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Abstract: The amount of information that differentially correlated spikes in a neural ensemble carry
is not the same; the information of different types of spikes is associated with different features of the
stimulus. By calculating a neural ensemble’s information in response to a mixed stimulus comprising
slow and fast signals, we show that the entropy of synchronous and asynchronous spikes are different,
and their probability distributions are distinctively separable. We further show that these spikes
carry a different amount of information. We propose a time-varying entropy (TVE) measure to track
the dynamics of a neural code in an ensemble of neurons at each time bin. By applying the TVE
to a multiplexed code, we show that synchronous and asynchronous spikes carry information in
different time scales. Finally, a decoder based on the Kalman filtering approach is developed to
reconstruct the stimulus from the spikes. We demonstrate that slow and fast features of the stimulus
can be entirely reconstructed when this decoder is applied to asynchronous and synchronous spikes,
respectively. The significance of this work is that the TVE can identify different types of information
(for example, corresponding to synchronous and asynchronous spikes) that might simultaneously
exist in a neural code.

Keywords: information-theoretic measure; rate code; temporal code; multiplexed code; asynchronous
and synchronous spikes

1. Introduction

The collective responses of primary sensory neurons constitute fully or partly mixed inputs to
cortical neurons; thus, multiple features of the stimulus are to be reliably coded by cortical neurons.
The brain uses different coding strategies to represent information underlying those features.
Information can be encoded by either the rate of spikes in a relatively long time window—rate
code—or by their precise timing—temporal code [1–9]. In temporal coding, information is mostly
carried by groups of neurons that fire nearly simultaneously [9,10] (see [11] for other forms of temporal
coding) whereas, in the rate coding, the precise timing of spikes is compromised and information
across neurons is mostly carried by the rate of asynchronous spikes [12–15].

It has been suggested that the presence of both coding strategies, whose feasibility was
demonstrated in different neural systems (e.g., [16,17]), can be considered as a unique way to convey
multiple features of the stimulus, i.e., multiplexed coding. In fact, in addition to the rate code, which is
largely observed in different neural systems, inter-neuronal correlations within many areas of the
brain have a significant functional role in the neural code [18–20]. Temporal correlations between
neurons can contribute to coding additional information, which are not represented by the isolated
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spike trains. However, it remained unknown to what extent these coding strategies cooperatively
contribute to the representation of a mixed stimulus. It is challenging to uncover the distinct roles
of differentially correlated spikes—i.e., asynchronous spikes (rate code) and synchronous spikes
(temporal code)—in a multiplexed code. To address this challenge, it is crucial to measure the
information underlying different types of spikes [16]. Various information-theoretic techniques have
been exploited to measure information carried by differentially correlated spikes [15,21]. These methods
can be classified into two categories, namely, direct and indirect approaches [19]. In the indirect
approach, information is calculated based on the relationship between the stimulus and neural
responses. In contrast, in the direct approach, information is obtained based on the statistics of the
neural responses, regardless of any assumptions about the stimulus [19]. For example, in the indirect
approach, mutual information (MI) between the stimulus and spikes [22–24] is calculated based on their
joint probability distribution [23,25,26]. Thus, the computational complexity is expensive. Although
some methods, like non-parametric kernel estimation [27] and Gaussian approximation [28], are used
to reduce the computational complexity of calculating the joint distribution, the indirect approaches
are not sufficiently accurate when applied to multi-dimensional neural activity, i.e., spikes in a neural
ensemble [29]. In contrast, information can be measured with less complexity in the direct approaches.

It is worth mentioning that information, in almost all the existing methods, is calculated by
the length of the stimulus interval. Nevertheless, the information of a mixed stimulus might be
represented by spikes at different time scales. The rate-modulated asynchronous spikes and precisely
correlated synchronous spikes occur in different timescales. Thereby, to calculate information in a
multiplexed code, it is important to calculate information over time (at each time bin) and in different
time scales. In this paper, we propose a time-varying entropy (TVE) measure that calculates the
entropy of a neural ensemble in response to a mixed stimulus consisting of slow and fast signals.
The simultaneous representation of these signals through synchronous and asynchronous spikes was
recently demonstrated [16]. Inspired by [19], we consider spikes as code words with different lengths
and time resolutions, and calculate the entropy across homogeneous neurons in a neural ensemble.
In this way, we estimate the entropy of spikes at each time bin and show how it varies in different
time resolutions, which correspond to different features of the stimulus. Furthermore, by computing
the probability distributions and entropies of asynchronous and synchronous spikes in a neural
ensemble, we show that these spikes carry different information. The TVEs underlying synchronous
and asynchronous spikes have their maximum values when the code words are selected with specific
time resolutions. In addition, we demonstrate that the TVEs of synchronous and asynchronous spikes
are highly correlated with the fast and slow signals, respectively. Finally, we use a Kalman decoder to
reconstruct these features of the stimulus using asynchronous and synchronous spikes. Our results
indicate that information underlying synchronous and asynchronous spikes is different and associated
with distinct features of the stimulus.

