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Abstract: Artificial intelligence is one of the most popular topics in computer science. Convolutional
neural network (CNN), which is an important artificial intelligence deep learning model, has been
widely used in many fields. However, training a CNN requires a large amount of labeled data
to achieve a good performance but labeling data is a time-consuming and laborious work. Since
active learning can effectively reduce the labeling effort, we propose a new intelligent active learning
method for deep learning, which is called multi-view active learning based on double-branch network
(MALDB). Different from most existing active learning methods, our proposed MALDB first integrates
two Bayesian convolutional neural networks (BCNNs) with different structures as two branches of
a classifier to learn the effective features for each sample. Then, MALDB performs data analysis
on unlabeled dataset and queries the useful unlabeled samples based on different characteristics of
two branches to iteratively expand the training dataset and improve the performance of classifier.
Finally, MALDB combines multiple level information from multiple hidden layers of BCNNs to
further improve the stability of sample selection. The experiments are conducted on five extensively
used datasets, Fashion-MNIST, Cifar-10, SVHN, Scene-15 and UIUC-Sports, the experimental results
demonstrate the validity of our proposed MALDB.

Keywords: active learning; deep learning; image classification; data analysis and selection

1. Introduction

In recent years, computer technologies such as artificial intelligence [1,2] have changed our life
a lot. With the significant improvement of computing power, deep convolutional neural networks
(CNNs) have become a hot issue in the field of artificial intelligence [3]. Although CNNs have achieved
great success in many complex tasks, such as natural language processing, action recognition, network
traffic analysis [4,5], mobile encrypted traffic classification [6–8], object detection [9] and hyperspectral
image analysis [10], they still suffer from a big flaw: training an effective deep CNN model requires a
huge amount of labeled data. However, in many real-world scenarios, such labeled data is very scarce.
Especially in particular areas such as image and video processing, the amount of available labeled data
is even smaller since the tedious labeling process often requires a lot of time and manual labor [11].
To reduce the labeling workload, active learning has been proposed and can achieve good performance
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when combined with traditional classifiers, e.g., support vector machine (SVM), K-nearest neighbor
(KNN) and dictionary learning [12,13]. Recently, active learning has also been introduced into the
convolutional neural networks field to alleviate the effort of labeling intelligently, which has resulted
in a great performance improvement [14].

Active learning is an iterative progress to choose the most valuable and useful unlabeled data
to label for expanding the training dataset [15], which can optimize the learning results as much as
possible. In each active learning iteration, the parameters of the model are fine-tuned by the selected
valuable samples. The sample selection strategies are the key to active learning, which is heavily
dependent on the previous features learned from the current model. The strategies also affect the
analysis and evaluation of the unlabeled data by the current model. Therefore, how to design an
effective method to choose useful samples from the unlabeled data pool is crucial. The quality of the
selection strategy determines whether the selected dataset can effectively contain rich information,
remove noise data, and represent the whole dataset [16]. Numerous algorithms have been proposed to
find a small informative sample subset so that the model trained on this small subset is comparable
to that trained over the whole dataset. According to the different principles of sample acquisition
methods, the current active learning techniques are mainly divided into three categories: pool-based,
stream-based and learning by query synthesis [17]. Pool-based active learning methods first put all
samples in an unlabeled data pool, and then select suitable samples from this pool for labeling. Under
this setting, all samples will be provided to the learning model, and the model will select a part of
the samples based on some predefined criteria to query their label. In stream-based active learning
methods, samples are not stored in the pool, but in a certain order (in the form of data stream) for the
model to determine whether or not each newly seen data need to be manually labeled. Query synthesis
means the active learning model can generate some artificial samples to reveal sensitive information
and improve its learning ability. In recent years, pool-based and stream-based methods become two
popular strategies for active learning. Most of these methods choose one of the two criteria [16], i.e.,
representativeness and informativeness, for data analysis and sample selection. Representativeness and
informativeness are designed based on the data distribution and the output of classifier, respectively.
The purpose of data distribution-based approach is to build a subset to represent the true distribution of
the entire dataset as well as possible [18], while the methods based on the outputs of classifier is much
simple and lower in computing complexity. Hence, many active learning methods were proposed by
adopting the informativeness as sample selection criterion. However, most of the existing approaches
are proposed based on a single classifier rather than the fusion of multiple classifiers. Therefore, if the
single classifier is not very effective (include not stable) or has a strong inductive bias, it can hardly
characterize the usefulness of the samples well, which will limit the performance and stability of the
active learning [19].

