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Abstract: An adaptive method for quantum state fidelity estimation in bipartite higher dimensional
systems is established. This method employs state verifier operators which are constructed by local
POVM operators and adapted to the measurement statistics in the computational basis. Employing
this method, the state verifier operators that stabilize Bell-type entangled states are constructed
explicitly. Together with an error operator in the computational basis, one can estimate the lower and
upper bounds on the state fidelity for Bell-type entangled states in few measurement configurations.
These bounds can be tighter than the fidelity bounds derived in [Bavaresco et al., Nature Physics
(2018), 14, 1032–1037], if one constructs more than one local POVM measurements additional to the
measurement in the computational basis.
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1. Introduction

Entanglement is the key resource in quantum information processing that brings advantages over
its classical counterparts. In many quantum information tasks, higher dimensional entanglement in
qudit systems can fortify the power of quantum information processing over its applications in qubit
systems, e.g., in QKD [1,2], quantum computation [3], etc. In practice, higher dimensional entangled
states created in an entanglement generation process are always subjected to errors. To qualify an
entanglement generation process, one will need to extract some information on the created states
by measurements.

Employing quantum state tomography (QST), one can obtain the complete information of a
quantum state [4–14]. Although higher dimensional pure states can be determined using just five
measurement settings [15], the number of measurement configurations that are required in QST of
a general d-dimensional quantum state scales badly with the dimension d. For the qualification of
a state generation process, instead of full QST, one may just need to employ quantum state fidelity
estimation (QSFE) to reveal partial information about the most relevant Pauli operator components
that signify the target state [16–18]. One can even ease the measurement complexity, if one just
estimates the lower and upper bounds instead of the exact value of the state fidelity. Such an
approach is employed in [19] for the detection of entanglement dimensionality in a higher-dimensional
entanglement generation process.

Another method for characterizing a quantum state resource called quantum state verification
(QSV) is proposed in [20]. In QSV, one tests a quantum state resource under eventual malicious
attacks or errors by a quantum state verifier, which is also called a “strategy”. One takes N samples
from the inputs of the quantum state resource and verifies the samples by randomly selected local
measurement setups assisted with classical communications. This method is generalized for noisy
quantum state resources [21] and general adversary scenarios [22,23] with slightly different problem
settings. It is shown that the state verifier in QSV can also be exploited for state fidelity estimation,
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if one continuously tests all the N samples even when the testing fails [23]. The frequency of passing a
test in the N samples will then determine a lower and an upper bound on the state fidelity with certain
confidence levels.

Since lower bounds on quantum state fidelity can be employed to detect the entanglement
dimensionality of a bipartite state [19], a tighter lower bound on quantum state fidelity means
better robustness of the entanglement detection against noises in a system. In both QSFE and
QSV, for each copy of a testing state, one randomly chooses a measurement setting from a set of
predefined measurement configurations to obtain the statistics regardless of the particular noises in
an individual entanglement generation. The bounds on state fidelity obtained in such predefined
measurement configurations are in general not optimum under these particular noises. In practice,
the feasibility and efficiency of different local measurement configurations differ from each other.
Some measurement configurations, e.g., measurements in the computational basis, are much easier
and more efficient to implement than the other configurations, e.g., POVM measurements in a
non-computational basis. Instead of randomly choosing a measurement setting from predefined
measurement configurations for each copy of a testing state, it is possible to efficiently obtain the
information of diagonal elements of a quantum state density matrix in the computational basis prior to
the other measurement settings. This information contains some partial information about the noises
in a generation process of a bipartite quantum state. One can therefore exploit this information to tailor
the subsequential measurement settings for the particular noises of the testing system to refine the
state fidelity estimation, which would be important for entanglement detection subject to noises.

In this paper, we will employ the state verifiers, which are introduced in QSV, to derive the lower
and upper bounds on state fidelity of bipartite qudit states for the purpose of QSFE. We will show
in Lemma 2 that measurement statistics in the computational basis can be exploited to refine the
bounds on quantum state fidelity derived from state verifiers. Since these refined bounds depend both
on the measurement statistics in the computational basis Pe and the configurations of subsequential
measurements M, one can adapt the subsequential measurement configurations M for tighter bounds
on state fidelity subject to the a priori statistics Pe. Following this idea, we will derive an adaptive
state fidelity estimation approach for bipartite Bell-type states in Theorem 1. We will compare our
approach with the one derived in [19] and demonstrate it under different types of noises.

2. Results

2.1. Quantum State Fidelity Estimation Employing State Verifiers

In a quantum information processing employing a pure state |ψ〉 in a bipartite d-dimensional
system H(A)

d ⊗H(B)
d , the very first task is to create bipartite quantum states as close as possible to the

target state |ψ〉. To evaluate how good a state preparation is, one can estimate the |ψ〉-state fidelity Fψ

of the generated states ρ̂ in local measurements, where the state fidelity Fψ is defined as

Fψ(ρ) := 〈ψ|ρ̂|ψ〉 . (1)

In this section, we review the strategy operators employed in QSV [20–24], and their application in
QSFE. In QSFE, one evaluates expectation values of certain observables from the whole measurement
outputs instead of testing each input by each output of measurements according to a “strategy”;
we therefore refer to the “strategy” in QSV as “state verifier operators” in the context of QSFE in
this paper.

In the measurement of the computational basis {|ekA , ekB〉}kA ,kB , one can verify the testing
state ρ̂ by the characteristic correlations of the target state |ψ〉. The probability of the outputs
satisfying the target characteristic correlations is determined to the expectation value of the following
|ψ〉-state stabilizer:

V̂e := ∑
kA ,kB :〈ekA

,ekB
|ψ〉6=0

|ekA , ekB〉 〈ekA , ekB | . (2)
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We call a stabilizer of the target state |ψ〉 a |ψ〉-state verifier. If the measurement in the Schmidt
basis of |ψ〉 is feasible and efficient in a laboratory, it is preferable to choose the Schmidt basis as the
computational basis, since the state verifier V̂e constructed in the Schmidt basis has the least rank,
which means that V̂e can detect the |ψ〉-orthogonal part of a testing state ρ̂ more efficiently.

To estimate the quantum state fidelity, a single state verifier in the computational basis is not
enough, since |ψ〉 is not the only one state that is stabilized by V̂e. To construct a state verifier that
stabilizes only the target state |ψ〉, one needs to include the state verifiers in the other measurement
basis. Let M a set of measurement configurations additional to the computational basis

M := {M(A)
j ⊗M(B)

j }j with Mj := {M̂m(j)}m=0,...,d, (3)

where M(A,B)
j are POVM measurements in the d-dimensional local system H(A,B)

d . The POVM

measurementsM(A,B)
j are constructed with d+ 1 measurement operators M̂m(j), which are projections

onto the corresponding measurement-basis states {|Em(j)〉}m,

M̂m(j) :=

{
1
d |Em(j)〉 〈Em(j)| , m = 0, ..., d− 1;
1−∑d−1

m=0 M̂m, m = d.
(4)

Note that, for projective measurements with orthogonal basis states, there is no need to add the
factor 1/d in Equation (4). However, for consistency of formulation, we adopt the representation
in Equation (4) for projective measurements. In each measurement configuration M(A)

j ⊗M(B)
j ,

one can construct a state verifier operator V̂j by adding up its corresponding measurement operators
M̂mA(j)⊗ M̂mB(j) with weights vmAmB , such that V̂j stabilizes the target state.

