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Abstract: One of the major shortcomings of variational autoencoders is the inability to produce
generations from the individual modalities of data originating from mixture distributions. This
is primarily due to the use of a simple isotropic Gaussian as the prior for the latent code in the
ancestral sampling procedure for data generations. In this paper, we propose a novel formulation of
variational autoencoders, conditional prior VAE (CP-VAE), with a two-level generative process for
the observed data where continuous z and a discrete ¢ variables are introduced in addition to the
observed variables x. By learning data-dependent conditional priors, the new variational objective
naturally encourages a better match between the posterior and prior conditionals, and the learning of
the latent categories encoding the major source of variation of the original data in an unsupervised
manner. Through sampling continuous latent code from the data-dependent conditional priors, we
are able to generate new samples from the individual mixture components corresponding, to the
multimodal structure over the original data. Moreover, we unify and analyse our objective under
different independence assumptions for the joint distribution of the continuous and discrete latent
variables. We provide an empirical evaluation on one synthetic dataset and three image datasets,
FashionMNIST, MNIST, and Omniglot, illustrating the generative performance of our new model
comparing to multiple baselines.

Keywords: VAE; generative models; learned prior

1. Introduction

Variational autoencoders (VAEs) [1,2] are deep generative models for learning complex data
distributions. They consist of an encoding and decoding network parametrizing the variational
approximate posterior and the conditional data distributions in a latent variable generative model.

Though powerful and theoretically elegant, the VAEs in their basic form suffer from multiple
deficiencies that stem from the mathematically convenient yet simplistic distributional assumptions.
Multiple strategies have been proposed to increase the richness or interpretability of the latent code [3-12].
These mostly argue for more flexible posterior inference procedure or for the use of more complex
approximate posterior distributions to facilitate the encoding of non-trivial data structures within the
latent space.

In this paper, we reason that for generating realistic samples of data originating from complex
distributions, it is the prior that lacks expressiveness. Accordingly, we propose a new VAE formulation,
conditional prior VAE (CP-VAE), with two-level hierarchical generative model combining categorical
and continuous (Gaussian) latent variables.
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The hierarchical conditioning of the continuous latent variable on the discrete latent component
is particularly suitable for modelling multimodal data distributions, such as distributional mixtures.
Importantly, it also gives us better control of the procedure for generating new samples. Unlike in
the standard VAE, we can sample data from specific mixture components at will. This is particularly
critical if the generative power of VAEs shall be used in conjunction with methods requiring the
identification of the distributional components, such as in continual learning [13,14].

As recently shown [12,15], without supervision (as in our setting), enforcing independence
factorization in the latent space does not guarantee recovering meaningful sources of variation in the
original space. Therefore, in our CP-VAE formulation, we let the model fully utilize the capacity of
the latent space by allowing for natural conditional decomposition in the generative and inference
graphical models.

We formulate the corresponding variational lower bound on the data log-likelihood and use it
as the optimization objective in the training. In the spirit of empirical Bayes, we propose estimating
the parameters of the conditional priors from the data together with the parameters of the variational
posteriors in a joint learning procedure. This ensures that the inferred structure of the latent space can
be exploited in data generations.

2. From Variational Inference (VI) Objective to VAE Objective

Variational autoencoders (VAEs) [1,2] are deep Bayesian generative models that rely on the
principals of amortized variational inference to approximate the complex distributions p(x) from
which the observed data S = {x;} ', originate.

In their basic form, they model the unknown ground-truth p(x) by a parametric distribution
po(x) with a latent variable generative process

po(x) = [ polxlz)p(2)dz . M

Computing pg(x) is difficult and usually turns out to be an intractable distribution. However, we
can learn a surrogate loss to the original likelihood py(x) while using Variational Inference principles.

2.1. Variational Inference

Variational Inference involves the optimization of an approximation to the intractable posterior.
In Variational Inference, we specify a family of tractable distributions g4(z|x). The goal is to find
the best variational parameters ¢, such that the approximation g4 (z|x) is as close as possible to the
intractable posterior pg(z|x), i.e., g4(z|x) ~ pg(z|x). We do that by minimizing the KL divergence of
the approximation g4 (z|x) from the true posterior py(z|x),

¢* = argming KL (qy(z|x)||pe(z[x)) @

where the KL divergence is equal to:

KL (2 (2} 1pe(219) = Eqgiary {108 Zq;t:i”

®)

Reordering the terms of Equation (3), we have:

log po(x) = KL (q¢(2/%)[|pe(z[x)) +Ey, (45 [log pe(z, x) —logge(z|x)] )
KL ELBO
=KL (94 (2[%) [ po(2z]x)) + L(x;6,¢)
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The first term is the initial KL divergence we want to minimize in VI. Since the Kullback-Leibler
divergence is always greater than or equal to zero, the second term £, called the Evidence Lower
BOund, ELBO, is the variational lower bound on the marginal log likelihood log pg(x). The closer
KL (g¢(z|x)||pe(z|x)) is to 0, the closer L(x;8, ¢) will be to log p(x).

log po(x) > L(x;0,¢) ©)

2.2. Variational Autoencoders

In VAEs, the typical assumptions are of a simple isotropic Gaussian prior p(z) for the latent
variable z and, depending on the nature of the data x, factorized Bernoulli or Gaussian distributions
for the data conditionals py(x|z). These per-sample conditionals are parametrized by a deep neural
network, a decoder . Once the decoder network is properly trained, we can sample new data examples
from the learned data distribution py(x) by ancestral sampling procedure: sample the latent z from the
prior p(z) and pass it through the stochastic decoder pg(x|z) to obtain the sample x.

The VAEs employ the strategy of amortized variational inference. They approximate the
intractable posteriors pg(z|x) by factorized Gaussian distributions g4(z|x) and infer the variational
parameters ¢ of the approximate per-sample posteriors through a deep neural network, an encoder.

The encoder and decoder networks are trained end-to-end by stochastic gradient-based
optimization maximizing the sample estimate of The Evidence Lower Bound Ly = E, 5 Lg,4(x) on
the data log-likelihood.

1Y 1Y
Nzlogpg(xi) > Nzﬁw(xi) ~ Loy

Lop(x) = Eq (z/x) 10g po(x]z) — KL (74 (z[x)[|p(2)) (6)

A B

The first term A in Equation (6) can be seen as a negative reconstruction cost, term B penalizes
the deviations of the approximate posterior from the fixed prior p(z) and it has a regularizing effect on
the model learning. The term A encourages the latent variable z to contain meaningful information
in order to reconstruct x and at the same time, the term B penalizes the approximate posterior for
deviating from the prior, preventing the model from simply memorizing each data point.

The gradients of the lower bound with respect to the model parameters 6 can be obtained
streighforwardly through Monte Carlo estimation. For the posterior parameters ¢, the gradients are
estimated by stochastic backpropagation while using a location-scale transformation known as the
reparametrization trick.

2.3. Posterior Collapse and Mismatch between the True and the Approximate Posterior

In Equation (4), we see that, in order to improve the variational lower bound, the approximate
posterior g4 (z|x) should match the true posterior py(z|x). In other words, the ELBO is tight when
9p(z|x) = pe(z|x). As we mentioned above, the choice of g4(z|x) is often a factorized Gaussian
distribution for simplicity and efficiency. In this way, the approximate posterior is simplified and it is
hard for it to match the possible complex true posterior.

Moreover, by minimizing the KL-term in Equation (6), we encourage the approximate posterior
to be close to the simple isotropic Gaussian prior p(z), an even simpler distribution. This may cause
the main issue with VAE, called posterior collapse, where the model learns to ignore the latent variable
and the approximate posterior mimics the prior, 4(z|x) ~ p(z) [6,16]. This reduces the capacity of the
generative model, making it impossible for the decoder to use all the information of all of the latent
dimensions or even not use, at all, the latent variable. This problem is more common when the decoder
po(x|z) is parametrised as an autoregressive model [6].
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The posterior collapse and, consequently, the mismatch between the true and the approximate
posterior motivates a direct improvement of variational inference by assuming/learning a more flexible
posterior approximation for variational inference [3,5], or an indirect improvement assuming a more
flexible prior [6,17]. Moreover a range of heuristic approaches in the literature have attempted to
diminish the effect of the KL term in the ELBO to alleviate posterior collapse [18], or propose new
regularizers [9].