2. Computational Framework

2.1. Responses of a Homogeneous Neural Ensemble to a Mixed Stimulus

According to the feasibility of neural systems to multiplexed coding [16,30], we simulated the
activity of a homogeneous neural ensemble in response to a mixed stimulus to explore how much
information can be encoded by different patterns of spikes. Each neuron received a mixed signal (Imixed),
which consists of a fast signal (I f ast) and a slow signal (Islow) [16]. I f ast stands for the timing of fast events
or abrupt changes in the stimulus and was generated by convolving a randomly (Poisson) distributed
Dirac-delta function with a synaptic waveform (normalized to the peak amplitude), τrise = 0.5 ms,
and τ f all = 3 ms. Fast events occurred at a rate of ∼ 1 Hz and were scaled by a f ast = 85 pA.

Islow was generated by an OU process as follows

dIslow
dt

= −
Islow(t) − µ

τ
+ σ

√
2
τ
ξ(t), ξ ∼ N (0, 1) (1)
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where ξ is a random number drawn from a Gaussian distribution, τ = 100 ms is the time constant
of the slow signal that produces a slow-varying random walk with an average of µ = 15 pA and a
standard deviation of σ = 60 pA. The mixed signal (Imixed) was obtained by adding I f ast and Islow,
which are generated independently.

An independent noise (equivalent to the background synaptic activity) was added to each neuron,
thus each neuron receives a mixed signal plus noise. Similar to [31], the noise (Inoise) was generated by
an OU process of τ = 5 ms, µ = 0 pA, and σ = 10 pA.

The neural ensemble consists of 100 neurons, each of them was modeled by Morris–Lecar
equations [32,33]. The equations of a single model neuron receiving a mixed-signal plus noise can be
written as follows

C dV
dt = Imixed(t) + Inoise(t) − gNam∞(V)(V − ENa) − gKw(V − EK) − gL(V − EL)

−gAHPz(V − EK) − gexc(V − Eexc) − ginh(V − Einh)
(2)

where,
dw
dt

= φ
w(V) −w
τW(V)

(3)

dz
dt

=

1
1+e(βz−V)/γ − z

τz
(4)

m∞(V) = 0.5
[
1 + tanh

(
V − βm

γm

)]
(5)

w∞(V) = 0.5
[
1 + tanh

(
V − βw

γw

)]
(6)

τw(V) =
1

cosh
(V−βw

2βw

) (7)

where {gNa = 20, gk = 20, gL = 20, gAHP = 25, gexc = 1.2, ginh = 1.9} ms
cm2 , {ENa = 50, EK = −100,

EL = −70, Eexc = 0, Einh = −70} mV, βm = −1.2, γm = 18, βw = −19, γw = 10, βz = 0, γz = 2,
τa = 20 ms, φ = 0.15, and C = 2 µF

cm2 . These parameters were set to ensure a neuron operates in
a hybrid mode [34], i.e., an operating mode between integration and coincidence detection [35].
The inclusion of background excitatory and inhibitory synaptic conductance in (2) reproduced a
“balanced” high-conductance state [36]. The surface area of the neuron was set to 200 µm2, so that
Imixed is reported in pA, rather than as a density. Figure 1 shows different steps towards constructing
the mixed signal and stimulating a neural ensemble. Figure 1A shows how the mixed signal was made
by Islow and I f ast signals. The spiking activity of the neural ensemble is shown in Figure 1B. Similar
to [16], synchronous spikes, sync-spikes, and asynchronous spikes, async-spikes, were distinguished
based on a synchrony threshold. Therefore, the dataset consists of the mixed-stimulus and the spiking
activities of the neural ensemble where different elements of the mixed stimulus (I f ast, Islow) and their
related neural activities were shown in different colors.

