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Abstract: Biological recognition methods often use biological characteristics such as the human face,
iris, fingerprint, and palm print; however, such images often become blurred under the limitation of
the complex environment of the underground, which leads to low identification rates of underground
coal mine personnel. A gait recognition method via similarity learning named Two-Stream neural
network (TS-Net) is proposed based on a densely connected convolution network (DenseNet) and
stacked convolutional autoencoder (SCAE). The mainstream network based on DenseNet is mainly
used to learn the similarity of dynamic deep features containing spatiotemporal information in the gait
pattern. The auxiliary stream network based on SCAE is used to learn the similarity of static invariant
features containing physiological information. Moreover, a novel feature fusion method is adopted
to achieve the fusion and representation of dynamic and static features. The extracted features are
robust to angle, clothing, miner hats, waterproof shoes, and carrying conditions. The method was
evaluated on the challenging CASIA-B gait dataset and the collected gait dataset of underground coal
mine personnel (UCMP-GAIT). Experimental results show that the method is effective and feasible
for the gait recognition of underground coal mine personnel. Besides, compared with other gait
recognition methods, the recognition accuracy has been significantly improved.

Keywords: underground coal mine personnel; gait recognition; similarity learning; densely connected
convolution network; stacked convolutional autoencoder; Two-Stream neural network

1. Introduction

Gait recognition is a new biometric recognition technology that can recognize the identity of
people based on walking posture [1]. Gait recognition has a unique advantage over other biometric
technologies, namely the recognition potential at long distances or with low video quality. In addition,
the gait is difficult to hide or camouflage and does not require people to cooperate with [2]. Especially in
the dark, infrared gait recognition technology can play its role. At present, the identification of people
in coal mines is mostly based on faces and fingerprints. Although the recognition technology based on
faces and fingerprints has matured and has a high recognition rate in normal environments, due to
limited space, dim light, moist air, coal dust in the roadway, etc., face and fingerprints are often blurred,
seriously affecting the recognition rate of these identification methods [3]. The gait recognition method
does not have more requirements for illumination, video quality, or distance, which is very consistent
with the environmental characteristics of underground coal mines. By identifying and monitoring the
gait images of the personnel, the identity information of the underground operating personnel can
be accurately identified the first time. This is of great significance for the realization of mine safety
monitoring and personnel identity positioning.
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Gait recognition is a global recognition mode, but the main concern is gait information.
Human body characteristics include static invariant features (physiological characteristics) and dynamic
deep features (space-time characteristics). Static invariant features include body size (short and tall,
fat and thin), head shape, shoulder width, etc. The dynamic deep features include the amplitude of the
step, the frequency of the step, the center of gravity of the body, the coordination of the legs, and the
swing amplitude of the arm. If the human body is divided into four parts, for gait recognition, the key
areas of recognition are shown in Figure 1. The contribution of each part of the body to recognition is
4>1>3>2.

Figure 1. Gait recognition key areas.

In [4], the gait features are extracted in the form of interval-valued symbol features using the
distance relationship between the minimum inertia axis and the outermost contour. In [5], the author
proposed a view-invariant gait recognition method based on Kinect skeleton features. The author
uses gait energy image (GEI)-based local multi-scale feature descriptors for human gait recognition
in [6]. Reference [7] proposed a gait recognition method based on a static energy map and dynamic
group hidden Markov model, which has certain robustness to angle changes and reduces the impact
of noise on recognition. In [8], the time—frequency domain features of the gait image were extracted
using wavelet transform and time—frequency analysis methods to perform gait recognition. The author
proposed a gait recognition method based on tensor discriminant analysis and Gabor feature extraction
in [9]. This method is a linear quantification of linear discriminant analysis (LDA). Its advantage is
that it does not need to convert gait images into vectors. Therefore, the problem of having a “small
sample” is overcome.

With the rise and maturity of deep learning methods such as residual neural network (ResNet) [10]
and generative adversarial network (GAN) [11], deep learning has become one of the most popular
methods for solving gait recognition. A cross-perspective gait recognition method based on deep
convolutional neural network proposed by Huang et al. [12] of the Institute of Automation of the
Chinese Academy of Sciences can perform multi-perspective recognition, with improved accuracy.
Chen et al. [13] proposed a GaitGAN gait recognition method based on GAN. This method uses GAN
to transform gait images at any viewing angle and any state into gait images at a 90° normal walking
state, with high recognition accuracy and fast speed. Fudan University proposed a GaitSet algorithm
based on a gait contour graph [14]. Regarding gait contours as a set of images without time-series
relations, instead of deliberately modeling the time series of gait contours, the study makes deep neural
network optimize itself to extract and use this relationship. In [15], the author developed an efficient
spatiotemporal gait features with deep learning. The extracted spatial and temporal gait features
are embedded into the null space to obtain the similarity of gait image pairs and thereby achieve
gait recognition. In [16], the author used CNNs and multiple loss functions to extract gait features
from silhouette sequences and GEIs, respectively. This method can better extract spatiotemporal
information based on appearance. Wang et al. [17] proposed a DL-based gait recognition method
named Two-branch Convolution Neural Network. This method uses two kinds of CNN models
to extract gait features, and then trains an SVM classifier with the output of each CNN model to
achieve gait recognition. In [18], the author proposed an end-to-end system based on pre-trained
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DenseNet-201 [19] model for features extraction to realize gait recognition. This method achieved a
high recognition rate.