2.4. Optimal Prior

Even though the prior in the VAEs is usually modelled by a simple isotropic Gaussian distribution,
this assumption is a source of over-regularization, and is one of the causes of the poor density estimation
performance [19].

To derive the optimal prior, we reformulate the VAE objective Equation (4). By maximizing the
ELBO, we force the approximate posterior to be close to the true one and the marginal likelihood py(x)
to be close to the data distribution, pp(x), as we see in Equation (7).

Lo = B0 o8 po(x) — KL(g ) poz}o)]
= B0 18 22 0] — By ) (KL 210 2]

= —KL(pp(x)[lpe(x)) —H(pp(x)) — B, (x) [KL(99(z]%) [l p(z]%))] @)

The maximizing solution is equal to the negative entropy of the data distribution, —H(pp(x))
and it is reached when the two KL divergence terms are equal to zero, meaning that the approximate
posterior becomes equal to the true one, 44(z|x) = pg(z|x) and the data distribution equal to the true
distribution, pp(x) = pg(x).

In this optimal case, the marginal approximate posterior g4(z) matches the prior,
q¢(z) = [, 9¢(z|X)pp(x)dx = [, pe(z|x)pe(x)dx = p(z). This indicates that the optimal prior for
maximizing the ELBO is the marginal approximate posterior.

z

ple)  ap(z) = 55 L dplebe)

Il
A

where the summation is performed over all training samples x;; i = 1,-- - , N. The marginal posterior
is the average of the approximate posterior with as many components as data points in the sample S,
and it can been seen as Mixture of Gaussians (MoG) over all the data. However, this extreme case leads
to over-fitting as this prior essentially memorizes the training set. Moreover, it is computationally
inefficient, since it is very expensive to compute at every training iteration.

A natural approximation of the marginal approximate posterior prior can be a Mixture of Gaussian
(MoG) prior in a random subset of the data, p(z) = % YK, p¢(z|x) with K < N components.

Alternatively, marginal approximate posterior can be modelled while using a mixture of
posteriors over learned virtual observations (pseudo-inputs) with a fixed number of components
p(z) ~ £ Yy q¢(z|u(k)) [17]. Hence, the original standard Gaussian prior is replaced by a flexible
multi-modal distribution.

3. Related Work

Since their introduction in 2014 [1,2], variational autoencoders have become one of the major
workhorses for large-scale density estimation and unsupervised representation learning. Multitudes
of variations on and enhancements of the original design have been proposed in the literature. These
can broadly be categorized into four large groups (with significant overlaps as many methods mix
multiple ideas to achieve the best possible performance).
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First, it has been argued that optimizing the variational bound Equation (6) instead of the
intractable likelihood py(x) inhibits the VAEs to learn useful latent representations for both data
reconstructions and downstream tasks. Methods using alternative objectives aim to encourage
the learning towards representations that are better aligned with the data (measured by mutual
information), e.g., InfoVAE [9,10], or which separate important factors of variations in the data
(disentangling), e.g., [18,20,21]. Although these methods report good results on occasions, there seem
to be little evidence that breaking the variational bound brings systematical improvements [12,15].

For our model, the analysis presented in Section 4.3.1 suggests that our objective (which is a proper
lower bound on the likelihood) encourages the encoding of the major source of variation, that of the
originating mixture component, through the categorical variable without any extra alterations. At the
same time, it should be noted that our goal is not the interpretability of the learned representations or
their reuse outside the VAEs models. Our focus is on generations reflecting the underlying multi-modal
distribution over the original data space.

Second, the simplifying conditional independence assumptions for the data dimensions factored
into the simple Gaussian decoder py(x|z) have been challenged in the context of modelling data with
strong internal dependencies. More powerful decoders with autoregressive architectures have been
proposed for modelling images, e.g., PixelVAE [22], or sequentially dependent data such as speech
and sound, e.g., VRNN [23]. In our model, we use a hierarchical decoder pg(x|z, ¢) corresponding to
the cluster-like structure we assume for the data space. However, in this work, we stick to the simple
independence assumption for the data dimensions. Augmenting our method with stronger decoder
should, in principle, be possible and it is open for future investigation.

Third, the insufficient flexibility of the variational posterior g4(z|x) to approximate the true
posterior py(z|x) has led to proposals for more expressive posterior classes. For example, a rather
successful approach is based on chaining invertible transformations of the latent variable [3,5].
While increasing the flexibility of the approximate posterior improves the modelling objective
through better reconstructions, without accompanied enhancements of the prior it does not guarantee
better generations.

This has been recognised and addressed by the fourth group of improvements that focuses on the
model prior and that our method pursues. These build on the observation that overly-simple priors
can be source of excessive regularization, limiting the success of the VAE models [6,19]. For example,
the authors in [11,24] replace the distributional class of the prior (together with the posterior) by
von Mises-Fisher distributions with potentially better characteristics for high-dimensional data with
hyperspherical latent space.

More related to ours are methods that suggest to learn the prior. The VLVAE [6] uses the
autoregressive flows in the prior that are equivalent to the inverse autoregressive flows in the
posterior [5]. The increased richness of the encoding and prior distributions leads to higher quality
generations; however, the prior cannot be used to generate from selected parts of the data space, as
our model can.

The VampPrior [17] proposes constructing the prior as a mixture of the variational posteriors
over a learned set of pseudo-inputs. These could be interpreted as learned cluster prototypes of
the data. However, the model does not learn the importance of the components in the mixture,
and it does not align the prior and posteriors at an individual component level as our model does.
Instead, it pushes the posteriors to align with the overall prior mixture that diminishes the models
ability to correctly generate from the individual components of multimodal data. In [25], they use
the aggregated posterior as the prior by directly estimating the KL divergence without modeling the
aggregated posterior explicitly, while using a kernel density trick . However, because their prior is
implicit, they cannot sample from the prior directly. Instead, they sample from the aggregated posterior.
Moreover, the model simillarly to VampPrior does not learn the importance of the components in
the mixture.
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The continuous-discrete decomposition of the latent space similar to ours have been used for data
clustering through generative model presented in [7,26]. The first combines the VAE with a Gaussian
mixture model through two stage procedure mimicking the independence assumptions in their
inference model. The latter assumes (conditional) independence in the generative and inference models
and extends to a full Bayesian formulation through the use of hyper-priors. Their complex model
formulation exhibits some over-regularization issues that, to the authors acknowledge, are challenging
to control.

Options for freeing the distributional class of the latent representations through Bayesian
non-parametrics have been explored, for example, in [8,27,28]. The learned structures in the latent
representations greatly increase the generative capabilities, including also the (hierarchical) clustering
ability. However, this comes at a cost of complex models that are tricky to train in a stable manner.
In contrast, our model is elegantly simple and easy to train.

4. VAE with Data-Dependent Conditional Priors

The mathematically and practically convenient assumption of the factorial Gaussian approximate
posterior g4(z|x) has been previously contested as one of the major limitations of the basic VAE
architecture. For complex data distributions p(x), the simple Gaussian g4(z|x) may not be flexible
enough to approximate well the true posterior py(z|x).

Even though various methods have been proposed for enriching the posterior distributions,
as we mention in Section 3, by learning latent representations more appropriate for the complex data
structures they cannot guarantee better generations. In order to achieve this a closer match between
the posterior and prior distributions used for sampling the latent variables during inference and data
generations, respectively, is required.

We propose a new VAE formulation, conditional prior VAE (CP-VAE), with a conditionally
structured latent representation that encourages a better match between the prior and the posterior
distributions by jointly learning their parameters from the data.

4.1. Two-Level Generative Process

We consider a two-level hierarchical generative process for the observed data where two latent
variables ¢ and z are introduced in addition to the observed variables x. Variable ¢ is a K—way
categorical latent variable, and z is a D—dimensional continuous latent variable. To generate x, we first
sample ¢ sample from its prior, p(c), and then a continuous latent variable z is sampled from the
learned conditional distribution p,(z|c). Finally, a sample is drawn from py(x|z, ), parameterized by
the decoder network. The joint probability can be written as:

p(xz,¢) = po(x|z,¢)py(z ) ®)

where, the joint prior distribution is equal to py(z,¢) = py(z|c)p(c).