2.2. Probability Density Estimation

We used a histogram-based method [37] to calculate the probability distributions of spiking
activities or word patterns. We considered 100 bins (as 100 is the total number of neurons used in the
simulation study) for the construction of the histograms of different types of spikes. For each word
pattern, we considered 2L bins, where L is the length of the word pattern, to construct histograms that
include all possibilities. Finally, the histograms are normalized to reach a probability density function.
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Figure 1. The simulation data consist of the mixed stimulus and spiking activity of the neural ensemble.
(A) The mixed stimulus Imixed consists of I f ast and Islow (see Section 2) (B) Different patterns of spikes
resulted from the neural ensemble (including 100 neurons) as response to a mixed stimulus.

3. Results

3.1. Information Underlying Synchronous and Asynchronous Spikes Are Distinctively Separable

To address whether synchronous and asynchronous spikes convey different information, we test if
these spikes are distinctively separable [27]. We use mutual information (MI) to measure the similarities
between the probability distributions of these spikes [27,28], i.e., I(A; S), where S and A are random
variables drawn from the distributions of synchronous and asynchronous spikes, respectively. The MI
can be written as follows [38]

I(A; S) =
∑
a∈A

∑
s∈S

p(A,S)(s, a) log

 p(A,S)(s, a)

PA(a)PS(s)

 (8)

where PS(s) and PA(a) are the distributions of synchronous and asynchronous spikes, respectively,
and pS,A(s, a) is the joint probability distribution of synchronous and asynchronous spikes. We utilized
the histogram-based method suggested in [37] with 100 bins to calculate the probability distributions
of each type of spikes. The probability at each bin in the histogram is equal to the number of counts
divided by the total number of counts in the histogram. I (≥0) is equal to zero if the distributions of
sync-spikes (PS(s)) and async-spikes (PA(a)) are independent. To precisely demonstrate the difference
between probability distributions of synchronous and asynchronous spikes, we used a non-parametric
method to estimate these distributions [39]. This method estimates the probability density function by
using normal kernel smoothing function and a bandwidth as follows

f̂h(x) =
1

Nh

N∑
i=1

K(
x− xi

h
) ;−∞ < x < ∞ (9)

where f̂h(x) is the approximated histogram, N is the sample size (2 × 105 samples of data in the
simulation), K(.) is the kernel function, and h is the bandwidth, which is fixed on 0.4 based on the
smoothness of the data.
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Figure 2 shows the original and approximated probability distributions of synchronous and
asynchronous spikes. The MI between synchronous and asynchronous spikes is nearly zero (I = 0.003
and 0.015 for histogram-based and non-parametric methods, respectively), suggesting that the
statistical dependencies between their probability distributions are negligible.
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Figure 2. The probability distributions of synchronous (top) and asynchronous (bottom) spikes.
For each type of spike, the true distribution was obtained by the histogram method and is shown by
blue bars (thick bars). We used a non-parametric method to approximate distributions of synchronous
and asynchronous spikes, which are shown by red bars (thin bars).

We also used a statistical hypothesis test to quantify statistical differences between synchronous
and asynchronous spikes. A two-sample version of the Kolmogorov test [40,41] was used to detect a
wide range of differences between the two distributions. In this way, one can compare the distribution
functions of the parent populations of the two samples drawn from the distributions of synchronous
and asynchronous spikes. The null hypothesis is that these samples are drawn from an identical
distribution function. The statistical test (repeated 1000 times) rejected the null hypothesis at the default
significance level of 5% for both histogram-based and non-parametric methods. Our analysis shows
that synchronous and asynchronous spikes have different and separable statistical characteristics,
which might lead to encoding different types of information.