Since Wang and Shang [14] applied active learning to deep learning, the strategy of uncertainty
sampling is widely used in various deep learning models to estimate the informativeness of samples.
However, some studies have pointed out that the samples selected by the uncertainty evaluated
only based on the final output in deep learning model are insufficient [20,21]. This is due to the
fact the last layer of a deep learning model is task oriented, which ignores the information learned
by the middle hidden layers during the data analysis and selection progress. At the same time,
the uncertainty measurement is closely related to the characteristics of deep learning model itself.
Therefore, integrating the characteristics of multiple deep learning models as different branches of
classifier can effectively improve the robustness of active learning. In order to fully integrate all
information of middle hidden layers and consider the advantages of different classification models, we
propose an intelligent multi-view active learning method based on double-branch network (MALDB),
which can evaluate the uncertainties of samples by jointly considering different branches and different
layers of the classifier, so that the most informativeness samples can be selected to improve the
performance of deep learning model.
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Compared with the existing approaches, our contribution can be summarized as follows: (1) We
propose a novel active learning method, which can alleviate the labeling efforts for deep convolutional
neural networks; (2) To combine the advantage of different models when selecting unlabeled samples,
a double-branch structure with two different Bayesian convolutional neural networks (BCNNs) is
introduced into our method. Since each BCNN in the double-branch complete its feature extraction
process independently, the characteristics of features obtained by different branches can be effectively
integrated to improve the stable of our model; (3) We also adopt a multi-view strategy to leverage
multiple level features captured by different hidden layers of network. Through this strategy,
a weighted entropy is proposed to estimate the uncertainty of samples. We conduct our experiments
on three classical benchmark datasets and two real-world datasets. Experimental results show that
our proposed method can improve the performance of the active learning and outperforms other
compared approaches.

The paper is organized as follows: Section 2 briefly reviews some related work. Section 3 presents
the proposed MALDB. The experimental results on MNIST, Cifar 10, SVHN, Scene–15 and UIUC-Sports
datasets are shown and analyzed in Section 4. Finally, Section 5 concludes the paper.

2. Related Work

The purpose of active learning is to get a more accurate model with less labeled training data, so
that the cost and time of manual annotations can be reduced. In recent years, a lot of work has been
put forward to solve this problem. We review the existing work from the following two aspects: active
learning based on uncertainty strategy and active learning with multiple views.

2.1. Active Learning Based on Uncertainty Criterion

Uncertainty strategy is commonly used in active learning, which measures the uncertainty of
candidate unlabeled samples from previous classification predictions. Since it has the great advantage
in terms of computational complexity and efficiency, the uncertainty based sample selection strategy
works well in combination with some shallow models such as SVM and KNN [22,23]. Tong et al. [22]
proposed an active learning method based on a SVM model, which calculates the uncertainty of samples
based on the relative distance between the candidate data and decision boundaries. Tuia et al. [24]
proposed two variations of active learning models for remote sensing image classification, which can
build an optimal set of samples to minimize the classification error. Uncertainty-based sample selection
strategies are also widely used in deep learning models. Wang and Shang [14] were the first to apply
active learning to deep learning models. They adopted the uncertainty criterion to select samples based
on the staked constrained Boltzmann machines and stacked auto-encoders. Gal et al. [25] demonstrated
the equivalence between the dropout and approximate Bayesian inference, and proposed an effective
method to select the samples with large variance on Bayesian convolutional neural network for label
querying. Wang and Zhang [19] tried to query the labels of the most uncertain instances by assigning
pseudo labels to instances with higher prediction confidence. Through this way, sufficient labeled
data can be obtained for training convolutional neural network. Zhou et al. [26] proposed an active
learning method for biomedical image analysis. This method actively optimizes the pre-trained deep
neural network by estimating the diversity information among different patches extracted from the
same image. Due to the learning progress of shallow models only includes classification output,
while the learning progress of deep models contains both feature learning and classification output,
the active learning for deep models is different from that for shallow models. However, all of the
above uncertainty based active learning methods for deep models only consider the classification
output, which neglects a lot of valuable information of different level features learned by intermediate
hidden layers. In addition, the selection of samples by only considering the classification output of
final layer is very sensitive to the classification result of current classifier [21]. Therefore, in order to
better estimate the uncertainty of samples, both the information of intermediate hidden layers and
final output layer in the deep learning model should be taken into account.
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2.2. Active Learning with Multiple Views