We assume a uniform categorical as a prior distribution for the discrete component ¢, so that,
for each of the K categories p(cx) = 1/K, k = 1,..., K, which encourages every component to be
used. The conditionals of the continuous component are factorised Gaussians with learnable means
and variances.

po(zlc) = TTpo(ziled = [N (21 od)) k=1, K . ©)

The compositional prior we propose is well suited for generations of new samples from
multimodal data distributions mixing multiple distributional components. In contrast to sampling
from a simple isotropic Gaussian prior that concentrates symmetrically around the origin, we can
sample the latent code from discontinuous parts of the latent space. These are expected to represent
data clusters corresponding to the originating distributional mixing.



Entropy 2020, 22, 888 7 of 34

In addition, the variations encoded into the continuous part of the latent space are also sampled
conditionally and therefore are better adapted to represent the important factors of data variations
within the distributional clusters. This is in contrast to the single common continuous distribution of
the basic VAE (Section 2.2) or VAEs with similar continuous-discrete composition of the latents as ours,
which, however, assume independence between the two parts of the latent representation [21], which
we discuss in detail in Section 5.1.

The data conditional pg(x|z,c) is parametrised by a decoder network dy(z,c) as a
Bernoulli(x | dg(z, ¢)) or a Gaussian N (x | dy(z, c),0?]) distribution, depending on the nature of the
data x.

Data-Dependent Conditional Priors

There is no straightforward way to fix the parameters ¢ = (y, o) in the distributions Equation (9)
for each of the conditioning categories ¢y a priori. Instead of placing hyper-priors on the parameters
and expanding to full hierarchical Bayesian modelling, we estimate the prior parameters from the data
through a relatively simple procedure that resembles the empirical Bayes technique [29].

As explained in Section 4.3, the conditional p,(z|c) enters our objective function through a KL
divergence term. Therefore, the prior parameters ¢ can be optimized by backpropagation together
with learning the encoder and decoder parameters ¢ and 6. Once the model is trained, all of the
parameters are fixed and the learned prior p,(z|c) can be used in the ancestral sampling procedure
that is described above to generate new data samples, Figure 1.

P(C)—"@\‘
@/’

Figure 1. To generate new examples from the learned data distribution py(x), we sample the discrete

dz0) |—epixlz c)—»®

P,z c) —>

and continuous latent variables from the two-level prior and pass those through the decoder.

4.2. Inference Model

As in standard VAEs, we employ amortized variational inference to learn the unknown data
distribution. We use the approximate posterior distribution

qp(2 clx) = g9 (2%, €)gg(c[x) (10)

in place of the intractable posterior py(z, c|x).

Our approximate posterior replicates the two-level hierarchical structure of the prior. In this way,
we ensure that the latent samples are structurally equivalent both during inference and new samples
generations. This is not the case in other hierarchical latent models that rely on simplifying mean field
assumptions for the posterior inference [7,26].

We use encoder network with a gated layer ey (x) = (74(x), pgp(X, 77), 0 (X, 7)) for the amortized
inference of the variational approximate posteriors, Figure 2

q¢(c|x) = Cat (714(x))
qp(z|x, ¢) = N (pg(x, ), diag(o5(x, 7)) .
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n
Dt

Figure 2. The encoder infers the parameters of the discrete and continuous approximate posteriors

using a gated layer for the hierarchical conditioning. First, it outputs the parameters of the discrete
latent variable, 715. Subsequently, there is an extra layer that takes as input 714 concatenated with the
last hidden layer of the encoder and infers the parameters of the continuous latent variable.

4.3. Optimization Objective

As customary in variational inference methods, our optimization objective is the maximization of
the lower bound on the data log-likelihood

Lo,g(x) = By, (5,c|x log po(x]z, ¢) =KL (q4(z, ¢[x)[|py(z, ¢)) - (11)

A B

This is a straightforward adaptation of the bound from Equation (6) to the compositional latent
code (z, ¢) with similar interpretations for the A and B terms. Using the prior and posterior distribution
decompositions from Equation (10) the KL term in B can be rewritten as a sum of two KL divergences
that are more amenable to practical implementation: B1 for the continuous conditional distributions
and B2 for the discrete.

KL (79 (z, ¢[x)[|pg(z,¢)) = By (cx) KL (90 (2], €)[[pg(zlc)) + KL (g4 (c[x)[[p(c)) (12)
B B1 B2

The first term B1 can be seen as a weighted average of the KL divergences between the posterior
and prior conditionals. The weights are the probabilities of the posterior categorical distribution,
so that the two conditionals are pushed together more strongly for those observations x and latent
categories ¢ to which the model assigns high probability. The KLs can be conveniently evaluated in a
closed form as both the posterior and the prior conditionals are diagonal Gaussians.

The minimization of the KL divergence between the categorical posterior and the fixed uniform
prior in the second term B2 is equivalent to maximizing the entropy of the categorical posterior
H (g¢(c|x)) (up to a constant).

KL (g5 (clx)|Ip(c)) = ~H (gp(c|x) +log K (13)
B2

We train the model by a stochastic gradient-based algorithm (Adam [30]). As the gradients of the
variational lower bound Ly 4 with respect to the model parameters are intractable, we use the usual
well-established Monte-Carlo methods for their estimation.

For the decoder parameters 6, the gradient is estimated as the sample gradient of the conditional
log-likelihood with the latent z and ¢ sampled from the approximate posterior.

V(.)Eg,d,(x) ~ Vylogpe(x|z,c), (z,¢) ~ q¢(z, c|x) (14)
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For the encoder parameters ¢, we use the pathwise gradient estimators [31] based on the standard
location-scale z = f(Z) and Gumbel-Softmax [32] ¢ = g, (&) reparametrizations with the auxiliary
Z ~ N(0,1) sampled from the standard normal and & sampled from the Gumbel(0,1) distribution.

Vo Loy(x) Vg logpe(x, fp(2),89(€)) — Vg logae(fp(2),8p(€)|x), Z~N(0,1), & ~ Gumbel(0,1)  (15)

Finally, the gradients with respect to the parameters ¢ of the conditional prior are estimated
alongside the gradients of the decoder under the same sampling of the latents.

VoLog(x) = =Vylogpy(zlc), (z,¢)~ qe(z clx) (16)
4.3.1. Analysis of the Objective

The KL divergence in term B of the objective Equation (11) has important regularization effects on
the model learning. We expand on the discussion of these in the standard VAE objective Equation (6)
from [9] to analyse our more complex model formulation.

There are two major issues that optimizing the reconstruction term A of the objective Equation (11)
in isolation could cause. First, the model could completely ignore the categorical component of the
latent representation ¢ by encoding all of the data points x into a single category with a probability
qd¢(ck|x) = 1 for all x. All of the variation in the data x would then be captured within the continuous
component of the latent representation through the single continuous posterior g4 (z|x, cx). While this
would not diminish the ability of the model to reconstruct the observed data and, therefore, would
not decrease the reconstruction part of the objective A, it would degrade the generative properties of
our model. Specifically, with all of the data clusters pushed into a single categorical component and
distributed within the continuous latent space, we would have no leverage for generating samples
from the individual data distributional components, which is one of the major requirements for our
method. This pathological case is essentially equivalent to learning with the standard VAE.

Second, maximizing the log-likelihood in A naturally pushes the continuous posteriors to be
concentrated around their means in disjoint parts of the continuous latent space with variances tending
to zero, as discussed in [9]. For such posteriors, the model could learn very specific decoding, yielding
very good reconstructions with very high log-likelihoods py(x|z, c). However, the generations would
again suffer as the prior used for the ancestral sampling would not cover the same areas of the latent
space as used during the inference.

To analyse the reguralization effect of term B in the objective Equation (11) on the learning,
we decompose the expected KL divergence into three terms and a constant (see proof in Appendix A.1):

E,x) KL (9¢(z, c|x)||pp(z,¢)) =1 ((z,¢),x)
+E,, () KL (99 (z[0)[|py (2]c))
—H (q¢(c)) +1logK . (17)

The first is the mutual information of the composite latent variable (z,c) and the data x
under the posterior distribution 4. Minimization of the KL divergence in Equation (11) pushes
the mutual information between the two to be low and, therefore, prevents the overfitting of the latent
representation to the training data described in the second point above.