Aiming at the problems that the existing gait recognition methods have low accuracy and cannot
simultaneously extract the dynamic and static features of human walking, we propose a Two-Stream
neural network model based on similarity learning. [20,21]. Our proposed model takes the gait
energy image (GEI) as the model input [22]. GEI contains both human physiological information and
spatiotemporal information during walking. The gait image sequence is summed and averaged into
one gait picture, as shown in Figure 2.

Figure 2. Gait energy image (GEI).

2. Overview of the Proposed TS-Net Model

The proposed Two-Stream neural network (TS-Net) model simultaneously extracts dynamic deep
features and static invariant features in gait images, and it fuses multiple resolutions static invariant
features with dynamic deep features to obtain the most discriminating spatial-temporal information.
In addition, the recognition task is transformed into a binary classification problem through similarity
learning methods, which can more accurately achieve personnel recognition. As shown in Figure 3,
the TS-Net model proposed in this paper mainly consists of three parts: dynamic and static feature
extraction, feature fusion, and recognition.
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Figure 3. The architecture of the proposed Two-Stream neural network (TS-Net) model.

Dynamic and static feature extraction consists of two parallel networks: the mainstream network
based on DenseNet [19] and the auxiliary stream network based on stacked convolutional autoencoder
(SCAE) [23,24]. Firstly, in the mainstream network, dynamic deep features are extracted from gait image,
which represent more macroscopic and abstract spatiotemporal information of the gait image. In the
auxiliary stream network, static invariant features are extracted from gait image samples, which represent
physiological information such as the body shape and head shape of the low-dimensional gait image.

In the dynamic and static feature extraction process, the gait features extracted from the auxiliary
stream network are integrated into the mainstream network, and the final gait image features are
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obtained through the mainstream network to learn the gait similarity and then predict whether the
input image pair belongs to the same person. Finally, during the test, an image pair consisting of the
probe view and the gallery view is input to the network, and the similarity of the image pair is obtained
to realize gait recognition. The three parts of the TS-Net model will be described in detail next.

3. Dynamic and Static Feature Extraction, Fusion, and Recognition

3.1. Mainstream Network

Gaitimages are high-dimensional, complex, and changeable non-linear data. To extract discriminative
spatiotemporal information from gait images, it is necessary to build a deeper network. Studies shows
that increasing the number of layers in the network can help extract more hierarchical features, and the
deeper the network, the better the expression ability. However, in practical applications, as the number
of stacked layers increases, training and convergence will be difficult. Although methods such as
batch normalization (BN) can be used to alleviate the vanishing gradient and explosive gradient
problems [25,26], the performance of the network will still decline. This degradation is not caused by
overfitting, but the network is too deep to make it difficult to train. Therefore, the traditional neural
network model cannot build a sufficiently deep network.

Densely connected convolution network (DenseNet) can build deeper networks. Traditional neural
networks have only one connection between each layer and subsequent layers; that is, a convolutional
network with L layers has L connections. Compared with the traditional neural network, in order to
improve the information flow between layers, the DenseNet is connected to each layer in a feed-forward
manner, and each layer has a direct connection with the subsequent layers [27-29]. The network will
have L(L + 1) /2 dense connections [19]. For each layer, the inputs of the current layer are feature maps
of all the previous layers, and its own feature maps are used as the input of all the subsequent layers,
such as shown in Figure 4. Compared with a shortcut connection of the ResNet model, the special
connection structure of DenseNet can effectively promote features reuse, which can realize better
performance than ResNet in the case of less parameters and calculation costs. This connection structure
can strengthen feature propagation, thereby alleviating the problem of vanishing gradients.

+

Convolution Convolution Convolution

Figure 4. Connections for densely connected convolution networks.