3.2. Different Types of Spikes in a Multiplexed Code Carry Different Amounts of Information

To quantify the amount of information each type of spike carries, we measure the entropy
of synchronous and asynchronous spikes. The entropy determines the variability underlying the
probability distributions of spikes [27] and indicates the upper bound of information of spikes. Similar
to [42], we considered neural responses as binned spike trains and calculated the entropy of short
strings of bins, or words, for each individual neuron. This estimation of entropy depends on two
parameters, namely, temporal resolution (δt) and temporal structure or word length (L). The entropy,
H(L, δt), is defined as follows [19]

H(L, δt) = −
1

Lδt

∑
w∈W(L,δt)

p(w) log2 p(w) (10)
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where w is a specific word with length L; W(L, δt) is the set of all possible words comprising L bins,
and p(w) is the probability of observing a word w in the neural response. The advantage of this
method, in comparison to other information measures like the mutual information between stimulus
and spikes [27], is that this method is a direct way to estimate information of the spikes, with no need to
access the stimulus. After distinguishing synchronous and asynchronous spikes in a neural ensemble
(see Section 2), we calculated H(L, δt) of each individual neuron for different word lengths (L) and
time-bin resolutions (δt) to assess the effect of these variables in extracting information underlying each
type of spikes. Figure 3 shows the average of the entropy of individual neurons. The entropy decreases
for a low time resolution (i.e., high δt) due to a higher temporal correlation between spikes in a large
time bin compared to that in short time bins (see the gradual color contrast vertically in Figure 3A).
In addition, the entropy, H, decreases by increasing L due to the integration of dependencies among
the time bins, i.e., the longer the word length is, the less uncertain the code word is (see Figure 3B).
Given enough data samples for estimating p(w), for an infinite length of L, the entropy can be calculated
when δt→ 0 and L→ ∞ [19]. However, due to the finite length of data, which leads to a finite length
of L, we extrapolated the entropy for an optimum δt (i.e., 0.05 ms) and L→ ∞ , and we found a
steady-state rate of entropy for different types of spikes (red lines in Figure 3B). As shown in this
figure, synchronous and asynchronous spikes convey different rates of entropy (the steady-state rate
of entropies for synchronous and asynchronous spikes are about 16.2 and 94.2 bit/s, respectively).
In addition, the entropy of all spikes (calculated as the average of the entropy of individual neurons) is
about 102 bit/s. The interpretation of an entropy measure of 102 bit/s is that the spiking activity of
the neural ensemble can carry as much information as would be required to perfectly discriminate
2102 different 1-s-long samples of the stimulus [19]. In the next section, we see if such difference
in information measure between synchronous and asynchronous spikes is associated with different
features of the stimulus.Entropy 2020, 22, x FOR PEER REVIEW 7 of 16 
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Figure 3. Entropy of different types of spikes. (A) Entropy of different patterns of spikes as a
function of time-bin (δt) and word-length (L) (B) Estimated entropy rate of spikes, for no-stimulus,
slow, fast, and mixed stimuli, is plotted against the reciprocal of word length, 1/L. The dashed line
and its intersection with y axis represent the value of entropy for L→∞ , i.e., the minimum value of
the entropy.
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3.3. Time-Varying Entropy (TVE) Measure

To determine how information of spikes are related to different features of the stimulus, we propose
an entropy measure, namely, time-varying entropy (TVE), to calculate the entropy of spikes in a neural
ensemble at each time bin. TVE is defined as follows

H(L, δt, k) = −
1

Lδt

∑
w∈Wk(L,δt)

p(w) log(w) (11)

where k is the index of the time bins and p(w) is the probability of a specific word with length L at time
k across the neurons (trials). Wk(L, δt) is a set of all possible words with length L and time resolution δt
at time-step k across trials. The TVE, in (11), is calculated across neurons and introduces a time-varying
entropy measure for an ensemble of neurons. The main difference between the entropy in (10) and that
in (11) is that in the former the expected value of (logarithm of) code words is obtained over the length
of stimulus, whereas in the latter, it is calculated across neurons, thus providing an entropy measure
over time. In words, the entropy in (11) is considered as an information-theoretic measure to calculate
information underlying spikes.

To explore the relationship between (all) spikes and the stimulus features, we calculate the
correlation between the TVE and stimulus for different combinations of word-lengths (L) and time
resolutions (δt). To better visualize how the entropy changes over time, we plotted a few examples of
TVE for different L and δt in Figure 4A. Figure 4B shows the relationship between TVE and different
features of the stimulus as well as the mixed stimulus as a function of L and δt. As can be seen in
this figure, TVE is highly correlated with the I f ast for small time bins, implying that the neural code
of a neural ensemble utilizes spikes with a very high temporal resolution to represent fast (abrupt)
changes in the stimulus (see also Figure 4A for L = 1&10 and δt = 0.05 ms). For relatively high
temporal resolution, TVE increases slightly for shorter L (Figure 4B (top)), confirming that precise
timing of spikes is sufficient to represent fast features of the stimulus. Although TVE is calculated
for all spikes, one can interpret that spatially correlated spikes in a short time interval in a neural
ensemble are considered as synchronous; thus, the code words of L = 1 provide better representation
for synchronous spikes (i.e., code words are temporally independent).