The third term is the negative entropy of the marginal categorical posterior whose empirical
evaluation over the data sample S = {x;}_; is often referred to as the aggregated posterior [17,33].

1 N
99 (¢) = Epdg(clx) = & Y qp(clx) (18)

i
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The regularizer maximizes the entropy of this distribution, thus encouraging the model to use
evenly all of the categories of the discrete latent code counteracting the pathological case of the first
point above.

Finally, the middle term pushes the marginalized conditional posteriors of the continuous latent
variable z to be close to the priors conditioned on the corresponding categories. It helps to distribute
the variations in the data into the continuous component of the latent space in agreement between the
inferential posteriors and the learned generative priors. It does so for each latent category cj separately,
putting more or less weights on the alignment, as per the importance of the latent categories established
through the categorical marginal posterior g4 (c). It is this term in the objective of our VAE formulation
that safeguards the generative properties of the model by matching the inferential posteriors and the
learned generative priors used in the ancestral sampling procedure for new data examples.

5. VAE with Continuous and Discrete Components

We unify and analyse the objective under different assumptions for the joint distribution of
continuous and discrete latent variables py(z, ¢) and g4 (z, c|[x) in order to justify our decisions for the
inference and generative model.

As in the vanila VAE, the different variations of VAE with continuous and discrete latent variables
jointly optimize the generative and the inference model. Using discrete latent variables we impose a
categorical distribution as the output of the encoder. We first perform a decomposition of the objective
given by Equation (11) and then apply different independence assumptions about the inference and
generative models.

L(6,¢) = Eq (2,60 log po(x|z,¢)] =1 ((z,¢),x)) = KL(gy(z, )l py(z, ¢)) (19)
A B C

5.1. Comparing the Alternative Models

To better understand the various modifications of the VAE objective with continuous and
categorical latent variables, we review the possible independence assumptions for the inference
and generative models as summarized in Table 1. For the marginal posterior we assume the
same decomposition as for the corresponding prior, i.e., py(z|c)p(c) = q¢(z|c)qe(c) and p(z)p(c) =
q9(2)q(c).

As we show in Appendix A.2, Equation (19) can be rewritten in the general form of Equation (20)
for all the models considered in Table 1.

Table 1. Independence assumptions for discrete-continuous latent variable models and the
corresponding decomposition of the B and C terms in Equation (19).

Model q(z,¢|x) py(z, ) B1 Cl  Refs.
CP-VAE gy (z[x,c)gp(c[x)  py(z|c)p(c) Iy(zle,x|e) By [KL(q4(z|c)[Ipy(z]c))]
INDq  q(z[x)gg(c[x)  py(zlc)p(c) By (cx) KL(Gp(2[X)ll99(zlc)] By [KL(gq(z[c) [Py (z[c))] 7]
INDp 44 (2[x, ¢)gg(c|x) p(z)p(c) I4(z, (¢, x)) KL(gg(2)[|p(2))  [26,34]
INDgp  4¢(2[x)qq(c[x) p(z)p(c) I4(z,x) KL(qp(z)|Ip(2)) [13,21]
L(¢,0) = Eg(5,0x) [log po(x|z, )] =B1 — I4(c,x) —C1 — KL(gp(c)]|p(c)) (20)
B2 Cc2
A

The terms A, B2 and C2 remain the same in all of the models, terms B1 and C1 way, as per the
independence assumptions listed in Table 1. A is the negative reconstruction cost. Term B2, is the
mutual information in the inference model between the discrete latent variable and the observed data.
Through minimizing this mutual information we encourage x to be independent from the discrete
latent variable. Term C2 matches the discrete marginal posterior g¢(c) to the prior p(c).
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CP-VAE

In the proposed model where we do not make any independence assumption about the
approximate posterior, 44(z, ¢|x) = g4(2|x, ¢)q¢(c|x) and the prior, py(z|c) = py(z|c)p(c).

The term B1 is the mutual information between the continuous latent variable z given the discrete
latent variable ¢ and the data x given the discrete latent variable c. Inferring the continuous latent
variable z from x and ¢ could result in only using the information from x ignoring the discrete latent
variable ¢. By minimizing B1 term, we encourage z|c and x|c to be decoupled by removing the
information of the data distribution given a category from the continuous latent variables. In this
way, we ensure that, when inferring the continuous latent variable z, the discrete latent variable will
be used. Moreover, minimizing this term penalizes the first term, the negative reconstruction error,
helping to avoid over-fitting.

The term C1 matches the marginalized conditional posteriors of the continuous latent variable z,
q¢(z|c) to the priors conditioned on the corresponding categories, p,(z|c) (see also Section 4.3.1) .

INDqg model

In INDq model, we assume conditional independence between the continuous and discrete latent
variables, q¢(z, ¢|x) = q¢(z|x)q¢(c|x) without making any independence assumption about the prior,
Py(z,¢) = py(z|c)p(c). The continuous latent variable z is inferred from the observed data, while, in
our model, it is inferred from the observed data and the discrete latent variable c.

B1 term encourages the approximate continuous posterior, 44(z|x), to be close to the conditional
distribution of the continuous latent variable z given the discrete latent variable ¢, g¢(z|c). This means
that, even if the discrete latent variable c is not used to infer the continuous z, the continuous latent
variable is encouraged to contain information for the corresponding category, but it is not ensured that
it will used it like in our model. The term C1 is the same as in the CP-VAE with the same effect.

These assumptions are made by the Variational Deep Embedding (VaDE) paper [7], where the
authors proposed a clustering framework.

INDp model

In INDp model, we do not make any independence assumption about the approximate posterior
4¢(z, ¢|x) = q¢(z|x, ¢)gy(c|x), but we assume marginal independent priors p,(z,¢) = p(z)p(c).

In this model, similarly to our model, the continuous latent variable z is inferred from the observed
data and the discrete latent variable c.

B1 term is the mutual information between the continuous latent variable z and (¢, x) pair
governed by the joint distribution g4 (¢, x). Minimizing this mutual information, we encourage z and
(¢, x) to become independent, discouraging z to contain any information about the discrete latent
variable ¢ and the data x, even though the discrete latent variable c is used to infer the continuous z.

C1 is the KL divergence between the marginalized continuous posterior q4(z) and the prior
p(z). This helps to produce realistic samples without relying on any information regarding the
corresponding category.

In this model, none of the terms ensure that the discrete latent variable ¢ will not be ignored while
inferring the continuous latent variable z. This, in combination with the non-appearance of the discrete
latent variable c in the KL term C1, makes it infeasible to generate samples from a specific category, in
contrast to our proposed model.

The INDp assumptions are used in the semi-supervised model by Kingma et al. in [34], where
the discrete label is treated as a latent variable when missing. Their model is augmented with a
discriminative loss in order to learn better the categorical approximate posterior while using the
labelled data. Without the use of supervision, there is no guarantee that it would be able to generate
samples from specific categories. Gaussian Mixture Variational Autoencoder (GMVAE) [26] is built
upon the semi-supervised model [34] adding an extra latent variable.
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INDqp model

INDgp model assumes conditional independence between the continuous and discrete latent
variables and marginal independent priors. In this case, the continuous latent variable z is only inferred
from the observed data, the same as in the INDq model.

B1 term minimizes the mutual information between the continuous latent variable z and x.
Encouraging z and x to become independent, we help to avoid over-fitting by preventing the learning
of a unique z for each x (also see Section 4.3.1). The C1 term is the same as in the INDp model. It
matches the marginalized continuous posterior q4(z) to the prior p(z).

In contrast to our proposed model, in INDqp, none of the terms in the objective prevent the model
from ignoring the discrete latent variables or guarantees samples from a specific category.

This was also experimentally found in [21], where the same independence assumptions are used
in order to learn disentangled representations in an unsupervised manner. To overcome this issue,
they added weights to control the capacities of the discrete and continuous latent variables. These
weights are modified separately during the training (like an annealing procedure) forcing the model to
encode information both in the discrete and continuous variables. Moreover, the same model is also
used under the setting of continual learning [13], where a mutual information regularizer is added in
order to overcome this issue.