Lemma 1 (Construction of a state verifier in local POVM measurements). The state verifier V̂j in the

measurement configurationM(A)
j ⊗M(B)

j that stabilizes |ψ〉 can be explicitly constructed by

V̂j :=
d−1

∑
mA ,mB=0

vmAmB(j) M̂mA(j)⊗ M̂mB(j). (5)

Here, the weights vmAmB are determined by a transformation operator T̂A,B(j) := ∑d−1
m=0 |E

(A,B)
m (j)〉 〈e(A,B)

m |
that maps the local computational basis states {|e(A,B)

m 〉}m to the measurement basis states {|E(A,B)
m (j)〉}m

associated with the local POVMM(A,B)
j as follows:

vmAmB =

 d2 〈emA ,emB |T̂
−1
A (j)⊗T̂−1

B (j)|ψ〉
〈emA ,emB |T̂

†
A(j)⊗T̂†

B(j)|ψ〉 , for 〈emA , emB |T̂†
A(j)⊗ T̂†

B(j)|ψ〉 6= 0

0 , for 〈emA , emB |T̂†
A(j)⊗ T̂†

B(j)|ψ〉 = 0
. (6)

Proof. see Methods.

A good measurement configuration M(A)
j ⊗M(B)

j should have nonzero vmAmB in its state

verifier V̂j as few as possible, which leads to the minimum rank of V̂j and better detection efficiency
of |ψ〉-orthogonal states. For this reason, POVM measurements are preferable for most bipartite
states in general. For example, for the general Bell-type states that will be studied in Section 2.3,
the POVM measurements that are associated with the generalized Heisenberg–Weyl operators defined
in Equation (24) lead to the state verifiers derived in Equation (29), which have the minimum rank of d.
For the maximally entangled states, the projective measurements in the mutually unbiased bases are
the optimum configurations. In this case, the state verifiers {V̂j}j∈M are local unitary transformations
of V̂e.
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By mixing the state verifiers {V̂j}j∈M that are associated with the measurement settings in M,
one can construct a state verifier V̂M,

V̂M := ∑
j∈M

ujV̂j with ∑
j∈M

uj = 1. (7)

Together with the state verifier V̂e in the computational basis, one can then construct a |ψ〉-state verifier
operator, which only stabilizes the target state |ψ〉,

V̂ψ := ueV̂e + (1− ue)V̂M with 0 ≤ ue ≤ 1. (8)

Since the |ψ〉-state verifier V̂ψ is a Hermitian stabilizer of |ψ〉 by definition, the |ψ〉-state verifier can be
decomposed into the mixture of the projection onto the target state and its orthogonal part V̂⊥ψ , i.e., V̂ψ =

|ψ〉 〈ψ|+ V̂⊥ψ with 〈ψ|V̂⊥ψ |ψ〉 = 0. Note that the state verifier V̂ψ is called a verification strategy in
the context of quantum state verification (QSV). Let {λi}i be the eigenvalues of the |ψ〉-orthogonal
operator V̂⊥ψ associated with the eigenstates {|φi〉}i. The maximum and minimum eigenvalue λmax,min

of V̂⊥ψ determines the efficiency of the verification strategy in QSV as well as the fidelity bounds in
QSFE [23],

〈V̂ψ〉 − λmax

1− λmax
≤ Fψ ≤

〈V̂ψ〉 − λmin

1− λmin
. (9)

Let |φmax〉 and |φmin〉 be the eigenstates of V̂⊥ψ associated with the maximum and minimum
eigenvalues λmax and λmin, respectively. The lower bound in Equation (9) can be achieved by the
testing states ρ̂ ∈ span (|ψ〉 , |φmax〉) in the Hilbert subspace that is spanned by the target state |ψ〉
and the maximum-eigenvalue state |φmax〉, while the upper bound can be achieved by the states
ρ̂ ∈ span (|ψ〉 , |φmin〉). However, the noises in a state generation process are in general not the
eigenstates |φmax〉 or |φmin〉 of the operator V̂⊥ψ , which means that the bounds in Equation (9) are not
the tightest for a particular noisy state generation. As the fidelity lower bound can be employed
for entanglement dimensionality certification [19], a tighter fidelity lower bound in a state fidelity
estimation implies the better robustness of the entanglement detection against the noises that present
in the experiment. It is therefore desirable to refine the fidelity bounds in QSFE by adapting the
estimation approach to the noises of a particular state generation.

2.2. Quantum State Fidelity Estimation Assisted with Measurement Statistics in the Computational Basis

In this section, we employ the state verifiers in a scenario of quantum state fidelity estimation
under the assumption that the computational-basis measurement is more efficient and feasible than
the other measurement configurations. In this case, one can first measure a testing state ρ̂ in the
computational basis and obtain the corresponding measurement statistics:

Pe := {Pre(kA, kB)}kA ,kB = {〈ekA , ekB |ρ̂|ekA , ekB〉}kA ,kB . (10)

This measurement statistics contains information about the noises in a state generation. These noises
can contribute to the expectation value of the |ψ〉-orthogonal part V̂⊥ψ of the state verifier V̂ψ,

V̂⊥ψ = ueV̂⊥e + (1− ue)V̂⊥M , (11)

where V̂⊥e and V̂⊥M are the |ψ〉-orthogonal part of V̂e and V̂M, respectively,

V̂⊥e = V̂e − |ψ〉 〈ψ| and V̂⊥M = V̂M − |ψ〉 〈ψ| . (12)
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To estimate the state fidelity Fψ, one will need to exclude the contribution of |ψ〉-orthogonal part
〈V̂⊥ψ 〉 from the expectation value of the state verifier 〈V̂ψ〉, since Fψ = 〈V̂ψ〉 − 〈V̂⊥ψ 〉. In Equation (9),

the expectation value 〈V̂⊥ψ 〉 is bounded by its maximum and minimum eigenvalues,

λmax(1− Fψ) ≥ 〈V̂⊥ψ 〉 ≥ λmin(1− Fψ), (13)

which does not depend on the measurement statistics Pe. Here, the a priori information of the
computational-basis measurement statistics Pe can help us to adjust the measurement configurations
M to the noises of the systems and refine the bounds on the expectation value 〈V̂⊥ψ 〉.