In DenseNet, the L layer output of the feature map x; can be described by Equation (1):
x; = Hj(Concat(xg,x1,-..,x1-1), W)), (1)

where xq, x1, ..., x;_1 are feature maps from layers 0, 1, ..., [ -1, respectively. Concat is a connection
function that connects feature maps by channel dimensions. H;(-) is a non-linear transformation
function that represents some operations, including BN, ReLU, pooling, and convolution with the
weights W,.
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3.1.1. The Architecture of Mainstream Network

The mainstream network mainly learns the similarity of dynamic deep features in gait images,
that is, learning the changes in the stride, knee bending angle, arm swing amplitude, and body center
of gravity during the walking process by DenseNet [19]. The architecture is shown in Figure 5.
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Figure 5. The architecture of the mainstream network.

The input of the network is a fixed-size 128 X 128 gait image (in order to better adapt to the
network, we resize the 240 x 240 image to 128 x 128). The input layer contains one convolutional layer
that applies a convolution kernel of 7 X 7 with a stride of 2 pixel and one max-pooling layer that applies
3 x 3 sliding windows with a stride of 1 pixels. The purpose of the input layer is to extract multi-scale
basic visual features and reduce the image size to reduce network parameters. Each DenseBlock layer
contains a DenseLayer (set to 2, 4, 8, 6 respectively). Each DenseLayer contains two convolution layers
that apply a 1 X 1 kernel with a stride of 1 pixel and 3 x 3 kernel with a stride of 1 pixel—that is,
BN-ReLU-Conv (1 x 1)-BN-ReLU-Conv (3 x 3). The compression layer uses a convolution kernel of
1 x 1 with a stride of 1 pixel and an avg-pooling kernel of 2 x 2 with a stride of 2 pixels to reduce the
image to half its size. The purpose of the compression layer is to adjust the dimensions and further
improve the compactness of the model. In this way, the feature map size of the auxiliary stream
network input to the mainstream network can be reduced on the one hand, and the number of feature
maps input to the next DenseBlock is reduced on the other hand. The output layer applies an average
pooling layer with a sliding window of 8 x 8 and a 62-dimensional fully connected layer to obtain the
final gait features. Finally, the similarity of gait images is obtained through the sigmoid function.

In the training task of gait recognition, because the network inputs a pair of gait images to learn
their similarity, the training sample label is 1 (positive sample) or 0 (negative sample). A value of
1 means that two gait images are from same person, and a value of 0 means that two gait images are
from different people. Therefore, our network uses a binary cross-entropy loss function to calculate the
loss, as in Equation (2):

N
o5 =~ 2, og(p o))+ (1) Tog(1 =) @

N represents the number of samples; y; represents the label value of sample i; and p(y;) represents
the predicted probability value of the label value of sample i.

In the TS-Net model, the Adam [30] stochastic optimization algorithm is used to perform parameter
updates. Adam is an efficient optimization algorithm, because the first moment estimation (mean of
gradient) and second moment estimation (variance of gradient) are considered together, which makes
the back-propagation algorithm easier to execute.

3.1.2. Reducing Overfitting

In general, the deeper the model is during training, the more parameters need to be learned,
making it easier to overfit. We applied the dropout [31,32] method before the last fully connected layer
to solve this problem. Dropout means that during the training of the network, the input and output
neurons are unchanged, and the hidden neurons are temporarily dropped from the network according
to a certain probability—that is, the output is set to zero with a certain probability. The neurons that
are “dropped out” participate in neither forward propagation nor backward propagation. Obviously,
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the network samples different architectures for each input, but these different architectures share
identical weight. Therefore, dropout can effectively prevent overfitting of the training data. In this
paper, we set dropout to 50% (usually 30% or 50%, empirically chosen in practical applications).

3.2. Auxiliary Stream Network

After the mainstream network learns the similarity of dynamic deep features in the gait image,
the auxiliary stream network is used to learn the similarity of static invariant features, including static
information such as body shape, head shape, and shoulder width. The auxiliary stream network is
designed based on a stacked convolutional autoencoder (SCAE). The architecture during the experiment
is shown in Figure 6.

Input
—>
encoder construction

encoder encoder decoder decoder
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Figure 6. The architecture of auxiliary stream network.

SCAE is composed of multiple convolutional autoencoders (CAE). CAE is a neural network
designed to copy input to output. The network is divided into two parts: an encoder and decoder.
The encoder compresses the input into a latent spatial representation, and the decoder is used to
reconstruct this representation [33,34]. The purpose of CAE is to extract the most representative
information to represent the original image—that is, the process of image dimensionality reduction.
Compared with traditional dimensionality reduction methods such as PCA, the information extracted
by the convolutional neural network is more effective and representative with the better recovery effect.
The encoder network can be expressed by a neural network function passed by the activation function.