5.2. Assuming Uniform Approximate Categorical Posterior

In this section, we examine the special case where instead of inferring the categorical posterior as
in the models above, we assume that it follows a uniform distribution over K components g4 (c|x) ~ %
We show that the vanilla VAE is a special case of the INDqp model.

Assuming that the categorical posterior follows the uniform distribution, the marginal categorical
posterior g(c) is equal to &, (4p(c) = LN gp(e,x) = Ly dp(chp(x) = 2T, p(0) = £ x1 = 1)
and the terms B2 and C2 in Equation (20) are equal to zero (I;(¢,x) = 0and KL(g4(c)||p(c)) = 0).
The objective of the INDqp model becomes

L(9,0) = Eqgy(2,x) [log po(x|z, ¢)] = Ig(z,x) = KL(q(2)l|ps(2))
A Bl

= Ep(x) |Eqy(alx) 08 Po(xI2, )] = KL(q(zlx) | po (2) @D

which is the VAE objective with an extra ¢ in the A term. Given that we do not infer the categorical
posterior, this extra ¢ does not influence the model.

6. Empirical Evaluation

We validate our new conditional prior (CP-VAE) model through experiments (the implementation
of our method together with the settings for replication of our experiments is available from our
Bitbucket repository https:/ /bitbucket.org/dmmlgeneva/cp-vae/) over synthetic data and three
image datasets (MNIST [35], FashionMNIST [36] and Omniglot [37]). We compare the results with
those produced by standard VAE (VAE), VAE with Mixture of Gaussian prior (MoG), and VAE with
VampPrior (VP) [17], and the three combinations of discrete and continuous latent variable models
discussed in Section 4.

We use the same structure of the encoder and decoder networks for all the methods in all our
experiments not to obfuscate the analysis of the benefits of our method by various tweaks in the model
architecture.

We set the dimensions of the continuous latent variable to 40, we use simple feed-forward
networks with two hidden layers of 300 units each for both the encoder and the decoder, we initialise
the weights according to Glorots method [38], and we utilize the gating mechanism of [39] as the
element-wise non-linearity.


https://bitbucket.org/dmmlgeneva/cp-vae/
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We trained all of the models while using ADAM optimizer [30] with learning rate 5 x 10~*
and early stopping based on the stability of the objective over a validation-set. We use a linear
annealing /warm-up scheme of 100 epochs to avoid pathological local minima and numerical issues
during training [16], during which the KL regularization in the objective is annealed from 0 to 1 during
training.

For generating new data examples, we use the ancestral sampling strategy with the latent variables
being sampled from the respective prior distributions of each method. In the simple VAE, this is from
the standard normal Gaussian z ~ p(z) = N (z|0,I). In the MoG model it is from the set of learned
Gaussian components z ~ py(z) = % YK N (z|uy, diag(oy)) with equal weighting. For VP, it is from
the mixture of variational posteriors z ~ py(z) = & L.X q4(z|uy) over the learned set of pseudo-inputs
U = {u}K |, which first have to be passed through the encoder network. For INDgp and INDp, we
sample the continuous latent component from the standard normal Gaussian z ~ p(z) = N (z|0,I)
and from the empirical aggregated posterior Equation (18) for the discrete component ¢ ~ g¢(c)
For our method, we follow the two level-generative process described in Section 4.1, where we use the
learned conditional priors for each of the categories for sampling the continuous latent component
z ~ py(z|c = cx) = N (z|pg, diag(oy)) and the empirical aggregated posterior Equation (18) for the
discrete component ¢ ~ g¢(c). We follow a similar procedure for the INDq model.

6.1. Synthetic Data Experiments

In this section, we demonstrate the effectiveness of the CP-VAE method through experiments
over synthetic data. We use a toy dataset with 50,000 examples x € R generated from a Gaussian
mixture with two equally weighted components x ~ p(x) = 1 (N(0.3,0.05) + N(0.7,0.05)).

This simple set-up allows us to better understand the strengths and weaknesses of the method
in terms of its density estimation performance for a known and rather simple ground-truth
data distribution.

We use two experimental set-ups because, in real-life problems, the number of distributional
clusters in the data (the number of mixture components) may not be known or even easy to estimate:

e  known number of components: discrete latent variable ¢ with two categories (corresponding to
the ground-truth two mixture components)
e unknown number of components: discrete latent variable ¢ with 150 categories

In Figure 3, we present histograms of data generated from the ground truth and the learned
distributions. As we can see, our method (CP) correctly recovers the bi-modal structure of the data
for both set-ups. This is important for practical utility of the method in situations where the domain
knowledge does not provide an indication on the number of underlying generative clusters. With
high enough number of categories within the discrete latent, our method can recover the correct
multi-modal structure of the data. INDq has similar behaviour to our model when we use a discrete
latent variable ¢ with two categories, which confirms the importance of learning the conditional prior
Py (z|c) instead of assuming marginal independent prior. When the number of categories is 150, it has
difficulties to recover the structure of the data in contrast to our model.

Because of the simplicity of this set-up, even methods that do not adjust their priors to the disjoint
learned representation, such as the simple VAE is able to recover the multimodal structure of the data
at generation time. However, VAE in contrast to CP-VAE, Figure 4, because of the nature of the model,
is not able to conditionally generate samples. MoG and VP have difficulties to recover the structure of
the data when a small number of components/pseudo-inputs is used. This seems to improve when
the number of components/pseudo-inputs is increased to 150. In contrast, INDqp and INDp have
difficulties to recover the structure of the data when a large number of components is used, but this is
improved when the exact number of components is used. This can be problematic in practice when
the number of mixture components is not known or difficult to estimate.
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Figure 3. Histograms of the data generated from the ground-truth x ~ p(x) = % (N(0.3,0.05) + N(0.7,0.05))
and the learned distributions using CP-VAE, MoG, VampPrior INDq, INDp, INDqgp, with 2 and 150
categories and VAE. Our CP method can recover the bi-modal structure of the data correctly, irrespective
of the number of categories used for the latent categorical component.
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Figure 4. Histograms of conditionally generate samples using our conditional prior variational
autoencoder (CP-VAE) model with latent discrete variable with two categories. In subfigure a we
conditionally generate samples from the first category and in subfigure b we conditionally generate
samples from the first category

We further explore how our model handles the excess capacity within the categorical latent
variable. For this, we focus on the 150-category case and generate data by sampling the discrete latent
variable (a) from the marginal posterior ¢ ~ g¢(c), (b) from the uniform prior ¢ ~ p(c) = +.

When comparing the two in Figure 5, we see that, unlike the generations sampled from the
marginal posterior, the generations from the uniform prior display some mixing artifacts. This
suggests that our model learns to ignore the excess capacity by assigning low marginal probabilities

¢ (cx) ~ 0 to some of the categories. The continuous latent representations that correspond to these
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parts of the disjoint latent space are irrelevant for both the reconstructions and the generations due to
our weighted KL formulation in B1 of Equation (12).

2 2

1 1

0
02 03 04 05 06 07 08 0.0 02 04 06 08 10 01 02 03 04 05 06 07 08
x value x value x value

(@c~ q¢(c) (b) c~pio= & () reconstruction

Figure 5. CP-VAE (150-category case) generations sampled from the marginal posterior (a) and from
the uniform prior (b) and CP-VAE reconstructions (c). The CP-VAE learns to ignore the excess capacity
of the disjoint latent space by assigning near-zero probability to some of the categories in the discrete
latent space. These parts of the latent space are ignored for the reconstructions and by sampling the
categorical variable from the marginal posterior g4 (c) can correctly be ignored also for the generations.

6.2. Real Data Experiments

For the real-data experiments, we use three image datasets, MNIST [35], FashionMNIST [36]
and Omniglot [37], commonly used for the evaluation of generative models. We use the dynamically
binarized versions of the datasets, as in [40], with the following train-validation-test splits: for MNIST
and FashionMNIST 50,000-10,000-10,000, for Omniglot 23,000-1345-8070.

We examine the ability of our model to generate new examples from the underlying distributional
clusters. For this, we trained our model (CP-VAE) over the FashionMNIST data with 150 categories in
the discrete latent variable and compared it to the INDq, INDp, and INDqp models.