To estimate 〈V̂⊥ψ 〉 exploiting the measurement statistics Pe, one can bound the operator V̂⊥ψ by an

operator Î , which is diagonal in the computational basis,

Î = V̂e + ÊM, (14)

where ÊM is the non-zero diagonal part of the |ψ〉-orthogonal operator V̂⊥M assigned by a weight γkAkB ,

ÊM = ∑
kA ,kB :〈ekA

,ekB
|V̂⊥M |ekA

,ekB
〉6=0

γkAkB |ekA , ekB〉 〈ekA , ekB | . (15)

The operator ÊM contains the information of the |ψ〉-orthogonal contributions in V̂M, which are the
errors that we want to exclude from the state verifier. This information can be extracted from the
measurement statistics Pe in the computational basis by the operator Î prior to the implementation
of the measurement M. It can help us to evaluate the measurement configurations M and to bound
the operator V̂⊥ψ exploiting the a priori statistics Pe. The operator Î can be decomposed into the |ψ〉
projector and a non-|ψ〉 component Î⊥,

Î = |ψ〉 〈ψ|+ Î⊥ with Î⊥ = V̂⊥e + ÊM. (16)

The expectation value 〈Î〉 is the sum of the state fidelity Fψ and the expectation value 〈Î⊥〉,
which contains partial information about the |ψ〉-orthogonal contribution 〈V̂⊥ψ 〉 of a testing state

in the expectation value of the state verifier 〈V̂ψ〉. One can show that there exists an assignment of
the weights γkAkB in ÊM, such that the operators V̂⊥ψ and Î⊥ can be decomposed by a set of pure
state {|φ̃i〉}i,

V̂⊥ψ = ∑
i

λ̃i |φ̃i〉 〈φ̃i| and Î⊥ = ∑
i

ri |φ̃i〉 〈φ̃i| (17)

where {|φ̃i〉}i are in general non-orthogonal, λ̃i ≥ 0 are non-negative and ri > 0 are positive. One can
then bound the operator V̂⊥ψ by Î⊥ with two real-value coefficients α and β such that αÎ⊥ � V̂⊥ψ � βÎ⊥,

which refines the bounds on the |ψ〉-orthogonal contribution 〈V̂⊥ψ 〉 in 〈V̂ψ〉 given in Equation (13),

α
(
〈Î〉 − Fψ

)
≥ 〈V̂⊥ψ 〉 ≥ β

(
〈Î〉 − Fψ

)
. (18)

As a result, one can then refine the bounds on the state fidelity given in Equation (9) as follows.

Lemma 2 (Bounds on state fidelity). The state fidelity for a target state |ψ〉 is bounded by

〈V̂ψ〉 − α 〈Î〉
1− α

≤ Fψ ≤
〈V̂ψ〉 − β 〈Î〉

1− β
, (19)
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where α and β are the maximum and minimum ratio between λ̃i and ri

α := max
i

λ̃i
ri

and β := min
i

λ̃i
ri

. (20)

Proof. see Methods.

A trivial construction of ÊM is the assignment of γkAkB = 1, which leads to Î = 1̂. For this construction,
the decomposition in Equation (17) is the eigenstate decomposition of V̂⊥ψ . In this case, the bounds in
Equation (19) coincide with the bounds given in Equation (9). Since 〈1̂〉 = 1 is constant and does not
depend on the measurement configurations M and measurement statistics Pe in the computational
basis, it can not be employed to adapt the measurement configurations M to Pe.

In order to adapt the measurement configurations M to Pe, one needs to introduce the M and
Pe dependency in 〈Î〉, such that one can find the optimal measurement configuration M for the
minimum 〈Î〉 subject to a given measurement statistics Pe. To this end, one can explicitly construct a
nontrivial Î and determine the coefficients (α, β) following the protocol given in the proof of Lemma 2
in Section 4 (Methods). Employing the operator Î constructed in Equation (55), one can then adapt the
measurement configurations M to the measurement statistics Pe such that the expectation value 〈Î〉
is minimum subject to a given Pe, which leads to a higher lower bound on the state fidelity. Usually,
the coefficient β is zero, unless one chooses a large set of measurement configurations such that the
state verifier V̂ψ has the same rank as Î . As a consequence, the minimization of 〈Î〉 does not affect
the upper bound in most cases. Following these steps, one can therefore construct the subsequential
measurements M depending on the measurement statistics in the computational basis Pe, which means
the operators V̂ψ and Î in Equation (19) also depend on Pe,

V̂ψ = V̂ψ(Pe) and Î = Î(Pe). (21)

As a result, Lemma 2 allows us to estimate quantum state fidelity employing V̂ψ(Pe) and Î(Pe) adapted
to the measurement statistics in the computational basis Pe to obtain tighter bounds. In the next section,
we will employ this method to derive an adaptive approach of quantum state fidelity estimation for
Bell-type states explicitly.

2.3. Adaptive State Fidelity Estimation for Bell-Type States

A general Bell-type entangled state in d× d Hilbert state is an entangled state with the Schmidt
rank d, which is an important higher dimensional entanglement resource in bipartite systems. If the
Schmidt basis happens to be more feasible than the other basis in a laboratory, one can employ the
Schmidt basis as the computational basis in our adaptive estimation approach. In this case, a bipartite
pure state is decomposed as

|ψ〉 =
d−1

∑
k=0

sk |e
(A)
k , e(B)

k 〉 with sk > 0, (22)

where sk are the Schmidt coefficients. In order to construct a state verifier for a Bell-type state |ψ〉,
one needs to construct stabilizers of |ψ〉 employing measurement operators in different measurement
bases. In the computational basis, the state verifier V̂e that characterizes the correlations of the target
state |ψ〉 is given by

V̂e = ∑
k
|ek, ek〉 〈ek, ek| . (23)

For the construction of state verifiers in the other measurement bases, one needs the other
stabilizers of the Bell-type state |ψ〉, which can be derived from the standard Heisenberg–Weyl (HW)
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operators [25] with a modification associated with a coefficient vector ~χ = (χ0, ..., χd−1). A ~χ-modified
HW operator Ω̂i,j(~χ) is comprised of the ~χ-modified shift operator X̂(~χ) and the clock operator Ẑ,

Ω̂i,j(~χ) := w−
ij
2 (d−1)X̂i(~χ)Ẑj, (24)

where the ~χ-modified shift operator X̂(~χ) and the clock operator Ẑ are defined as