The encoder network is defined as:
=0 (Wx+b) 3)

where z denotes the hidden dimension of the encoder. W denotes the weight of the encoder network.
b denotes the bias, and ¢ represents the non-linear activation function.

Similarly, the decoder network can be expressed in the same way. However, different weights,
bias, and activation functions are applied, and it is defined as follows:

= a/(Wrz +br). 4)

Here, x’ denotes the hidden dimension of the decoder. W 7 denotes the weight of the decoder
network. bs denotes the bias, o/ represents the non-linear activation function, and z represents the
hidden dimension of the encoder.

The higher the similarity between the original data and the reconstructed data, the more effective
the features extracted by the network. Therefore, we update the network by decreasing the discrepancy
between input and output. The auxiliary stream network uses the mean squared error loss function to
calculate the loss of the original gait image and the reconstructed gait image, which is expressed as:

J0) = 53 Y [l - g+ ZIWIR 5)

i=1 j=1
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where x;; and y;; denote the pixel values corresponding to the i-th row and the j-th column of the
original gait image and the reconstructed gait image. u and v denote the number of rows and columns
of the input data, respectively. The term %IIWII2 is used for the weight decay.

In this paper, the auxiliary stream network is composed of three CAEs that have one hidden layer.
During the training process, each CAE is individually trained. The output of the previous CAE is used
as the input of the next CAE to achieve the purpose of “Each layer iterates; only a single layer updates”.
In this way, the training revenue of the next CAE will be very high, because the input is the mapped
features from the previous CAE training.

The auxiliary stream network extracts hierarchical features from gait image samples. During the
feature extraction process, as the number of layers increases, the resolution of the feature map becomes
smaller and smaller, and the blurriness gradually increases. However, the extracted static invariant
features are increasingly obvious. The resemblance between the original image and the recovered
image indicates that the extracted features retain the most significant information. The reconstructed
visualization process is shown in Figure 7.
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Figure 7. Reconstructed visualization process.
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3.3. Feature Fusion and Recognition

In this paper, a novel feature fusion method is used, as shown in Figure 8. We feed the multi-scale
static invariant features extracted by the auxiliary stream network to the mainstream network,
respectively. Compared with the traditional feature fusion method, which adds different features
directly, our proposed method achieves feature reuse. As the depth of the model increases, the
proportion of distinctive features becomes larger and larger, and the proportion of indistinguishable
features becomes smaller and smaller. Therefore, the similarity of the image pair can be judged more
accurately. The mainstream network fuses the features extracted by itself and the features extracted
by the auxiliary stream network. The final gait feature features include both the dynamic and static
features of human walking. Experiments show that this feature fusion method is very effective.
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Figure 8. Process of the feature fusion method.
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During the training task, the gait feature vector obtained by the mainstream network represents
the similarity of a pair of gaitimages. We use the sigmoid function to convert the feature vector value to
a value between 0 and 1. That is, the recognition task is transformed into a binary classification problem
through similarity learning methods. If it is greater than 0.5, it is judged as a positive example—that is,
the pair of gait images comes from the same person. Less than 0.5 is judged as a negative example—that
is, the pair of gait images comes from different people. In the test task, we combine the probe view
with each gallery view to form an image pair. Through the TS-Net model, we obtain the similarity of
each pair of gait images. The person with the highest number of positive examples—that is, the person
with the highest similarity—is the final recognition result. In order to better describe our model,
the pseudocode for training and testing is shown in the Algorithm 1.

Algorithm 1 TS-Net Model.

Training;:
Input data:
image pair (X1, X2) randomly selected from the training set.
for
i« 1to M (Iteration)
input
SCAE « (X1, X2)
output
S (sl, s2, s3) « SCAE
input
DenseNet « (X1, X2) and S(s1,s2, s3)
output
Y < DenseNet
do

Loss « Loss(6;)

NG, %, Ab; < Os+a;ABs (ais learning rate)

do

Loss « Loss(6,)
dLoss

Aed — - A9d<—9d+adA9d
00y

end
Testing:
for

P; < P; to P, (Images of prob set)
for

G; < G; to G, (Images of gallery set)
input

SCAE « (P;, G;)
output

S (s1, s2, s3) « SCAE
input

DenseNet « (P;, G;) and S(s1,s2, s3)
output

sim < DenseNet
prediction < vote(max(sim))
end
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4. Experimental Results and Conclusions
4.1. Dataset

4.1.1. CASIA-B Dataset

First, we used the CASIA-B dataset [35], one of the largest public gait datasets created by the
Institute of Automation, Chinese Academy of Sciences in 2005, to test the recognition performance of
the proposed TS-Net model. The database contains 124 subjects (93 male and 31 female). The subject’s
angle of view divided 0” to 180" into 11 different angles at 18" intervals. Each subject was divided into
three walking states, including six normal walking sequences (NM), two walking with a bag sequences
(BG), and walking with a coat sequences (CL), as shown in Figure 9.