Figure 4B (middle) shows that the TVE is highly correlated with the Islow for medium time bins,
indicating that the neural code of a neural ensemble uses spikes in a relatively low temporal resolution
to encode the amplitude of smooth changes (low frequency) in the stimulus (see also Figure 4A for
L = 10 and δt = 5&10 ms). For relatively medium temporal resolution, TVE increases slightly for
longer L, suggesting that an appropriate range of temporal correlation within the code words enhances
the information representation of the slow features of the stimulus. Figure 4B (bottom) shows the
correlation of TVE and the mixed stimulus (Imixed).

Unlike (10), where the entropy is calculated for each individual neuron (over the total stimulation
time), the TVE computes the entropy of a neural ensemble over time (at each time bin). One can expect
that the average of the TVE over time is equivalent to the average of entropy of individual neurons
(as calculated in (10)). Figure 4C shows that the average of the TVE over time is similar to that of
individual neurons. As mentioned above, the entropy of all spikes based on (10), and in agreement
with [19], is 102 bit/s. As well, the integral of the TVE over time (for the same L and δt) is equal to
92.58 bit/s. It is to be noted that the time-varying entropy in (11) is calculated based on the probability
distribution of spikes (for each time-bin) across a limited number of trials (neurons). Therefore, one can
expect that the entropy calculated by [19] provides an upper bound of time-varying entropy that an
ensemble of neurons with a limited number of neurons can carry.
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Unlike (10), where the entropy is calculated for each individual neuron (over the total 
stimulation time), the TVE computes the entropy of a neural ensemble over time (at each time bin). 

Figure 4. Time-varying entropy (TVE) measure for different type of spikes. (A) TVE for different
type of spikes as function of word-length and time-bins resolution. Different parameter sets for TVE
enables extracting different types of information. For example, by setting L = 10, δt = 0.05 ms TVE
extracts information underlying synchronous spikes. As well, by setting L = 10, δt = 10 ms TVE
extracts information related to asynchronous spikes (B) TVE measure correlation coefficient with
I f ast, Islow, and Imixed. The correlation of TVE with each stimulus is aligned with the figures in panel
(A). For L = 10, δt = 0.05 ms TVE is highly correlated with I f ast, which drives synchronous spikes.
For L = 10, δt = 10 ms TVE is highly correlated with Islow, which provokes asynchronous spikes.
Thus, TVE measure can extract information about the stimulus directly from the spikes (C) Mean of
Integration of TVE measure over time (left) and entropy of all-spikes calculated in Equation (9) (right).

To better clarify the difference between the entropy in (10) and the TVE in (11), we illustrate in
Figure 5 how the entropy is calculated across trials (neurons) for any given time. For specific L and
δt, the probability distribution of code words, p(w), can be calculated over the whole simulation time
(see (10)). To calculate the TVE, the probability distribution of code words, for any given time, can be
calculated across neurons. Figure 5 shows two probability distributions of code words in different time
bins, namely, p(w’) at ti and tj.
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Figure 5. Illustration of calculation of the entropy in (10) and the TVE in (11). The binary sequence
of each row indicates the response of each neuron in a neural ensemble. Probability distribution of
code words, p(w), over the whole length of data can be calculated based on (10). Two probability
distributions underlying two time bins, ti and tj, are calculated across neurons (see (11)). The length of
code words is equal to 3 and spikes are binned at a resolution (δt), equal to the sampling time of the
simulation. Several code words are highlighted by red and green.