X̂(~χ) :=
d−1

∑
k=0

χk⊕1
χk
|ek⊕1〉 〈ek| and Ẑ :=

d−1

∑
k=0

wk |ek〉 〈ek| (25)

with |~χ| = 1 and w := ei
2π
d . Here, the symbol “⊕” stands for the d-modulus plus ( The symbol ⊕d (	d)

is employed to denote the d-modulus plus (minus) of two quantities, e.g., a⊕d b := (a + b) (mod d)
and a	d b := (a− b) (mod d). For conciseness, we omit the subscript d.). Note that the relevant HW
operators in this paper are the operators with the label i = 1, of which the notation are simplified
by Ω̂j := Ω̂1,j. The target Bell-type state |ψ〉 is stabilized by all the local HW operators {Ω̂j(~χA)⊗
Ω̂−j(~χB)}j=0,...,d−1 with the modification coefficients ~χA,B satisfying

sk =
χ
(A)
k χ

(B)
k√

∑k |χ
(A)
k χ

(B)
k |2

for all k. (26)

As a consequence, the measurement configurations M for the |ψ〉-state verifier can be constructed in
the eigenbasis of the ~χA,B-modified HW operators,

M(~χA,~χB) ⊆ {M[Ω̂j(~χA)]⊗M[Ω̂−j(~χB)] : j = 0, ..., d− 1}. (27)

where the local POVM measurement M[Ω̂j(~χ)] = {M̂m[Ω̂j(~χ)]}m=0,...,d in the Ω̂j(~χ) eigenbasis
{|Em(j;~χ)〉}m consists of the measurement operators M̂m[Ω̂j(~χ)] = |Em(j;~χ)〉 〈Em(j;~χ)| /d as defined
in Equation (4). To implement such a measurement, one has to know the explicit form of the Ω̂j
eigenstates {|Em(j;~χ)〉}m in the computational basis, which are constructed by

|Em(j;~χ)〉 :=
d−1

∑
k=0

w−(m+ 1
2 jd)k+ 1

2 jk2
χk |ek〉 . (28)

As one can show that Ω̂j |Em(j;~χ)〉 = wm |Em(j;~χ)〉 by simply applying Ω̂j on the state, the eigenstate
|Em(j;~χ)〉 is associated with the eigenvalue wm. Since the eigenstate |Em(j;~χ)〉 depends on the
coefficient ~χ, the set of measurement configurations M are therefore determined by the coefficients ~χA,B,
which can be adapted to the measurement statistics Pe in the computational basis, i.e., ~χA,B = ~χA,B(Pe).
In each measurement configurationM[Ω̂j(~χA)]⊗M[Ω̂−j(~χB)], one can construct its corresponding
state verifier V̂j according to Lemma 1,

V̂j(~χA,~χB) =
d

∑k |χ
(A)
k χ

(B)
k |2

d−1

∑
m=0

M̂m[Ω̂j(~χA)]⊗ M̂−m[Ω̂−j(~χB)]. (29)

The state verifier V̂j has the minimum rank of d, which is optimum for a Bell-type state |ψ〉
in a d × d-dimensional Hilbert space. The state verifier V̂M = ∑j ujV̂j associated with the
non-computational-basis measurement configurations M is then comprised of {V̂j}j∈M with certain
weights {uj}j∈M according to Equation (7).

Together with the state verifier V̂e in the computational basis, one can construct a |ψ〉-state verifier
V̂ψ = ueV̂e + (1− ue)V̂M according to Equation (8). To estimate the state fidelity, one still needs to
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construct the operator Î = V̂e + ÊM, where the error operator ÊM can be determined according to
Equation (55) as follows:

ÊM(~χA,~χB) =
d

∑k |χ
(A)
k χ

(B)
k |2

∑
kA 6=kB

|χ(A)
kA

χ
(B)
kB
|2 |ekA , ekB〉 〈ekA , ekB | . (30)

The error operator ÊM characterizes the unexpected outputs for the target state |ψ〉 in the computation
basis, which still contribute to the expectation value of the state verifier V̂M in the subsequential
measurements M. Employing the operators V̂ψ and Î , one can then estimate the lower and upper
bounds on the |ψ〉-state fidelity Fψ according to Lemma 2.

In a laboratory, there will be a set of available measurement configurations M. However, taking all
the available measurement configurations into the construction of the state verifier V̂M does not always
give us better bounds on the state fidelity. Let d = pn1

1 ...pnk
k be the prime number factorization of the

local dimensionality d with p1 < ... < pk. One can show that the optimum bound on the state fidelity
Fψ determined by Lemma 2 is achieved by the subsets M̃ of M, which are constructed by selecting one
element from each p1-modulus equivalent subclass (quotient subset) Ci of M. Here, a p1-modulus
subclass Ci of M is defined as

Ci(M) := M∩
{

p1k + i : k = 0, ...,
d
p1
− 1
}

with i = 0, ..., p1 − 1. (31)

From each nonempty subclass Ci, one selects a measurement configuration to construct a subset M̃
of the available measurement configurations M. The set of all possible measurement configurations
under this construction is⊗

i=0,...,p1−1

Ci(M) =
{
M̃ = {j0, j1, ..., jp1−1} : ji ∈ Ci(M)

}
. (32)

The cardinality of the subset of measurement configurations M̃ is equal to the number of nonempty
p1-modulus subclasses Ci of M, which is denoted by |M/p1 |. We can then assign a state verifier V̂M̃ to
each measurement configuration subset M̃ according to Equation (7) to determine a lower bound on
Fψ. One can show that the optimum choice of the weights {uj}j∈M̃ for {V̂j}j∈M̃ in V̂M̃ is the uniform

weight uj = 1/|M/p|, which takes the average of the state verifiers V̂j in M̃

V̂M̃(~χA,~χB) =
1

|M/p1 |
∑

j∈M̃
V̂j(~χA,~χB). (33)

As a result of Lemma 2, one can estimate the lower and upper bounds on the |ψ〉-state fidelity
as follows.

Theorem 1 (Lower and upper bounds on the state fidelity). Let M ⊆ {0, ..., d− 1} be a set of measurement
configurations associated with the local POVM measurements {M[Ω̂j(~χA)]⊗M[Ω̂−j(~χB)]}j∈M, which are
available in a laboratory. The state fidelity is then lower bounded by

max
M̃∈⊗i Ci(M)

(〈
V̂M̃(~χA,~χB)

〉)
− 1
|M/p1 |

〈
Ê(~χA,~χB)

〉
≤ Fψ, (34)

and upper bounded by

Fψ ≤ min
(〈

V̂e

〉
, min

j∈M
〈V̂j(~χA,~χB)〉

)
. (35)
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If d is prime and M = {0, ..., d− 1}, the value of Fψ can be explicitly determined by

Fψ = 〈V̂M(~χA,~χB)〉 −
1
d
〈Ê(~χA,~χB)〉 . (36)

Proof. see Methods.