0° 18° 36°  54° 72° 90° 108° 126° 144° 162° 180°

U 6
(L 2
2

BG

Figure 9. CASIA-B dataset.

4.1.2. UCMP-GAIT Dataset

There is currently no public gait dataset for underground coal mine personnel (UCMP-GAIT).
Therefore, in order to further verify the feasibility of the model for gait recognition of coal miners,
we collected the gait data of 30 coal miners (all male, usually male workers under the mine).
The UCMP-GALIT dataset is constructed as shown in Figure 10. The gait behavior of underground
coal mine personnel is related to work content, environment, and dress. Therefore, the dataset
contains 10 workers in each of the three types of work, namely coal miner, hydraulic support workers,
and shearer driver. Each subject in the dataset contains 3 angles (180, 540, 900). Each subject contains
2 walking sequences. One is taken in the coal mine examination room (with sufficient light and wide
space), which is used as gallery views. The other is taken in the underground coal mine (dim light,
limited space, wet, coal dust), which is used as probe views.

HEIH I}

Figure 10. Gait energy image in collected gait dataset of underground coal mine personnel
(UCMP-GAIT).

4.2. Experimental Design

In the experiments, the three walking states in the CASIA-B dataset, including “NM”, “BG”,
and “CL” are involved. We used the six “NM” sequences, two “BG” sequences, and two “CL”
sequences of the first 62 subjects (001-062) in the dataset as the training set. The remaining 62 subjects
(063-124) were used as the test set. In the test set, the first 4 “NM” sequences of each subject are used
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as the gallery view, and the remaining two “NM” sequences, two “BG” sequences, and two “CL”
sequences are used as the probe view to test the performance of the model in different walking states.

In the UCMP-GAIT dataset, all gait images of 30 coal miners were used to test the model. The gait
image sequence captured in the coal mine examination room is used as the gallery view, and the
sequence captured in the underground coal mine is used as the probe view.

4.3. Model Parameters

We set the batch size to 64. In addition, we use the Gaussian distribution with a mean of 0 and a
standard deviation of 0.01 to initialize the weights of each layer. All biases are initialized to 0. In order
to make the network converge better, we set the learning rate to 0.0001. We determine the number of
iterations based on the recognition results on the validation set. The parameters are shown in Table 1.

Table 1. Training parameters.

Parameter Optimization
Batch Size 64
Epochs 200,000
Learning Rate 0.0001

4.3.1. Mainstream Network Parameters

Too deep a network and too many feature maps will cause the model to be too complicated,
require too many parameters, and take too long to identify. Too shallow a network and too few feature
maps will cause the model to fail to learn discriminative features in the gait image and poor recognition
results. Therefore, the optimal parameter settings obtained through multiple experiments are shown
in Table 2. Each “conv” in the table corresponds to the BN-ReLU-Conv mode in the experiment.

Table 2. Mainstream network parameters.

Layers Output Size Feature Num Mainstream Neural Network
Convolution 64 X 64 2 —24(12 x 2) 7 X 7 conv, stride 2
Pooling 64 x 64 24 — 24 3 X 3 max pool, stride 1
Dense Block (1) 64 X 64 24 — 48(24 + 12 X 2) IxTconv
| 3Xx3conv |
. 1 X1 conv
C L 1
ompression Layer (1) 32%32 64(48 +16) — 24 2 x 2 average pool, stride 2
Dense Block (2) 32x 32 24 — 72(24 + 12 x 4) IxTconv | )
3% 3 conv
) ~ 1x1conv
L 2
Compression Layer (2) 16 x 16 104(72 + 32) — 36 2 x 2 average pool, stride 2
Dense Block (3) 16 x 16 36 — 132(36 + 12 x 8) IxTconv o
| 3Xx3conv |
. 1 X1 conv
C L 3
ompression Layer (3) 8x8 196(132 + 64) — 66 2 x 2 average pool, stride 2
1x1conv |
Dense Block (4) 8x8 66 — 138(66 + 12 X 6) | 3x3conv | X 6
1x1 138 — 138 8 x 8 global average pool

lassification L
Classification Layer Fully connected, sigmoid

4.3.2. Auxiliary Stream Network Parameters

In the experiment, the auxiliary stream network parameters are divided into two parts: an encoder
and decoder. The encoder is divided into 3 layers, and the decoding is also divided into 3 layers.
The detailed parameters are shown in Table 3:
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Table 3. Auxiliary stream network parameters.

