor is in thermal contact with the hot reservoir and the acceptor is in the cold
bath. Figure 7 demonstrates the photocell as a continuous heat engine, which is not in contact with
a hot bath, but is supplied input energy by photon pulses. In our case, we have the flexibility of
engineering the input photon pulses as desired. In Figure 8, we further compare the power efficiency
between the two cases. Figure 8a is the case where the photon pulses are applied at a finite time
interval (discrete mode operation). On the other hand, Figure 8b is the case where the photon pulses
are applied almost continuously. Both have the same energy parameter 〈n〉 = 1 of incoming Gaussian
pulses. In the discrete mode, we see an oscillatory behavior of power efficiency between 0.2 and 0.6.
In the continuum mode, the power efficiency does not oscillate but asymptotically approaches the value
ηp ∼ 0.36.



Entropy 2020, 22, 693 12 of 15

ηp =
Pout(t)
PD(t)

. (34)
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Figure 7. (a) The diagonal matrix elements of the density operator of the photocell and the pulse profiles
are plotted as a function of time. (b) The changes in the energy of the donor and acceptor (dE/dt)D =

E′D and (dE/dt)A = E′A, the power delivered to the donor PD(t) by the photon pulses, the power
output Pout, and the heat currents of the donor and acceptor JD and JA are plotted as a function of
time. (c) The entropy of the quantum photocell, S(t), the entropy of the donor, SD(t), and the entropy
of the acceptor, SA(t), are calculated as a function of time. (d) The current I(t), the voltage V(t),
and the efficiency η are plotted as a function of time. Parameters: 〈n〉 = 10, γ12 = γ03 = 10−2ω0,
γ01 = 10−2ω0, Γ = 0.1ω0, Ω = ω0/4π, and h̄ω0 = E1 − E0 = 1.8 eV.
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pulses. Parameters: 〈n〉 = 1, γ21 = γ03 = 10−3ω0, γ01 = 10−2ω0, and Ω = ω0/4π.
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Let us compare the two cases in Figures 7 and 8b both dealing with the continuum limit with
different energies 〈n〉 = 10 and 〈n〉 = 1, respectively. It is interesting to find that the efficiency turns out
to be the same ηp ∼ 0.36 regardless of the pulse energy of our consideration. Of course, the transient
behaviors are different as the high-energy case shows an oscillatory behavior while the low-energy
case does not. Aside from details, we see that our model of heat engine offers a possibility to make
an efficient quantum engine with a proper design.

5. Summary

In this paper, we studied quantum thermodynamics of two open quantum systems, the two-level
system and the quantum photovoltaic model, driven by the Gaussian photon pulses. By solving
the master equation with the time-dependent Hamiltonian of the Gaussian photon pulses,
we calculated quantum thermodynamic quantities. For the two-level system in the cold bath,
we examined the first law of quantum thermodynamics, which relates the energy change of the
system, the heat current, and the power. We also illustrated the second law of thermodynamics by
confirming that the entropy production is positive.

More importantly, we investigated the quantum photovoltaic cell in the cold bath driven
by the sequence of the Gaussian photon pulses. The power efficiency of the quantum photocell
was considered as the ratio of the output power delivered to the external load by the photocell
to the input power delivered by the photon pulses. We showed that the quantum photocell as a heat
engine can operate both in the discrete stroke mode and in the continuous stroke mode by changing
the sequence of the photon pulses.

Our model of quantum heat engine based on a driven quantum system in contact with a single
bath seems worthwhile to further investigate. In our work, we showed that the efficiency as high as
ηp = 0.36 can be achieved, which should be further explored in a broad range of system parameters.
The maximum efficiency of the quantum photocell may be obtained by applying the optimal control
method [35] or by adopting the quasi-static or quantum adiabatic processes [36,37] There are some
meaningful directions to consider. One is to study how the dark state or the quantum coherence can
further enhance the performance of the photocell. We also note that recently Chan et al. [31] studied
the quantum dynamics of excitons by absorption of single photons in photosynthetic light-harvesting
complexes. It would be interesting how the photosynthetic light-harvesting complexes behave
when the photon pulses are applied. Moreover, while we considered the Gaussian photon pulses
in the current work, other photon pulses, for example, hyperbolic secant, rectangular, or symmetric
exponential pulses may be tested to come up with an optimal design [30]. An open problem
is how to mimic the thermal photon from the hot thermal bath and to incorporate the thermal
photons into the simulation. The quantum photocells considered here can be simulated on quantum
computers [38,39] or by using transmon qubits as a working substance [40].
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