Figure 6 illustrates FashionMNIST generations using our model, Figure 7 generations using INDq
model and Figure 8 sample generations using INDp model (1st row) and INDqp model (second row).
For all the models the examples in each of the subplots were generated by fixing the discrete latent
variable to one category and sampling the continuous latent from the corresponding learned prior
for the CP-VAE and INDq models and the standard normal distribution for the INDp and INDqp.
Moreover, in all the cases, we only consider the categories of the discrete latent variable with probability
higher than 1/150 (this is the probability assuming the categorical marginal posterior follows the
uniform distribution).

We show (Figure 6) that the learned discrete encoding in our model accurately captures the main
source of variation of the data without any supervision. The unsupervised categories achieved by
the model through the learned conditional prior correspond well to what a human annotator would
do. Not only there are ten main categories (e.g., dresses, sandals), but our model also discovers
subcategories among each main category (e.g., long and short sleeve dresses, hight heel, and flat
sandals). In contrast, INDq (Figure 7) does not always capture the categories that generate a mix
of images. This difference in the two models is because of two reasons. Firstly, our model learns
the categorical posterior g(c¢) with many more categories having non-zero probability (g(cx — 0))
compared to the INDq, Figure 9. Secondly, our model also assigns high probability to different
categories for each label, while, in INDq, some categories are assigned with high probability for
more than one label, Figures 10 and 11. Although INDp and INDqp are able to generate decent
samples, Figure 8, none of them are able to accurately capture the categories of the data, confirming
our theoretical analysis in Section 5.1.



Entropy 2020, 22, 888 16 of 34

Db hh ] Enemmam BARARE O ESEECECED YUY L)
FERYE IaRee

Pl ddid | SEEEE i e (L)
bl EEECEES PG EEEEE [NYYN]
T TN~ ~~~~-BITTITR«~-«-mi0ane

L) EREeEEmEs WV V) LiLLLY] LRI
L) SESEEEE YV VY,) LILILLL] LRI
L) e YV PRy, LILILLL] L]

LI EESRsEmis VYWY LILLLIL] ﬂﬁ h
oD EEESE YV VVE LLLLG L
&|

1 [
[

L
11 [ E1 ]y
(M

T P el EECEEE ERReee
P i DErry ERKRTe
FUININUEY RARARARAN] Rl EREEN
FIONUNOEY RRRdRGRiR] EEebtbn EEER
NN i Zrery gppee

Figure 6. New data examples from the FashionMNIST generated by our CP-VAE model with latent
discrete variable with 150 categories. Examples in the same subplot were generated from the same

discrete category. To generate the samples we randomly use 20 categories with probability higher
than 1/150. CP-VAE accurately captures not only the main source of variation of the data, but can
also find subcategories among each main category, in a totally unsupervised manner. For example we
condition on category 61 and we can see in the 2nd subplot of the second row that it generates flat
sandals while when we condition on category 34 in the fourth subplot of the fourth row it generates

sandals with heels.
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Figure 7. New data examples from the FashionMNIST generated by INDq model with a latent discrete
variable with 150 categories. Examples in the same subplot were generated from the same discrete
category. To generate the samples, we use all of the categories with probability higher than 1/150.
INDq model is not always able to conditionally generate new samples from the individual modes
of the underlying distribution but generates a mix of images from different modes in some subplots.
For example in the 1st subplot of the second row it mixes t-shirts, dresses, pullovers, and trousers, and
in the third subplot of the second row it mixes flat sandals with sneakers and ankle boots.
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Figure 8. New data examples from the FashionMNIST generated by INDp model (1st-2nd row)
and INDgp model (3rd—4th row) with a latent discrete variable with 150 categories. Samples in the
same subplot were generated from the same discrete category. For both models we randomly pick
10 categories with probability higher than 1/150 in order to generate the samples. INDp and INDgp
models are both not able to conditionally generate new samples from the individual modes of the
underlying distribution, but generate a mix of images from different modes.

Figure 9 illustrates the categorical marginal posterior of our model, INDq, INDp, and INDqp
models. As we can see in Figure 9b, in INDq the vast majority of the categories of the discrete latent
variable have very low probability nearing zero. This indicates that the model learns the distributions
over a small numbers of categories making it almost impossible to generate samples from different
subgroups. In contrast, our model not only learns the distributions over many more categories of the
discrete latent variable, Figure 9a, but also the majority of them has probability higher than 1/150.
For the INDp and INDqp models, the majority of the categories are used, Figure 9¢,d, resulting an
almost uniform marginal categorical posterior.

0004+ 00044
il A

(b) INDq

(a)cp (c)INDp (d) INDgp

Figure 9. FashionMNIST: Marginal categorical posterior of CP-VAE (a), INDq (b), INDp (c) and INDgp
(d) with discrete latent variable with 150 categories.
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The discrete latent variables seems to discover the true labels in an unsupervised manner as
the major source of variability and therefore we confirm this by examining the conditional marginal
categorical posteriors. This is implemented by training our model without any supervision and, at the
end, we use the the true labels to compute the marginal categorical posterior condition on each label.
In Figure 10 and Table 2, we can see that our model uses with high probability different categories of
the discrete latent variable for each label. This makes it feasible to generate new images conditioned
on each label avoiding mix image generations. Moreover, our model for each label learns more than
one category with high probability allowing to capture the different subgroups among the labels.
In contrast, INDq, INDp and INDqp models, Figures 11 and 12, Table 2, use the same categories of the
discrete latent variable in more than one label, resulting in a mix of images.

ately=21 acly=31 acly=1

R e O =N A

alcly=31 acly=e dely=7 acly=9) atcly=9)

Figure 10. FashionMNIST: Marginal categorical posterior conditioned on each label of CP-VAE with
discrete latent variable with 150 categories.

Table 2. FashionMNIST: first, five categories with higher probability for each label based on the
marginal categorical posterior condition on each label of CPVAE and INDq with discrete latent variable
with 150 categories. With bold, we mark the categories that appear in more than one label.

CPVAE INDq
label O 9 80 127 24 62 135 133 149 42 64
label 1 143 1 144 64 135 135 149 71 64 3
label2 146 25 145 41 29 135 149 71 42 3
label 3 135 91 17 138 64 135 149 133 3 148
label 4 83 138 109 37 147 135 71 149 42 114
label 5 34 88 77 3 85 63 13 34 39 31
label 6 79 122 81 26 127 149 135 42 133 71
label7 53 16 43 46 19 63 34 13 31 126
label8 47 95 137 97 63 7 63 105 123 145
label 9 94 130 101 119 132 13 63 34 31 145

If the true class label is available at the training data, then CP-VAE is also able to generate samples
from specific labels. This can be done by computing the marginal categorical posterior for each class,
g(c|x € classi) and then for each class fixing the discrete latent variable to the categories with the
highest probabilities and sampling the continuous latent from the corresponding learned priors. In this
way, we can generate samples form a specific label, but we can also generate samples from different
subcategories of this label, by conditioning on different categories c¢j Figure 13. This is just a theoretical
exercise meant to show the power of our model. If the labels were truly available, they should be
better used for training in a supervised manner. However, this is not the setting that we consider in
the unsupervised learning problem that our CP-VAE is developed for.



Entropy 2020, 22, 888 19 of 34

acly=21 acly=3 acty=4

atcly=o acly=8 acly-9)

Figure 11. FashionMNIST: marginal categorical posterior conditioned on each label of INDq with

discrete latent variable with 150 categories.

D

Figure 12. FashionMNIST: Marginal categorical posterior conditioned on the 5 first labels of INDp (1st
row) and INDgp (2nd row) with discrete latent variable with 150 categories.