Layers Number of Filters Filter Size Stride Batch Norm Activation Function
Conv.1 16 2x2x2 2 Y ReLU
Conv.2 32 2x2x16 2 Y ReLU
Conv.3 64 2x2x32 2 Y ReLU
F-Conv.1 64 2x2x32 1/2 Y ReLU
F-Conv.2 32 2x2x16 1/2 Y ReLU
F-Conv.3 16 2X2x%x2 1/2 Y ReLU

4.4. Experimental Results

Firstly, we conducted experiments in the CASIA-B test set (62 subjects). In order to evaluate the
robustness of the TS-Net model, three variations covering view, clothing, and carrying objects are
evaluated. There are 11 views in the database with a total of 121 pairs. We combined the probe view
with the same angle view of all the subjects (62 subjects) in the gallery set (4 per subject) to composed
into image pairs, and input into our proposed model to get the similarity (values between 0 and 1,
closer to 1 indicates more similar). The experimental results are shown in Tables 4-6. Each row and
each column in the table correspond to the angle of the gallery view and the probe view, respectively.

Table 4. Multi-view recognition rate under normal walking condition.

Probe view (nm05, nm06)

0 18 36 54 72 90 108 126 144 162 180
0 97.58 8952 6774 5484 2984 3065 33.06 3629 4274 6129 83.87
18 8710 9839 99.19 8790 5726 4516 4435 5484 587 6452 6532

.5 36 7097 9194 9758 9597 79.84 6452 6452 7419 7500 6694 6048
; 54 46.77 7419 9355 96.77 9194 80.65 84.68 8226 7258 54.03 3871
ks 72 3226 4758 79.03 9758 96.77 9435 92.74 84.68 6855 4597  30.65
3 90 2823 3710 6048 8548 96.77 9758 96.77 89.52 6532 4194 28.23
108 2581 3871 58.06 76.61 9194 9758 9758 9597 87.10 4839 30.65
126 33.06 5161 6694 7661 80.65 87.10 9435 96.77 91.13 7419 46.77
144 4032 6210 70.16 6694 6613 7258 79.03 9113 89.38 86.29 73.54
162 5726 7097 6210 5403 50.00 4597 5565 75.00 83.87 99.19 87.10
180 7581 6371 5242 4032 33.06 3145 3952 4677 66.13 8548 97.58

Table 5. Multi-view recognition rate under walking with a bag condition.

Probe view (bg01, bg02)

0 18 36 54 72 90 108 126 144 162 180
0 9194 75.00 5484 3548 20.16 1613 2419 2742 3710 56.45 62.90
18 79.03 9597 83.87 6694 4194 3226 4032 49.19 5403 6129 54.84
,5 36 5242 8226 9032 8790 6694 49.19 6048 7016 6290 4839 42.74
; 54 3790 6210 8548 9194 7984 6774 7258 7097 7097 4516 35.48
ks 72 2097 3226 66.13 91.13 9839 9355 89.52 7742 5484 4113 25.00
5 90 1774 2419 4758 7177 9113 9194 9355 7823 50.00 3226 19.35

108 2258 3145 4919 7177 8548 8871 9355 9194 6290 3790 25.00
126 2742 4032 58.06 7016 7419 7399 9032 9355 8226 5323 36.29
144 33.87 5242 59.68 5887 4516 4839 6855 8710 88.71 8145 48.39
162 5242 6129 5242 3871 3629 3065 4194 5726 7339 89.52 75.81
180 59.67 5323 4194 3065 2339 16.13 2742 3226 5726 84.68 90.32

Secondly, in order to better verify the performance of the model, we interchange the testing set and
the training set. We set the first 62 subjects (001-062) in the dataset as the testing set, and the remaining
62 subjects (063-124) were used as the training set. The experimental results are shown in Table 7.
Experimental results show that our model performs stably and still achieves a higher recognition rate.
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Table 6. Multi-view recognition rate under walking in a coat condition.
Probe view (cl01, cl02)