Furthermore, to calculate the optimum values of L and δt, which lead to extract maximum
information of the mixed stimulus, we build a linear decoder model to reconstruct the stimulus from
different combinations of TVE measures. We used a linear regression model with root mean squared
error (RMSE) cost function [43] to calculate the linear coefficients and parameter setting of the TVEs.
The linear decoder model and the cost functions are written as

ŷ = ws ∗ TVEs + wa ∗ TVEa + b; TVEs = TVE(Ls, δts),
TVEa = TVE(La, δta)

(12)

{ws, wa} = argmin{ws,wa , b, Ls, δts, La, δta}

√√√
1
N

N∑
k=1

(yk − ŷk)
2 (13)

where TVEs and TVEa are the TVE measures for spikes with {Ls, δts} parameters set and those with
the {La, δta} parameters set, respectively. N is the total number of samples, yk and ŷk are the mixed
and estimated stimulus at time index k, and {ws, wa, b} are the regression parameters for TVEs and
TVEa, respectively. We optimize the linear decoder model for different parameter settings for TVEs

and TVEa, and select the optimum decoder based on its RMSE performance. Figure 6A shows the
true and reconstructed mixed stimulus by (12). The optimum values of L and δt (not shown here),
for TVEs and TVEa, to reach the best decoding performance are the same as the parameters presented
in Figure 4B, for which the highest correlation between TVE (all spikes) and fast and slows signals was
obtained. These results justify that TVE with specific (optimum) ranges of δt and L corresponds to
different types of information underlying distinct features of the stimulus.

We can represent this relationship clearly by visualizing the TVE measure spectrum for different
δt and L through time (note that TVE is less sensitive to the changes in L compared to that in δ;
see (Figure 4A). The TVE can identify which information is carried by spikes and reconstructs its
associated stimulus features. Figure 6B shows the TVE calculated for synchronous, asynchronous
spikes, and all spikes for different δt and a fixed L (=10). One can clearly observe that TVE calculated
by asynchronous spikes represents information of slowly time-varying changes in the stimulus for
medium to high δt. In contrast, the TVE obtained by synchronous spikes represents information
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underlying abrupt changes in the stimulus for small δt. Therefore, the TVE calculated by all spikes and
for different δt creates a heat map of information (i.e., the TVE spectrum) underlying different features
of the stimulus. It is worth mentioning that by integrating the TVE over time (similar to Figure 4C) for
synchronous and asynchronous spikes, one can measure how much information is carried by each
type of spike.We can represent this relationship clearly by visualizing the TVE measure spectrum for
different δt and L through time (note that TVE is less sensitive to the changes in L compared to that
in δ; see (Figure 4A). The TVE can identify which information is carried by spikes and reconstructs
its associated stimulus features. Figure 6B shows the TVE calculated for synchronous, asynchronous
spikes, and all spikes for different δt and a fixed L (=10). One can clearly observe that TVE calculated
by asynchronous spikes represents information of slowly time-varying changes in the stimulus for
medium to high δt. In contrast, the TVE obtained by synchronous spikes represents information
underlying abrupt changes in the stimulus for small δt. Therefore, the TVE calculated by all spikes and
for different δt creates a heat map of information (i.e., the TVE spectrum) underlying different features
of the stimulus. It is worth mentioning that by integrating the TVE over time (similar to Figure 4C) for
synchronous and asynchronous spikes, one can measure how much information is carried by each
type of spike.Entropy 2020, 22, x FOR PEER REVIEW 11 of 16 
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Figure 6. Different elements of the mixed stimulus (I f ast, Islow) and their relationship with different type
of spikes. (A) Reconstruction of the mixed stimulus by TVE measure. (B) TVE measure spectrums for
different patterns of spikes (synchronous, asynchronous, and all) given different δt with fixed L = 10
through time. Instantaneous firing rate of the neural ensemble is calculated with two different kernel
width; green and black graphs are related to kernel width = 100 ms and kernel width = 5 ms, respectively.
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Although the TVE spectrum in Figure 6 reveals that synchronous and asynchronous spikes
are decodable in different time-resolution scales, the extent to which these spikes can represent the
stimulus features relies on multiple factors like the level of background synaptic noise, network
size, intrinsic parameters of single neurons, etc. For example, a recent study [44] investigated the
necessary conditions underlying reliable representation (and propagation) of time-varying firing rates
in feed-forward neural networks with homogeneous neurons. It has been shown that a proper and
biologically realistic level of background synaptic noise is substantial to preserve information of a
common stimulus. To explore how the level of background synaptic noise alters the co-existence
of decodable synchronous and asynchronous spikes (i.e., multiplexing), we consider two extreme
cases in which a neural ensemble receives weak and strong synaptic noise. Figure 7 (two top rows)
shows the stimulus and the firing rate of a neural ensemble receiving weak (σ = 0.5 pA), intermediate
(σ = 10 pA), and strong (σ = 50 pA) synaptic noise. The neural response tends towards synchronous
states for a low level of background synaptic noise (Figure 7 (left, second row)). In contrast, the neural
response converges to the average firing rate (with some fluctuations) for a high level of synaptic noise
(Figure 7 (right, second row)). Therefore, multiplexing—in the sense of decodable synchronous and
asynchronous spikes—fails in these extreme cases (see [44] for more details).
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By using Equations (14)–(16), we can reconstruct the stimulation from the spiking activity of the 
ensemble recursively [46]. Figure 8 shows the decoded stimulus from all spikes, synchronous, and 
asynchronous spikes using the KF-decoder model. Figure 8A shows that we can reconstruct the fast 
and slow features of the stimulus by applying the decoder model to synchronous and asynchronous 
spikes, respectively. Furthermore, to enhance the neural decoding, we filtered (using a Gausian 
kernel) synchronous and asynchronous spikes with optimum time resolutions (ݐߜ = ݐߜ and ݏ݉ 0.05 =