The multi-view active learning framework can be traced back to the work of Blum and
Mitchell [27], who proposed the concept of “compatibility” between data distribution and target
function. Muslea et al. [28] introduced a multi-view active learning method called co-testing, which
selects ambiguous data among various views. Yu et al. [29] proposed a method based on Bayesian
co-training, which can automatically estimate the different importance of various views. Through
theoretically analysis, Wang and Zhou [30] concluded that the samples selected by multi-view active
learning are more informative. Zhang and Sun [19] proposed an active learning method for multi-view
and multi-learners, in which multiple views are acquired from different learning models. Nevertheless,
all above methods are proposed for shallow learning, which cannot be directly applied to deep learning
models. In the field of deep learning, Huang et al. [31] proposed an active learning method to estimate
the usefulness of samples based on two criteria, which are respectively called distinctiveness and
uncertainty. The distinctiveness is obtained by combining the feature information from early to later
layers, and the uncertainty of the sample is obtained by combining the maximum entropy. He et al. [21]
proposed a multi-view active learning that dynamically combines the uncertainty among hidden
layers. The aforementioned two methods combine hidden layer and output layer information to select
informative data and achieved good performance. However, the effectiveness of samples selected in
them is seriously dependent on the characteristics of a single classifier. Thus, they tend to be sensitive to
the ineffectiveness, unstable or bias of the classifier [19]. To mitigate this limitation, multiple classifiers
should be combined to select more representative samples [19].

2.3. Motivation of Our Work

According to the above review and analysis, the current active learning methods for deep learning
framework suffer from the following limitations: First, these methods lose a lot of valuable information
since they only take the final output into consideration but ignore the features learned by the middle
hidden layers of network. Second, they only adopt a single classifier during the active learning,
which may deteriorate their performance when the classifier is ineffective or unstable. These two
limitations motivate us to propose a new active learning approach based on multi-view information
and double-branch network (i.e., MALDB) to overcome them. To address the first limitation and
take full advantage of the information obtained by the network, a multi-view strategy is utilized in
our MALDB to fuse the information of different level features from multiple network layers, so that
the most uncertain and useful samples can be effectively selected in the process of active learning.
Moreover, two different Bayesian convolutional neural networks are employed as the double-branch
structure in our approach. The reason for adopting double-branch structure is that different classifiers
perform differently on the same sample set in learning and classification process. Therefore, integrating
the characteristics of different sub-structures will improve the performance and stability of overall
model and overcome the second limitation of the existing methods.

3. Multi-View Active Learning Based on Double-Branch Structure

In this section, we will first introduce the structure of our double-branch model, then propose the
strategy of sample uncertainty calculation, and at last summarize the main steps of the proposed algorithm.

3.1. Double-Branch Network Structure

Deep learning models can effectively learn the representations of samples from generic to specific.
Specifically, the first few layers of deep learning models generally capture some basic and common
features like shape, color, etc., and the later layers learn more advanced and abstract task-specific
features for classification. Therefore, we combine the information of various layers in the network to
effectively and intelligently measure the usefulness of samples. Furthermore, in order to overcome the
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limitation of single branch model, a double-branch network structure is employed in this study to
improve the stability of our proposed method.

Figure 1 presents the structure of our network. Our main framework is based on two different
architectural deep models which are constructed based on Bayesian convolutional neural network.
Bayesian convolutional neural network is a CNN with prior probability distributions placed over a
set of model parameters ω = {ω1, . . . ,ωn} : ω ∼ p(ω) [25,32]. The reason why we adopt BCNN in our
model is that BCNN works well on small batch samples and possesses robustness to over-fitting [32].
Thus, it is more suitable for active learning. Besides, the Bayesian model can improve the performance
more rapidly than ordinary convolutional networks, and converge to a higher accuracy [25]. In our
study, each Bayesian neural network independently completes its feature extraction process, and their
outputs of the last fully connected layer are merged as the final output of overall model. For the
feature representations acquired by each convolutional layer of each branch, it is difficult to directly
calculate the uncertainty of samples because of its high dimensionality. Therefore, we reshape the high
dimensional feature map into a vector and add a softmax layer for each of them. In this way, each
convolution layer with an added softmax layer can be considered as an individual entity to calculate
its own uncertainty and loss value. The uncertainty indicator of each single entity will participate in
the final sample selection, and the loss value will affect the weight of its corresponding uncertainty
indicator, but it will not be considered into the back-propagation calculation of the overall model.

Figure 1. Diagram of our proposed MALDB method. Each ‘outputs’ shown in the figure is used to
calculate an uncertainty, and the average of all uncertainty is the final uncertainty score. In the diagram,
we only draw one output (shown in yellow box) to calculate the uncertainty for simplicity.