18 54 72 90 108 126 144 162 180

0 68.55 53.23 33.87 2097 1210 8.87 1290 1532 20.16 4516 4597

s 18 46.77 6774 6048 4113 30.65 2823 26.61 31.34 3065 34.68 29.03

9 36 34.68 6048 7581 6048 4839 3629 3790 37.10 34.68 29.84 2741

; 54 21.77 4758 6129 75.00 5323 50.00 4839 4194 4274 2742 25.00

3 72 1290 37.10 51.61 7500 8226 7339 7177 5484 3548 21.77 17.74

S 90 17.74 2661 3629 5403 7339 7581 7823 6290 33.06 20.16 15.32

108 1452 2661 3871 5081 6774 7097 83.87 7339 4435 2581 16.13

126 1935 3548 4516 49.19 50.00 55.65 70.97 7823 59.68 40.32 27.42

144 23.39 30.65 3629 3468 3790 3226 4758 59.68 75.81 5645 36.29

162 38.71 50.00 34.68 2177 21.77 2258 2581 3387 4355 63.71 4758

180 4919 4194 3871 2419 1452 1290 1532 1935 3790 5323 70.16

Table 7. Recognition rate after interchange the dataset.
Probe View 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° Mean

NM 5410 6595 7339 7573 7038 6796 71.11 7522 7361 6620 5845 68.37
Before swap BG 45.09 5557 6268 65.03 6026 5533 6386 66.86 63.12 5741 4692 58.38
CL 3160 4340 46.63 46.11 4472 4245 4721 46.18 41.64 38.05 32.55 41.88
NM 55.62 6487 7246 7481 7132 66.63 6854 7620 7381 65.79 59.81 68.16
After swap BG 4673 5549 6145 6439 6252 5478 6684 6752 6259 5699 4876 5891
CL  33.87 4397 43.69 4422 4288 40.77 4511 4376 4148 39.13 3374 41.14

Finally, we conducted experiments on the UCMP-GAIT dataset, and the identity recognition rate
was shown in Table 8. Gait recognition has little effect on environmental factors such as light and
distance. Compared with the subjects in CASIA-B, the difference is that the personnel in the coal
mines wear miner hats on their heads, carry tool bags on their bodies, and wear waterproof shoes
on their feet, as shown in Figure 11. However, our model still has a high recognition rate, indicating
that our proposed gait recognition method is also robust to these unique features of underground coal

mine personnel.

Table 8. Gait recognition rates for UCMP-GAIT test sets.

o

Type of Work 18 54’ 90 Mean (%)
Coal miner 90.00 100.0 100.0 96.67
Hydpraulic support worker 90.00 90.00 100.0 93.33
Shearer driver 80.00 90.00 90.00 86.67
All 86.67 93.33 96.67 92.22

Figure 11. Gait images of underground coal mine personnel.
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4.5. Compared with State-of-the-Art Methods

We compare the proposed TS-Net model with the latest gait recognition method on the CASIA-B
dataset, including deep convolutional neural networks (represented as CNNs) [12], principal component
analysis (represented as GEI + PCA) [22], generate adversarial network (represented as GaitGAN) [13],
and a perspective transformation model (represented as SPAE) [33].

Firstly, we compared the recognition rate without angle changes—that is, the angle of the probe
view and the gallery view are the same. The average recognition rate can be obtained by taking the
recognition rates on the diagonals of Tables 4-6. The corresponding CNNs, GaitGAN, GEI + PCA,
ResNet, and SCAE average rates are also obtained in the same way. The proposed method has a high
recognition rate, as shown in Figure 12. Especially in the case of BG and CL, the recognition rates are
92.37% and 73.9%, which is significantly higher than other methods.

120
98.45 98.32 97.58 98.75 97.65

100 92.37

80 7131 7214 72.73 739
56.23
60 45.63 45.45 415
40
20 1e.93I
0 e
NM BG CL

B PCA+GElI mCNNs SPAE GaitGAN M Proposed

Recognition rate(%)

Figure 12. Recognition rate without perspective changes.

Secondly, we compared the recognition accuracy in the cross-view case—that is, the perspectives
of the probe view and the gallery view are different. We select three walking conditions when the
probe view is 36°,72°,108°,144°, and the comparison results are shown in Figure 13. It can be seen
from the results that our proposed method is significantly better than these methods, regardless of
whether the viewing perspective changes.

Thirdly, we compared the overall recognition rate of the model with the SPAE [33] and MGAN [36]
methods, as shown in Table 9. The results show that our model has a higher overall recognition rate.
Especially in the presence of noise, the recognition effect is significantly higher than other methods.

Table 9. Comparison of overall recognition rate in CASIA-B.

Probe View 0° 18° 36° 54° 72° 90° 108°  126° 144° 162° 180° Mean

SPAE 493 615 644 636 637 581 599 665 648 569 440 593
MGAN 549 659 721 748 711 657 700 756 762 686 538  68.1

NM#

56 Proposed  54.1 660 734 757 704 680 711 752 736 662 585 684
BG# SPAE 298 377 392 405 438 375 430 427 363 306 285 372
12 MGAN 485 585 597 580 537 498 540 613 595 559 431 547

) Proposed 451 556 627 650 603 553 639 669 631 574 469 584
CL# SPAE 187 210 250 251 250 263 287 300 236 234 190 242
12 MGAN 231 345 363 333 329 327 342 376 337 2.7 210 315

Proposed  31.6 434 466 461 447 425 472 462 416 381 326 419
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Figure 13. (a—d) represent the cross-view recognition rate of “NM”, “BG”, and “CL” walking condition
when the probe view is 36°,72°,108°, 144", respectively.