For a prime dimension d, the lower and upper bounds on the state fidelity for the Bell-type state
|ψ〉 in Equation (19) coincide with each other, which leads to an exact value of the state fidelity given in
Equation (36). One can therefore directly measure a state fidelity in d + 1 measurement configurations.
In this case, the method of state fidelity estimation in Equation (36) is equivalent to the state fidelity
derived in [19]. Since the state fidelity is exactly measured, the choices of the coefficients ~χA,B do not
affect the final result ( Theoretically, the exact value of the |ψ〉-state fidelity of a testing state should not
depend on the measurement configurations, if one has large enough data of measurement outputs.).
One can therefore choose ~χA,B according to the feasibility of their corresponding measurement settings.
Note that the most simple measurement is usually the projective measurement with the uniform
coefficient ~χ = {1/

√
d, ..., 1/

√
d}. As a result of Equation (26), the preferable measurement settings in

this case are then the projective measurements associated with ~χA = {1/
√

d, ..., 1/
√

d} on one local
system A combined with the POVM measurements associated with ~χB = {s0, ..., sd−1} on the other
local system B.

If d is non-prime or M ( {0, ..., d− 1}, there will be a gap between the lower and upper bounds
on the state fidelity given in Equations (34) and (35). This gap can be reduced by carefully choosing
proper coefficients ~χA,B adapted to the measurement statistics in the computational basis before the
implementation of remaining measurement configurations M(~χA,~χB). Since the only information
we have is the measurement statistics in the computational basis, we can not optimize ~χA,B for the
maximum expectation value of the state verifier V̂M that is evaluated in the upcoming measurements.
The optimization that we can carry out at this stage is to find the optimum ~χA,B for the minimum
expectation value of the error operator Ê(~χA,~χB) as follows:

(~χA,~χB) = arg min
~χA ,~χB

〈Ê(~χA,~χB)〉 , subject to sk =
χ
(A)
k χ

(B)
k√

∑k |χ
(A)
k χ

(B)
k |2

for all k. (37)

The following conditions are sufficient for the minimum expectation value 〈Ê 〉

|χ(A)
k′ |

2

|χ(A)
k |2

=

√
Pre(k, k′)
Pre(k′, k)

sk′

sk
and

|χ(B)
k′ |

2

|χ(B)
k |2

=

√
Pre(k′, k)
Pre(k, k′)

sk′

sk
for all k, k′. (38)

However, these conditions can not be fulfilled for all (k, k′) in general. For the special case when
the measurement statistics is approximately symmetric under the exchange of the local systems,
i.e., Pre(k, k′) ≈ Pre(k′, k), the expectation value of the error operator is lower bounded by

〈Ê(~χA,~χB)〉 ≥
d

∑k s2
k

∑
kA ,kB

skA skB Pre(kA, kB), (39)

where the minimum is achieved by

χ
(A)
k = χ

(B)
k =

√
sk

∑k sk
. (40)
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In practice, one may just want to estimate the state fidelity for the Bell-type state that is closest to the
testing state, rather than a predefined one. In this case, one can even adapt the Schmidt coefficients sk
to the measurement probability Pre(k, k) such that

sk =

√
Pre(k, k)

∑k′ Pre(k′, k′)
. (41)

As a whole, one can estimate a lower and an upper bound on the state fidelity for the Bell-type
state that is closest to a testing state adaptively in the following steps:

1. One implements a measurement in the computational basis to obtain the statistics Pre(kA, kB).
2. Adapted to the measurement statistics {Pre(kA, kB)}kA ,kB , one finds the optimum coefficients ~χA,B

for the minimum expectation value of the error operator 〈Ê(~χA,~χB)〉 according to Equation (37).
3. Depending on the facilities of a laboratory, one implements a set of available local POVM

measurements M(~χA,~χB) associated with the ~χA,B-modified Heisenberg–Weyl operators
Ω̂j(~χA)⊗ Ω̂−j(~χB) according to Equations (27) and (28).

4. From the measurement statistic obtained in each measurement configuration j ∈M(~χA,~χB), one
evaluates the corresponding state verifier operator V̂j(~χA,~χB).

5. Employing Theorem 1, one estimates a lower and an upper bound on the state fidelity Fψ.

2.4. Adaptive State Fidelity Estimation in Noisy Bell-Type State Preparation

In this section, we demonstrate the fidelity estimation method derived in Theorem 1 for Bell-type
quantum states prepared under certain types of noises. As an example, we first consider the white
noises, which are symmetric under the exchange of two local systems. In entanglement generation of a
Bell-type state with the white noises, the final state is described by

ρ̂(ε) = (1− ε) |ψ〉 〈ψ|+ ε
1̂
d2 , (42)

where ε is the weight of the white noises. The measurement statistics in the computational basis
Pre(kA, kB) = Pre(kB, kA) is symmetric under the exchange of the local systems A, B. One can therefore
choose the measurement coefficients ~χA,B as given in Equation (40). In this case, our approach
employs the same measurement configurations as the ones employed in [19]. If one just exploits one
measurement configuration added to the computational basis, the lower bound derived in [19] is
tighter than the bound in Theorem 1. However, as the number of measurement configurations in M
increases, the lower bound in Theorem 1 is improved faster, and becomes better than the one derived
in [19], which can be seen from the comparison between these two bounds in Figure 1 for a prime
dimension d = 7.

In Figure 1, we plot the state fidelity Fψ (orange solid) of a 7× 7-dimensional testing state ρ̂(ε),
and its corresponding upper (blue dot-dashed) and lower (green dashed) bounds determined by
Theorem 1. These lower bounds are compared with the lower bounds derived in [19] (red dotted)
and the ones obtained by the nonadaptive method in Equation (9) (violet dot-dot-dashed). From this
example, one can see that the lower bounds derived in Theorem 1 become tighter than the one in [19],
if one chooses more than one measurement configurations M ⊇ {0, 1}. One can also see that both the
adaptive methods in Theorem 1 and in [19] can determine tighter lower bounds than the nonadaptive
method in Equation (9).
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Figure 1. Fidelity estimation of the noisy Bell-type state ρ̂(ε) in Equation (42) for a 7× 7-dimensional
Bell-type state |ψ〉 with the Schmidt coefficients {sk}k = {0.0845, 0.169, 0.254, 0.338, 0.423, 0.507, 0.592}
employing different measurement configurations. See the main text in Section 2.4 for a
detailed description.