Figure 7. Firing rate and TVE spectrum of spikes for a neural ensemble receiving weak (left, σ = 0.5 pA),
intermediate (middle, σ = 10 pA), and strong (right, σ = 50 pA) synaptic noises. The TVE spectrum of
different types of spikes is obtained in a similar way, as explained in Figure 6.

For each level of background synaptic noise, the TVE spectrum (similar to Figure 6) is calculated
for synchronous, asynchronous, and all spikes. That of synchronous spikes fully represents the TVE
spectrum of a neural ensemble receiving weak synaptic noise (see Figure 7 (left, last three rows)).
In contrast, the TVE spectrum of a neural ensemble receiving high synaptic noise (Figure 7
(right, last three rows)), is mainly represented by that of asynchronous spikes. As the synchrony
threshold is the same for weak, intermediate, and high synaptic noise, this threshold causes several
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false-positive synchronous events to be detected when the level of synaptic noise is high. Similar to
Figure 6, the TVE spectrum of all spikes for an intermediate level of synaptic noise (see Figure 7 (middle,
last three rows)) reveals information underlying slow and fast features of the stimulus. Although the
TVE spectrum might not be informative of the decodable information underlying the stimulus when
the background synaptic noise level is not biologically realistic (either low or high), the TVE spectrum
of all spikes clearly represents that of synchronous and asynchronous spikes for all different levels of
synaptic noise.

3.4. Relatinship between Mixed Stimulus and Spike Patterns

To identify how synchronous and asynchronous spikes are related to, respectively, the abrupt
changes in and the intensity of the stimulus, we develop a decoder model to reconstruct the stimulus
from the spikes. A Kalman-filter (KF) decoder model [45,46], a well known state-space approach
for neural decoding, is used to reconstruct the stimulus with optimum accuracy underlying linear
models [46]. After estimating the parameters of the KF decoder based on mixed stimulus and all
spikes, we apply this decoder to synchronous and asynchronous spikes to explore which features of
the stimulus are reconstructed. The state-space model of the Kalman-filter decoder can be written as

xk+1 = Axk + w (14)

zk = Hxk + q (15)

where xk and zk denote the decoded stimulation and the neural firing rate at time index k, respectively.
A is the coefficient matrix, w ≈ N(0, W) represents the uncertainty underlying xk, H is a matrix that
linearly relates the stimulus to the neural firing, and q ≈ N(0, Q) is the measurement noise. We estimate
the parameter set {A, W, H, Q} from the training data using the following equation.

A = argminA

N−1∑
k=1

∣∣∣∣∣∣xk+1 −Axk
∣∣∣∣∣∣2, H = argminH

N∑
k=1

||zk −Hxk||
2 (16)

By using Equations (14)–(16), we can reconstruct the stimulation from the spiking activity of
the ensemble recursively [46]. Figure 8 shows the decoded stimulus from all spikes, synchronous,
and asynchronous spikes using the KF-decoder model. Figure 8A shows that we can reconstruct the
fast and slow features of the stimulus by applying the decoder model to synchronous and asynchronous
spikes, respectively. Furthermore, to enhance the neural decoding, we filtered (using a Gausian kernel)
synchronous and asynchronous spikes with optimum time resolutions (δt = 0.05 ms and δt = 10 ms,
respectively) before applying them to the above decoder. Figure 8B shows the reconstructed signals
by filtered synchronous and asynchronous spikes. The reconstructed signals are better fitted to the
slow and fast features of the stimulus. One can conclude that the information underlying different
features of the stimulus is best decoded by different types of spikes, which are integrated with specific
time scales.
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Figure 8. Information decoded by synchronous and asynchronous spikes are associated with different
features of the stimulus. (A) Kalman-filter decoder model was developed to recunstruct the (mixed)
stimulation from all spikes (top). The decoder was then applied to synchronous (middle) and
asynchronous spikes (bottom). (B) Similar to (A) but synchronous (middle) and asynchronous (bottom)
spikes were first filtered by a Gausian kernel with optimim time resolutions (δt = 0.05 ms for
synchronous and δt = 10 ms for asynchronous spikes) before applying them to the Kalman-filter
decoder model.