Finally, we compared the recognition rates in UCMP-GAIT, as shown in Table 10. The gait
recognition accuracy of the proposed TS-Net model increased by 6.67% compared with the recognition
methods that have the highest accuracy.

The performance of our proposed TS-Net model is much better than the state-of-the-art gait
recognition methods. No matter whether a cross-view or identical-view, the performance of the
proposed model is demonstrated. The GEIs of BG, CL, and UCMP-GAIT contain massive but different
noises, but the model still has a high recognition rate in these cases, indicating that our proposed model
can eliminate the effects of noise to obtain the most discriminating features in GEIs. Our proposed
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model has good robustness to these noises; this is mainly due to the use of efficient multi-scale feature
extraction and novel feature fusion techniques. At the same time, the TS-Net model based on DenseNet
and SCAE has better performance, indicating that the multi-scale feature fusion of static invariant
features and dynamic deep features are much better than a single static feature or dynamic feature.
This is why our model has a high recognition rate.

Table 10. Recognition accuracy comparison with other methods in the UCMP-GAIT dataset.

Methods Accuracy (%)
GEI + PCA 31.11
CNNs 85.56
SPAE 83.33
GaitGAN 81.11
Proposed 92.22

4.6. Efficiency

Finally, we analyzed the computational cost of the model. In the calculation process, the main
time-consuming step is in the mainstream network. In the testing process, the auxiliary stream network
only needs to provide the encoded feature map, so there is no need to perform the most time-consuming
decoding operation. The mainstream network needs to calculate the feature map generated by itself
and the feature map from the auxiliary flow network. However, we have done a lot of optimization
on the model, which greatly reduces the computational cost. Firstly, we use a convolutional layer in
the input layer, which applies a convolution kernel of 7 X 7 with a stride of 2 pixe to reduce network
parameters. Secondly, the compression layer will be used to reduce the size of the feature map to half
after feeding the feature maps. In this way, the feature map size can be reduced on the one hand,
and the number of feature maps input to the next DenseBlock is reduced on the other hand. Finally,
the output layer applies a global pooling layer to reduce output parameters.

We ran the proposed method on a server with 4 Titan X (12 GB) GPU. For our experiment, only the
inference time is measured on 1 GPU. After experimental calculation, the average time for inputting
a gait image pair into our model to obtain the similarity is 2.73 ms. It takes a total of 22.11 s to
predict 30 people on the UCMP-GAIT dataset. The average prediction time for a person is 0.25 s.
Under the premise of ensuring the calculation efficiency, the accuracy of our model has been greatly
improved. If you add batch processing, which can make sure the algorithm maximizes GPU capability
or use a GPU with better computing performance, the computing efficiency of our models can be
further improved.

5. Conclusions and Outlook

This paper proposes a TS-Net model based on DenseNet and SCAE, which is used to extract and
fuse the dynamic deep features and static invariant features of gait images for the gait recognition of
underground coal mine personnel. Mainstream networks use DenseNet to learn dynamic deep features
to represent the macroscopic spatiotemporal characteristics of gait images. Auxiliary stream networks
use SCAE to learn static invariant features, which are used to provide a low-dimensional physiology of
gait image information. Then, the pixel-level dynamic deep features and hierarchical static invariant
features are fused together to realize gait identification based on the similarity learning method.
The proposed TS-Net model not only has a high recognition rate, but it also has good robustness to
personnel angle changes, carrying conditions, miner hats, and clothing. The experimental results
show that the proposed TS-Net model has a gait recognition accuracy of 92.22% in the UCMP-GAIT
dataset, which is significantly better than the state-of-the-art gait recognition methods. What’s more,
it is effective and feasible for underground coal mine personnel gait recognition.

In the underground coal mine, without being restricted by the complicated environment and
by the distance, the gait recognition will play a vital role in identifying the personnel in the coal
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mine. The gait recognition of underground coal mine personnel needs to recognize the identity of
the underground coal mine in real time, and the model recognition speed must be fast. Therefore,
simplifying the model complexity and improving the recognition speed will become the focus of our
future research work. In the future, we plan to collect more gait images of coal mine personnel to
enrich our dataset, and study more in-depth models to improve the accuracy of gait recognition.
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