A limitation of the fidelity estimation in Theorem 1 is that, for a non-prime dimension, the lower
bounds are not necessarily tighter, if the number of measurement configurations increases. According
to Theorem 1, if the available measurement configurations M ⊃ {0, ..., p1 − 1} have more than p1

settings, then one should take the maximum of the lower bounds estimated by all subsets M̃ of M,
which has one element in each p1-modulus subclass. In this case, the optimum lower bound obtained
in Theorem 1 can be already saturated, when M = {0, ..., p1 − 1}. As one can observe in Figure 2 for
d = 9, the optimum lower bounds on Fψ derived in Theorem 1 are already achieved by M = {0, 1, 2},
while the lower bounds derived in [19] are continuously improved, as one includes more measurement
configurations. When one includes enough measurement configurations such that M ⊇ {0, ..., 5},
the method in [19] can provide tighter lower bounds than the ones derived in Theorem 1, while for the
measurement configurations {0, 1} ⊆M ⊆ {0, ..., 4}, the method in Theorem 1 is still better.
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Figure 2. Fidelity estimation of the noisy Bell-type state ρ̂(ε) in Equation (42)
for a 9 × 9-dimensional Bell-type state |ψ〉 with the Schmidt coefficients
{0.0592, 0.118, 0.178, 0.237, 0.296, 0.355, 0.415, 0.474, 0.533} employing different measurement
configurations. See the main text in Section 2.4 for a detailed description.

In general, the noises in two separated local systems A, B are not symmetric under the exchange
of local systems. In this case, Theorem 1 allows us to adapt the measurement coefficients ~χA,B to the
measurement statistics in the computational basis to refine the state fidelity estimation. For example,
in linear optics networks [26] which have path modes as their degree of freedom, one possible type
of error is crosstalk between the computational basis states associated with neighboring paths. If the



Entropy 2020, 22, 886 12 of 18

crosstalk error is small enough, such that the crosstalk between the computational-basis states |ek〉 and
|ek′〉 associated with far neighboring paths |k− k′| > 1 is negligible relative to the crosstalk between the
closest neighboring paths |k− k′| = 1, i.e., Pre(k, k± ∆k) � Pre(k, k± 1) for ∆k > 1, the expectation
value 〈Ê 〉 can be approximately given by

〈Ê(~χA,~χB)〉 ≈
d

∑k |χ
(A)
k χ

(B)
k |2

∑
k,k′ :|k−k′ |=1

|χ(A)
k χ

(B)
k′ |

2 Pre(k, k′). (43)

In this case, the optimum ~χA,B determined by Equations (38) and (41) can be solved by

χ
(A)
k =

1
NA

(
Pre(k, k)

k−1

∏
k′=0

Pre(k′, k′ + 1)
Pre(k′ + 1, k′)

)1/4

,

χ
(B)
k =

1
NB

(
Pre(k, k)

k−1

∏
k′=0

Pre(k′ + 1, k′)
Pre(k′, k′ + 1)

)1/4

, (44)

where NA,B are the normalization factors. As an example, a state produced in a Bell-type state
generation under a simple model of local cross-talking noises (εA, εB) can be described by

ρψ(εA, εB) = (1− 2d(εA + εB)) |ψ〉 〈ψ|

+ εA

d−1

∑
k=0

(
|e(A)

k⊕1〉 〈e
(A)
k |ψ〉 〈ψ|e

(A)
k 〉 〈e

(A)
k⊕1|+ |e

(A)
k	1〉 〈e

(A)
k |ψ〉 〈ψ|e

(A)
k 〉 〈e

(A)
k	1|

)
+ εB

d−1

∑
k=0

(
|e(B)

k⊕1〉 〈e
(B)
k |ψ〉 〈ψ|e

(B)
k 〉 〈e

(B)
k⊕1|+ |e

(B)
k	1〉 〈e

(B)
k |ψ〉 〈ψ|e

(B)
k 〉 〈e

(B)
k	1|

)
. (45)

Here, the error coefficients εA and εB are the probability of a photon crossing to a closest neighboring
path in the local system A and B, respectively. According to Equation (44), the optimum ~χA,B for
one-side cross-talking errors are χ

(A)
k =

√
Pre(k,k)

∑k Pre(k,k) , χ
(B)
k = 1/

√
d, for εA > 0, εB = 0;

χ
(A)
k = 1/

√
d, χ

(B)
k =

√
Pre(k,k)

∑k Pre(k,k) , for εA = 0, εB > 0.
(46)

For symmetric cross-talking errors εA = εB, the probability distribution Pre(k, k′) is symmetric under
the exchange of A and B, the minimum of 〈Ê 〉 is then achieved by the measurement coefficients

χ
(A)
k = χ

(B)
k =

√ √
Pre(k, k)

∑k
√

Pre(k, k)
. (47)

The computational-basis measurement statistics of the testing states ρ̂(0.04, 0) and ρ̂(0, 0.04) with
one-side local crosstalk is asymmetric (see Figure 3a,c), while it is symmetric for the testing state
ρ̂(0.02, 0.02) with symmetric cross-talking errors (see Figure 3b). The lower bounds obtained by the
different choices of measurement coefficients ~χA,B given in Equations (46) and (47) are compared in
Figure 3d, where we fix the total cross-talking probability by εA + εB = 0.04 and calculate the fidelity
lower bounds for different values of the ratio εA/(εA + εB). One can observe a 1.4% improvement on
the lower bound estimation, if one chooses the optimum coefficients ~χA,B in Equation (44), rather than
the symmetric coefficients in Equation (47) for the one-side cross-talking errors (εA = 0.04, εB = 0)
and (εA = 0, εB = 0.04).
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Figure 3. Fidelity estimation for |ψ〉 with the Schmidt coefficients {sk}k =

{0.086, 0.243, 0.446, 0.686, 0.446, 0.243, 0.086} in a (7 × 7)-dimensional system under local crosstalk
error model given in Equation (45). The figures (a–c) show the measurement statistics of the state
ρ̂(εA, εB) in the computational basis with the local cross-talking errors (εA, εB) of (0.04, 0), (0.02, 0.02),
and (0, 0.04), respectively. (d) The fidelity lower bounds estimated in Theorem 1 by choosing the
measurement coefficients (~χA,~χB), which are determined for the one-side crosstalk in Equation (46)
(blue dotted and orange dashed), the symmetric crosstalk in Equation (47) (green dot-dashed), and the
general optimum in Equation (44) (red solid), respectively.

3. Discussion

In this paper, we have employed state verifiers in Lemma 1 to derive lower and upper bounds on
state fidelity in Lemma 2, which can be refined under the assistance of measurement statistics in the
computational basis. This method allows us to adapt the subsequential measurement configurations
to measurement statistics in the computational basis to obtain tighter bounds, which are desirable for
entanglement detection. We have therefore employed this method to derive an adaptive approach of
quantum state fidelity estimation for Bell-type bipartite entangled states in Theorem 1. This adaptive
approach can determine lower and an upper bounds on the state fidelity which are tighter than the
fidelity bounds obtained in QSV [23]. One has to note that QSFE and QSV have different problem
settings. We can not simply employ our adaptive method in QSV, since, in QSV, a priori knowledge of a
testing quantum system is not justified, and the computational-basis measurement with a large enough
number of outputs is inefficient. To be precise, our method is good for the determination of tighter
bounds on quantum state fidelity with the cost of some degree of inefficiency in the measurement
process for obtaining a priori information in the computational basis.