4. Discussion

In this paper, we demonstrated that differentially correlated spikes in a neural ensemble carry
different information, which corresponds to different features of the stimulus. By feeding a mixed
stimulus consisting of slow and fast features into an ensemble of homogeneous neurons, we created a
multiplexed code in which synchronous and asynchronous spikes can be distinguished. It was shown
that the probability distribution of these spikes are distinctively separable. Furthermore, we considered
spikes as code words and calculated the entropy of these code words for different lengths and time
resolutions. A time-varying entropy (TVE) measure was proposed to calculate the entropy of a neural
ensemble at each time bin. By applying TVE to the multiplexed code, we showed that information
underlying synchronous and asynchronous spikes was maximized for different time resolutions and
lengths. Thus, synchronous and asynchronous spikes carried information of different time scales.
However, it was observed that the sensitivity of the TVE to the length of codewords was negligible
(specifically for high time resolutions). Finally, we developed a Kalman-based decoder to reconstruct
the stimulus from the spikes. We showed that slow and fast features of the stimulus could be fully
decoded from the asynchronous and synchronous spike, respectively.

As natural stimuli often operate on multiple time scales [47], the TVE calculates the entropy
of a homogeneous neural ensemble in different time resolutions, thus providing a time-varying
representation of a neural code in different resolution scales. A recent study [47] introduced multiscale
relevance (MSR) measure to characterize the temporal structure of the activities of neurons within
a heterogeneous population. It was shown that MSR could capture the dynamical variability of the
activity of single neurons across different time scales and detect informative neurons as well as neurons
that show a high decoding performance [47]. Despite differences in the architecture of the neural
ensemble, types of stimuli as well as other factors like the heterogeneity vs. homogeneity of neurons
that differentiated between the scope of our study and that of [47], both studies utilized the entropy
as an information-theoretic measure and capitalized on the needs of such a measure in multiscale
neural analyses.
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The advancements of imaging and electrical recording technologies have provided accessibility to
neural activities in population levels; thus, the need for multi-dimensional methods is ever increasing
in brain-related studies. Time-varying firing rates of a neural ensemble across time and across multiple
experimental conditions can be considered as the starting point for the population-level analyses [48].
Kernel smoothing techniques with optimum kernel bandwidth that maximizes the goodness-of-fit of
the density estimate to the underlying rate of spikes are tools for estimating the instantaneous firing
rate of a neural ensemble [49]. In this regard, one can use the TVE measure as a simple way to identify
the most informative time scales underlying the neural code of an ensemble of neurons.

Nevertheless, in population-level analyses, methods that infer the dynamics underlying neural
computations are more demanding than those focused on the representation of neuronal activities [48].
Recently, Elsayed and Cunningham [50] proposed a framework to measure the correlation of the
neural activity at the population level across times, neurons, and (experimental) conditions. Although
this framework was designed for the rate code and thereby cannot be applied to the temporal code,
their proposed methodology [50] determines whether neural population activity exhibits a structure
above and beyond that of its set of primary features [48]. Unlike [50], the TVE can track the dynamics
of a neural code in multiple time scales and one can apply the TVE to both rate and temporal codes
simultaneously. Moreover, it is notable that the constraints on the correlation of the neural activity in a
neural ensemble across the experimental condition was relaxed in the present study. Taken together,
the TVE not only tracks the dynamics of a neural code—in the sense of detecting synchronous and
asynchronous states of a neural ensemble—in different time-resolution scales, but also provides
decodable information underlying the stimulus features. The TVE can be extended in our future
studies to address richer datasets comprising heterogeneous neurons or networks with feed-forward
and recurrent connectivity.
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