Repeating the analysis (for better flow of the text the corresponding Figures are left for the
Appendix) using the MNIST data set we observe the same behaviour for our model. It uses the vast
majority of the discrete latent variable with high probability allowing to discover a lot of different
clusters among the data, Figure Ala in Appendix B. Furthermore, different categories are activated
with high probability for each label allowing to discover important factors of data variations within
each label, Figures A2 and A3. The INDq model, due to the simplicity of MNIST dataset, uses more
categories of the discrete latent variable with higher probability, Figure Alb, and discovers more
subgroups as compared to FashionMNIST dataset. Generating samples using the 20 categories of
the discrete latent variable with the highest probability, Figure A4, we can see that the model is
able to generate few samples from different subgroups but also generates mix of images for most
subplots. This can also be confirmed from the marginal categorical posterior conditioned on each label,
Figure A5. There are a few categories that are used only in one label, resulting in samples only from a
specific subgroup, while some categories appear in more than one label with high probability, causing
a generation of mixed images. The INDp and INDqp models are not able to capture the possible
underlying clusters of the data, even in this relatively simple dataset Figure A6.

Unlike MNIST and FashionMNIST, which have a small number of labels with many images of
each label and a large amount of data, the Omniglot dataset [37] consists of 105 x 105 binary images
across 1628 labels with only 20 images per label. This data set allows for demonstrating that our model
is able to capture some structure of the data even in regimes with limited amounts of data within a
big number of categories. Our model uses the vast majority of the discrete latent variable with high
probability allowing to discover a lot of different clusters among the data, Figure A7a. As Figure A8
illustrates, our model seems to recognise the modes over the original data and it is able to conditionally
generate new samples from the underlying multi-modal distribution even in this more challenging
dataset. INDq seems also able to discover some structure, Figure A9, but again it mostly generates a
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mix of images. As in the previous data sets the INDp and INDqgp models are not able to capture the
possible underlying clusters of the data, Figure A10 in Appendix C.
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Figure 13. New variations of label specific individual FashionMNIST generated by CP-VAE model
with a latent discrete variable with 150 categories. Samples in the same row belong to the same class
label and samples in the same subplot were generated from the same discrete category.

Finally, we compare the performance of our CP-VAE to a number of standard baselines varying
also the size of the categorical variable. We experiment with {10, 150,500} categories for MNIST and
FashionMNIST and {50,500} categories for Omniglot. The methods that we compare to are the simple
VAE (VAE), the three combinations of continuous and discrete latent variable models INDq, INDp,
INDqp and the following methods from [17]: VAE with Mixture of Gaussians prior (MG), VAE with
VampPrior (VP), hierarchical two-layerd VAE with VampPrior (HVP), and hierarchical two-layerd
VAE with simple fixed prior (HVAE). For the VP and MG methods, we use the same numbers of
pseudo-inputs and mixture components as the number of the latent categories. For the two layers
models we use 40 latent variables at each layer.

We summarize the numerical results in terms of the negative variational lower bound calculated
over the test data in Table 3. Our model achieves better results when compared to INDq model,
the other method with learned prior, in all of the cases. The INDp and INDqp seem to perform slightly
better and VampPrior and especially the hierarchical VampPrior method consistently perform the
best. However, this numerical evaluation should be treated with care and considered in the context.
As explained in Section 3, good values of the variational lower bound objective do not guarantee
good generations and certainly not good control over the distributional clusters, which is the goal of
our CP-VAE.

We present the new data examples generated by the various methods in Figures 14-16 for the
Omniglot, MNIST, and FashionMNIST data, respectively. Our model is able to consistently generate
good quality new samples for all of the datasets, irrespective of the number of latent categorical
components. The other three combinations of continuous and discrete latent models that we examine
(INDgq, INDqp, and INDp) are also able to generate decent samples. However, as previously explained,
our model has a critical advantage, since these cannot generate conditionally. The other methods
(all VampPrior variations, including the two-layer hierarchical, and the MG) fail to generate quality
examples with only 10 components within the prior. They also seem to collapse to generating examples
only from a few digits (items, symbols), which suggest an important lack of flexibility available
for the generations. As the number of components (pseudo-inputs) in the prior mixture increases,
the VampPrior generations tend to improve, with the hierarchical version of the method systematically
outperforming the simple VP version.
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Table 3. Comparison of negative variational lower bounds for the different methods over the test

data sets.
MNIST FashionMNIST Omniglot
c=10 ¢=150 ¢=500 ¢c=10 ¢=150 ¢=500 ¢=50 c=>500
CP 8715 88.53 89.91 23252 23379 23489 117.51 120.64
INDq  89.67 92.15 93.38 23271 23441 23493 12528 12448
INDp  88.20 88.77 88.53 229.83 23041 231.34 12092 121.83
INDgp 87.93 88.21 88.98 22865 23098 231.18 119.99 120.82
VAE 88.75 — — 23149 — — 115.06 —
MG 8943 88.96 88.85 267.07 27260 27455 116.31 116.12
VP  87.94 86.55 86.07 230.87 229.82 270.83 114.01 113.74
HVAE 86.7 — — 230.10 — — 11081 —
HVP  85.90 85.09 85.01 229.67 22936 229.62 110.50 110.16

(k)INDp500 (1) INDqp500

(c) INDp50

(d) INDqp50

N
2
[

(e) VP50

J
EJGENTES l 2 }E |

EIII IIIII <6l [ lll

(m) VP500

(n) HVP500

(0) MG500

(p) HVAE

Figure 14. New data examples from the Omniglot dataset generated by the various methods with

increasing number of the prior components.
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Figure 15. New data examples from the MNIST dataset generated by the various methods with

increasing number of the prior components.
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Figure 16. New data examples from the FashionMNIST dataset generated by the various methods with
increasing number of the prior components.

7. Conclusions

In this paper, we introduce CP-VAE, an unsupervised generative model that is able to learn
the multi-modal probabilistic structure of the data. We propose a conditionally structured latent
representation that enables our model to discover the modes in the training data distribution. This is
achieved by decomposing the latent representation into a continuous and a discrete component
and through a better matching between prior and posterior distributions by jointly learning their
parameters from the data. The experimental results demonstrate that our approach is able to recover
the modes over the original data in an unsupervised manner with a performance similar to that of a
human annotator and that CP-VAE is able to conditionally generate new samples from the individual
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modes of the underlying distribution. In addition, we conduct a theoretical and experimental analysis
of various independence assumptions on the continuous and discrete latent representations adopted
in the related literature and argue in favour of our more general model formulation.
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Appendix A. Proofs
Appendix A.1. Proofs of Section 4

Proof of Equation (12).

q¢(c|x) go(z|x, c)
p(c)  pyl(zlc)

KL (q¢(z, ¢[x)|lpp(z €)) = Ey, (zlxe)go(clx) 108

B
= KL (g9 (|0)1p(6)) + gy ey KL (d9 (2], ¢) [Py (2]0))
B1 B2
O
Proof of Equation (13).
KL (95 ([x)[[p(c)) = By, cx) [10g s (clx) —log K~'| = —H (g(c[x)) +log K
B1
O

Appendix A.2. Proofs of Section 5

Proof of Equation (17).

E,x) KL (94(z, ¢|x)[[py(z, ))
=E, 0 KL (g9 (cx)||p(c)) + EpxEy, (ex) KL (99 (z]%, €)|[pg(z]c))
q¢(c[x) 0]47(0)} [ q¢(z, ¢|x) q¢(z|c)
<o) |1o +lo +E, xzo |lO +lo

B |98 gu(c) T ple) | T e [O8 g (cpgplzlc) TP pylale)
_ q¢(z, c|x)
=KL (qlP(C)Hp(C)) + I[‘qup(c) KL (%(Z|C)||P¢(Z|C)) + E%(x,z,c) log Q¢(Z|C)£]¢(C)
q¢(z, ¢|x)

q¢(z, )

=E

N

= log K — H(gy(c)) + Eqg (o) KL (g5 (2|0) || pg (2l€)) + Eqgy (x,4,c) log

= log K —H(q(c)) + Eqgy (o) KL (99 (z|c) || py(z[c)) + 14 (2, ¢), x)



Entropy 2020, 22, 888 25 of 34

Proof of Equation (19).
£009) =Byt |8 5 3+1°g 9 B )
_ og PEX2/€) o %ZC| x) op 102 €)
~Bytaen) |10 5 255~ Bten 105 25~ Biton [l 12
= By, (zex) [log po(x|z, )] =1 ((z, ¢),x)) —KL(g4(z, ¢) ||l py(z, c))
A B C

O

The staring point for all the models is Equation (19). Here we decompose the terms B and C as
per the independence assumptions listed in Table 1.