Another adaptive method of state fidelity estimation for Bell-type states is also derived in [19].
Their fidelity lower bound is tighter than the one derived in Theorem 1, if one implements only one
measurement configuration added to the measurement in the computational basis. However, our
method can be tighter than their bound, if one constructs more than one additional measurement
configurations (see Figure 1). Note that our method can saturate its optimum, if the set of measurement
configurations M ⊆ {0, ..., d− 1} is a p1-modulus subclass of {0, ..., d− 1}, where p1 is the smallest
prime divisor of d. For example, the measurement configurations M = {0, ..., p1 − 1} can already
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achieve the optimum of the QSFE employing Theorem 1 (see Figure 2). In this case, the adaptive
method in [19] could provide tighter bounds again, if one includes enough measurement configurations
M ⊃ {0, ..., p1− 1} (e.g., M ⊇ {0, ..., 5} for QSFE of the 9× 9 quantum system demonstrated in Figure 2).
However, to get this benefit from the method in [19] over our method in Theorem 1, one will need to
implement at least (p1 + 1) measurement settings added to the computational-basis measurement.

One advantage of the adaptive method in this paper is that one can tailor the measurement
configurations to asymmetric local noises by adjusting the coefficients ~χA,B according to Equation (37).
For the state preparation under a simple local cross-talking error model in linear optics network
systems, where the probability of a photon in a path mode cross-talking with its neighboring paths is
small enough, one can find the optimum local measurement coefficients ~χA,B as given in Equation (44).
As shown in the example of Figure 3d, the optimum measurement coefficients ~χA,B can improve the
fidelity lower bound by about 1.4% over the symmetric measurement coefficients.

The approach in this paper only adapts to the measurement in the computational basis. It can
be extended to a scheme of sequentially adaptive quantum state fidelity estimation analogous to the
sequentially adaptive QST [12], in which one constructs each subsequential measurement setting
adapted to the measurement statistics obtained in all the prior measurement settings. This adaptive
scenario can be also extended to the QSV with a priori knowledge of measurement statistics in some
particular bases, if the a priori knowledge is justified by a trusted authorized agent.

4. Methods

In this section, we will prove our main results given in Lemmas 1, 2 and Theorem 1. First, we
show the state verifier V̂j constructed in Lemma 1 stabilizes the target state |ψ〉.

Proof of Lemma 1. After performance of the state verifier V̂j on the target state |ψ〉, one has

V̂j |ψ〉 = ∑
mA ,mB

vmAmB

d2 |EmA(j), EmB(j)〉 〈EmA(j), EmB(j)|ψ〉 . (48)

Since 〈emA , emB |T̂†
A(j)⊗ T̂†

B(j)|ψ〉 = 〈EmA(j), EmB(j)|ψ〉, with the construction given in Equation (6),
V̂j |ψ〉, can be simplified to

V̂j |ψ〉 = ∑
mA ,mB

|EmA(j), EmB(j)〉 〈emA , emB |T̂
−1
A (j)⊗ T̂−1

B (j)|ψ〉 . (49)

Since T̂A(j) ⊗ T̂B(j) = ∑mA ,mB
|EmA(j), EmB(j)〉 〈emA , emB | by definition, one can obtain the

following eigenequation:
V̂j |ψ〉 = |ψ〉 . (50)

The operator V̂j constructed in Lemma 1 is therefore a valid state verifier associated with the

measurementM(A)
j ⊗M(B)

j .

Second, we show the existence of a nontrivial decomposition |φ̃i〉i for Lemma 2 and prove that
the coefficients α and β lead to the fidelity bounds given in (19).

Proof of Lemma 2. According to Equation (17), the operator V̂⊥ψ − cÎ⊥ can be decomposed as

V̂⊥ψ − cÎ⊥ = ∑
i
(λ̃i − cri) |φ̃i〉 〈φ̃i| . (51)

For c = α := maxi(λ̃i/ri), the operator (cÎ⊥ − V̂⊥ψ ) is positive semidefinite, while, for c = β :=

mini(λ̃i/ri), the operator (V̂⊥ψ − βÎ⊥) is positive semidefinite. As a result of Equation (18), the two
coefficients α and β lead to the lower and upper bounds on the state fidelity given in Equation (19).
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In the following steps, we show the existence of a nontrivial decomposition of V̂⊥ψ and Î⊥ for
the fidelity estimation in Equation (19) by providing a protocol to find a decomposition {|φ̃i〉}i and
determine the corresponding coefficient (α, β).

1. One constructs a set of pure states ΦM for the decomposition of V̂⊥M through an extension of the
V̂j eigenstates by local Pauli Ẑ operators

Φ̂M :=
⋃
j,k

{ẐmA ⊗ ẐmB |φ̃j,k〉}mA ,mB=0,...,d−1 with Ẑ := ∑
k

e
i 2π

d k |ek〉 〈ek| , (52)

where {|φ̃j,k〉}k are the eigenstates of (V̂j − |ψ〉 〈ψ|). Employing the set of states ΦM,
the |ψ〉-orthogonal operator V̂⊥ψ is then decomposed as

V̂⊥ψ = ue ∑
k
|φ̃e,k〉 〈φ̃e,k|+ (1− ue) ∑

|ϕ〉∈ΦM

λ̃ϕ |ϕ〉 〈ϕ| , (53)

where {|φ̃e,k〉}k are the eigenstates of V⊥e and λ̃ϕ ≥ 0 are non-negative.
2. One constructs the operator ÊM within the disjoint {ẐA, ẐB}-equivalent subclasses {Φ̂µ}µ of ΦM.

Here, we say that two states |ϕ1〉 and |ϕ2〉 in the set ΦM are {ẐA, ẐB}-equivalent, if there exists
(mA, mB) such that |ϕ2〉 = ẐmA ⊗ ẐmB |ϕ1〉 up to a global phase. The set ΦM is then the union of
the disjoint subclasses {Φµ}µ,

ΦM = ∪µΦµ with Φµ := {|ϕ〉 ∈ ΦM : ∃mA, mB, θ such that |ϕ〉 = ei θ ẐmA ⊗ ẐmB |ϕµ〉}. (54)

The sum of the projectors associated with the states in Φµ is diagonal in the computational basis.
One can then construct the operator Î by assigning a positive weight rµ > 0 to each subclass Φ̂µ,

Î = V̂e + ÊM with ÊM = ∑
µ

rµ ∑
|ϕ〉∈Φµ

|ϕ〉 〈ϕ| . (55)

The operator Î⊥ = V̂⊥e + ÊM constructed in this way can then be decomposed as

Î⊥ = ∑
k
|φ̃e,k〉 〈φ̃e,k|+ ∑

|ϕ〉∈ΦM

rϕ |ϕ〉 〈ϕ| with rϕ ∈ {rµ}µ. (56)