Proof of CP-VAE objective:

| I e
B: L((z¢),x) =Ey(zex) _log q6(2,¢)
[ dolzlx )y (clx) w(xlC)]
=E z,¢,X lo o
4 (zex) | 5 q9(z|c)qq(c) 49 (xl¢)
el | g 2050
Egy(zex) [108 — <~ Fap(acx) |10
o) [98 gy (ale)ag ey | 0 [%8 gy ()

= 1;(z]c,x|c) +14(c, x)
= B1+ B2

C:  KL(qp(z 0)llpp(z c)) = KL(4p(2|c)q4(c prp IC)P c))

(
2 oo []
IE%(C)[KL(%( zfc )||qu( z[c))] + KL(g¢(c)[|p(c))
=Cl+C2
O
Proof of INDq objective:
B: I,((zc),x) = IE%(Z,C’X) {log W}
99 (2[x)q9 (c|x)
=By (o8 T
qp(z[x) qp(clx)
= Bgox0) (zlx) {10% 40z |C)] +Egy(z.ex) [log f; o) }
= By, (x.0) KL(q9(2[%)) g9 (2[€)) + Tg(e, %)
=B1+B2

C term is the same as in CP-VAE. O
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Proof of INDp objective:

[ gp(z,clx)
o) _log q¢(z,¢)
q¢(z|x, ¢)gp(c|x) %(X/C)}
ZCx lo
() |98 70 (2)gg(c) & ap(x0)
q¢(z, ¢, x) } { Q¢(C|X)]
z,¢,X lo — | +E Z.CX lo
¢ (2,¢,x) i g q¢(z)q¢(x,c) 19(zcx) |08 q4,(c)
=1I4(z, (x,¢)) +1;(c,x)

B: I;((zc),x) =E

C: KL(g¢(z c)llpy(z ¢)) = KL(q4(2z[c)gp(c) | py(zlc)p(c))
B qp(z]x, €)qp(c|x) qp(x, )
= Fagtacx) [k’g W@Da© qZ(x,cJ
z,¢,x (c/x)
:Eq¢(Z,C,X) l:lOg qq;M)qq)Cxc):l +Eq¢ zcx |:Og q:;qjc) :|
= KL(g4(z)[p(2)) + KL(q4(c)[lp(c))

=Cl+4+C2
O
Proof of INDqp objective:

%(ZICIX)}

B: 1j((z,¢),x) = Egy(z,ex) |108 q9(z, )

ﬂl¢(z|x)%(€|x)}
=E, (zcx) |log ——F""—"=—
ol |98 gy () )
_ [ 9e(z[¥) 99 (c[x)
_ELW(LC,X) _log [M,(Z) +Eq¢(z,c,x) IOg 6]¢(C)
=I;(z,x) +1;(c,x) =Bl1+B2
C term is the same as in INDp model. O
Appendix A.3. Proofs of Section 5.2
Proof. E, [KL(79(zlx)[|p(2))] = L;(z,%) + KL(g9(2)||p(2)) :
100 0(2X)
Ev) [KL(a) [9(2))] = gy 105 222
_ 99(2|x) 44 (2)
~Fwen) [0 gya)
o [iog 220 g 2]
) 78 g,(2) ) |78 p(2)

= I4(z,x) + KL(q¢(2) | p(2))
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Appendix A.4. Maximizing the Negative RE is Equivalent to Maximizing a Lower Bound on MI between the
Latent Variables (z, ¢) and x

Proof. The non-negativity of the KL divergence implies:

KL(q¢ (X‘Z' C) H p(X|Z, C)) = Elogq(f,(x\z,c) [log p(X|Z, C)] - Elogq¢(x|z,c) [lOg q¢(X|Z, C)] >0
= Elogq(p(x\z,c) [log d¢ (X|Z, C)] > Elogq¢(x|z,c) [10g p(X|Z, C)] (A1)

This leads to a lower bound on the mutual Information I;((z, c), x)

I;((z,¢),x) = KL(q9(x 2, ¢) [ pp(x)9¢ (2, €))
yllog ¢ (x[2, €)] = Ejog 4, (x,2,¢) [PD(X)]
yllog g (x|z,¢)] + H(pp(x))
log 3¢ (x|z, )] + H(pp(x)) + KL(q4(x|z, ¢)[|p(x|z, ¢))
yllog p(x|z, ¢)] + H(pp(x))

Elogq¢ (x,z,¢)
- Elogq4, (x,2,¢)

= Elogq¢(x,z c)

— — — —

> Elog 9p(x,2,¢)
(A2)

where the first term is the negative reconstruction error and the second, H(p(x)) is the entropy.
This means that maximizing the negative reconstruction error we maximize a lower bound on

I;((z,¢c),x). O
Appendix B. MNIST

Results from training CP-VAE, INDq, INDp and INDqp over the MNIST [35] data with
150 categories in the discrete latent variable (Table A1).

Table A1. MNIST: First five categories with higher probability for each label based on the marginal
categorical posterior condition on each label of CPVAE and INDq with discrete latent variable with
150 categories. With bold we mark the categories that appear in more than one labels.

CPVAE INDq

label0 22 102 17 59 134 67 145 56 18 32
label 1 32 48 21 9 20 94 97 8 124 67
label2 29 55 45 95 88 31 5 48 140 65
label 3 129 5 13 146 125 122 135 125 149 99
label4 53 40 47 122 74 107 87 120 132 80
label 5 66 60 117 63 10 43 141 56 102 149
label 6 41 35 127 130 149 109 103 111 141 98
label7 52 0 148 108 106 135 67 125 2 9
label 8 132 103 27 100 85 1 23 15 63 40
label 9 75 42 81 144 0 67 99 18 34 79

\‘w|,\

0000
D w0 w0 10 5w @ e @ w0 1m0 1o o 2 4 e 8 100 20 0 o 2 4 e w00 120 0

(a)cp (b)INDq (c)INDp (d) INDgp

Figure A1l. MINST: Marginal categorical posterior of CPVAE (a), INDq (b), INDp (c) and INDqp (d)
with discrete latent variable with 150 categories.
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Figure A2. MINST: Marginal categorical posterior condition on each label of CPVAE with discrete

latent variable with 150 categories.
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Figure A3. New variations of individual MNIST digits generated by our CP-VAE model with a latent

discrete variable with 150 categories. Examples in the same subplot were generated from the same
discrete category. To generate the samples we randomly use 20 categories with probability higher
than 1/150.
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Figure A4. New variations of individual MNIST digits generated by INDq model with a latent discrete

variable with 150 categories. Examples in the same subplot were generated from the same discrete

category. To generate the samples we randomly use 20 categories with probability higher than 1/150.
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Figure A6. New variations of individual MNIST generated by INDp model (1st-2nd row) and INDqp
model (3rd—4th row) with a latent discrete variable with 150 categories. Samples in the same subplot
were generated from the same discrete category. For both models we randomly pick 10 categories
categories with probability higher than 1/150 in order to generate the samples.

Appendix C. Omniglot

Results from training CP-VAE, INDq, INDp and INDqp over the Omniglot [37] data with
500 categories in the discrete latent variable.

(a)cp (b) INDq (c)INDp (d) INDgp

Figure A7. Omniglot: Marginal categorical posterior of CPVAE (a), INDq (b), INDp (c) and INDqp
(d) with discrete latent variable with 500 categories.
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Figure A8. New variations of individual Omniglot symbols generated by our CP-VAE model with a latent

discrete variable with 500 categories. Examples in the same subplot were generated from the same discrete

category. To generate the samples we randomly use 20 categories with probability higher than 1/500.
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Figure A9. New variations of individual Omniglot symbols generated by INDq model with a latent

discrete variable with 500 categories. Examples in the same subplot were generated from the same discrete

category. To generate the samples we randomly use 20 categories with probability higher than 1/500.
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Figure A10. New variations of individual Omniglot symbols generated by INDp model (1st-2nd row)

and INDgp model (3rd—4rth row) with a latent discrete variable with 500 categories. Examples in the
same subplot were generated from the same discrete category. To generate the samples we randomly
use 10 categories with probability higher than 1/500.
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