3. As a result of the decompositions in Equations (53) and (56), the coefficients α and β are then
determined by

α = max

(
ue, (1− ue) max

|ϕl〉∈ΦM

λ̃l
rl

)
and β = min

(
ue, (1− ue) min

|ϕl〉∈ΦM

λ̃l
rl

)
. (57)

For the proof of Theorem 1, we need to find a proper decomposition {|φ̃i〉}i of the state verifier
given in Equation (29). These state verifiers can be decomposed into a mixture of the generalized
Bell-type states {|ψµν(~χA,~χB)〉}µ,ν modified by the coefficients ~χA,B, which are defined as follows:

|ψµν(~χA,~χB)〉 :=
1√

N(µ)
∑
k

w−νkχ
(A)
k+µχ

(B)
k |ek⊕µ, ek〉 with N(µ;~χA,~χB) := ∑

k
|χ(A)

k⊕µχ
(B)
k |

2. (58)

Note that |ψ00〉 is identical to the generalized Bell-type state |ψ〉 given in Equation (22) if the
coefficient ~χA,B are chosen according to Equation (26). Since the states |ψµν〉 are the eigenstates
of the (~χA,~χB)-modified HW operators

Ω̂i,j(~χA,~χB)⊗ Ω̂i,−j(~χA,~χB) |ψµν〉 = wµj+νi |ψµν(~χA,~χB)〉 , (59)
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the state verifier V̂j in Equation (29) can be decomposed as

V̂j(~χA,~χB) = ∑
µj⊕ν=0

N(µ;~χA,~χB)

N(0;~χA,~χB)
|ψµν(~χA,~χB)〉 〈ψµν(~χA,~χB)| , (60)

while the error operator Ê can be decomposed as

Ê(~χA,~χB) = ∑
µ≥1,ν

N(µ;~χA,~χB)

N(0;~χA,~χB)
|ψµν(~χA,~χB)〉 〈ψµν(~χA,~χB)| . (61)

Employing these decompositions, one can prove Theorem 1 as follows.

Proof of Theorem 1. For the measurement configurations M(~χA,~χB) ⊆ {0, ..., d− 1} associated with
the (~χA,~χB)-modified HW operators given in Equation (27), one can construct a state verifier V̂ψ

according to Equation (8) and decompose it into a mixture of the (~χA,~χB)-modified Bell-type states

V̂ψ = |ψ〉 〈ψ|+ ue ∑
ν≥1
|ψ0,ν〉 〈ψ0,ν|+ (1− ue) ∑

µ≥1:µj⊕ν=0

N(µ)

N(0)
uj |ψµ,ν〉 〈ψµ,ν| . (62)

Employing the same decomposition components {|ψµν〉}µ,ν, the operator Î in Equation (14) can be
constructed by Î = V̂e + Ê .

First, we derive the lower bound on the state fidelity as follows. According to Lemma 2,
the coefficient α for the lower bound on Fψ is determined by

α(ue, uj∈M) = max {ue, (1− ue)α̃} with α̃(uj∈M) := max
i

 ∑
j∈Ci(M)

uj

 , (63)

where Ci(M) ∈ M/p1 are the p1-modulus equivalent subclasses of the measurement configurations
M. Here, p1 is the minimum prime-number divisor of the dimension d. The smaller the coefficient α

is, the larger the lower bound. The optimum lower bound is then obtained by the minimum value
of α, which is achieved by α = ue = α̃/(1 + α̃). Insert this value of the coefficient α in Equation (19),
one can obtain the lower bound

〈V̂M(~u;~χA,~χB)〉 − α̃(uj∈M) 〈Ê(~χA,~χB)〉 ≤ Fψ with V̂M(~u;~χA,~χB) = ∑
j∈M

ujV̂j(~χA,~χB). (64)

This bound can be improved by minimizing the coefficient α̃, which is equal to the number of nonempty
p1-modulus subclasses of M, i.e., min α̃ = |M/p1 |. As a consequence, Fψ is lower bounded by

〈V̂M(~µ;~χA,~χB)〉 −
1

|M/p1 |
〈Ê(~χA,~χB)〉 ≤ Fψ. (65)

This lower bound is achieved by the weights ∑j∈Ci(M) uj = 1/|M/p1 |, which are uniformly weighted
over all p1-modulus equivalent subclasses Ci(M). Indeed, this bound can be even improved
by evaluating the lower bounds obtained with the measurement-configuration subsets M̃(⊆ M),
which have exactly one element in each p1-modulus subclasses Ci(M) as given in Equation (32).
With each measurement configuration subset M̃, one determine a lower bound on Fψ employing the
same formula given in Equation (65) with the measurement configuration weights {uj = 1/|M/p1 |}j∈M̃.

The state verifier operator V̂M̃ is then the average of the state verifiers V̂j associated with the
measurement configurations in M̃,

V̂M̃ =
1

|M/p1 |
∑

j∈M̃
V̂j. (66)
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As a result, one can estimate a lower bound on the state fidelity by

max
M̃∈⊗i Ci(M)

(〈
V̂M̃(~χA,~χB)

〉)
− 1
|M/p1 |

〈
Ê(~χA,~χB)

〉
≤ Fψ. (67)

For the upper bound on Fψ, one needs to determine the coefficient β given in Equation (20) in
Lemma 2. If d is non-prime or M 6= {0, ..., d − 1}, the coefficient β is always equal to zero. As a
consequence, the upper bound is given by the convex combination of the expectation values 〈V̂e〉 and
〈V̂j∈M〉 weighted by ue and uj∈M, which means that Fψ is upper bounded by the minimum of 〈V̂e〉
and 〈V̂j∈M〉,

Fψ ≤ min{〈V̂e〉 , min
j∈M
〈V̂j(~χA,~χB)〉}. (68)

If d is prime and M = {0, ..., d− 1}, then the coefficient β is given by

β = min{ue, min
j
(1− ue)uj}. (69)

The optimum choice of the weights ue, uj∈M for the maximum β is then ue = uj = 1/(d + 1),
which leads to the maximum β = 1/(d + 1). In this case, the upper bound on Fψ determined
in Equation (19) is

Fψ ≤ 〈V̂M(~χA,~χB)〉 −
1
d
〈Ê(~χA,~χB)〉 , (70)

where V̂M = ∑j=0,...,d−1 V̂j/(d + 1) is the average of the state verifiers in the measurement
configurations M = {0, ..., d− 1}. Since the lower bound on Fψ given in Equation (67) coincides with
the upper bound given in Equation (70) for a prime d, the state fidelity can be explicitly determined by
the quantity given in Equation (70).
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The following abbreviations are used in this manuscript:

QST Quantum state tomography
QSV Quantum state verification
QSFE Quantum state fidelity estimation
HW operator Heisenberg–Weyl operator
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