3.2. Multi-View Sample Selection Strategy

The key of active learning is to develop an effective criterion to measure the value of unlabeled
samples. The individual output of each hidden layer is expected to have similar predictions for the
same sample in our proposed model. As a result, we utilize the entropy and loss values of all outputs
as indicators for sample selection and propose a dynamic multi-level sample selection criterion.

For each hidden layer output, we calculate its uncertainty with respect to a sample using the
criterion of max-entropy [14]. Entropy is a commonly used measurement to evaluate the uncertainty
of a given sample’s prediction provided by a model. The higher entropy of the sample, the more
uncertainty and information the sample has. Hence, the samples with higher entropy should be
selected. Assume that the prediction of sample xi obtained by the current output of hidden layer is pi,
the entropy is defined as:

eti = −
m∑

k=1

pk
i log pk

i (1)

where k denotes the k-th candidate of m possible labels.
The training progress of our model is continuous and intelligent, that is, the hyperparameters of

each layer are constantly optimized through succesive iterations. Thus, it is obviously that the loss
calculated from validation dataset is highly related to the feature learned by current hidden layer.
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Based on the above analysis, we dynamically assign a weight to the entropy of each layer, which can
be calculated as follows:

wi, j =
e−li, j∑n

k=1 e−li,k
(2)

where wi, j is the weight for the entropy of the j-th hidden layer output in the i-th branch, li, j is the loss
of j-th softmax layer in the i-th branch evaluated by the validation dataset.

In Equation (2), each weight represents the current hidden layer’s contribution to overall
uncertainty. Based on multiple experiments, we found that the smaller the loss, the greater the
contribution of this hidden layer to the overall selection process. Therefore, we defined the weighted
entropy as follows:

Eni =
n−1∑
j=1

wi, j · eti, j (3)

where Eni is the combined entropy of i-th branch. eti. j is the entropy of j-th softmax layer in the i-th
branch, which is calculated by Equation (1).

Finally, the uncertainty of our proposed strategy for selecting samples is defined as follows:

score =
w1,n−1

w1,n−1 + w2,n−1
En1 +

w2,n−1

w1,n−1 + w2,n−1
En2 + etn (4)

where the first two terms are the normalized weighted entropy of two branches and etn is the entropy
obtained by the final output of entire model.

In Equation (4), both the information of hidden layers and final output of the network is combined
as an indicator to measure the uncertainty of the sample. The sample with high score will be taken out
to query their labels and incorporated into the training set for the next round of training.

3.3. Overall Algorithm

We provide the implementation scheme of our method in Algorithm 1.

Algorithm 1. Multi-view active learning based on double-branch network

Input:
Xl, Xu, M0, n, ƒ, R, T, Oi,j {Xl is initial labeled dataset; Xu is unlabeled data; M0 is initial model;

n is the number of softmax layers; ƒ is calculate the entropy of output using Equation (1); R is
the number of unlabeled samples to be queried in each iteration; T is the total iteration
number of the query; Oi,j is output of the hidden layer}
Initialization:
L0 = Xl, U0 = Xu

Divide L0 into two parts: randomly initial training dataset Ltrain and validation dataset Lvalid
1: for i = 0 . . . T-1 do
2: add softmax layer to each hidden layer of each branch in M0
3: Mi+1 = train(Mi, Ltrain)
4: for j = 1 . . . n-1 do
5: compute loss l1, j, l2,j of each hidden layer in each branch by using Lvalid

6: compute w1, j =
e−l1, j∑n−1

k=1 e−l1,k
and w2, j =

e−l2, j∑n−1
k=1 e−l2,k

using Equation (2)

7: end for
8: for xadd . . . Ui do
9: compute score using Equations (3)–(4):

score1,add =
∑n−1

i=1 w1,i · f (O1,i(xadd)), score2,add =
∑n−1

i=1 w2,i · f (O2,i(xadd))

score f inal = score1,add
·

w1,n−1
w1,n−1+w2,n−1

+ score2,add
·

w2,n−1
w1,n−1+w2,n−1

+ f (O f inal(xadd))

10: end for
11: Label the R instances with largest score in Ui to form Qi
12: update Li+1 = Li∪Qi and Ui+1 = Ui – Qi
13: end for

Output:
MT-1: the final trained model
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4. Experiments

In this section, we evaluate our proposed approach on different datasets and compare its
performance with the baselines and other algorithms. All experiments are implemented in Python
with Keras.

4.1. Datasets and Experimental Setup

4.1.1. Datasets

Our proposed approach is evaluated on three classical benchmark datasets, Fashion-MNIST [33],
CIFAR-10 [34] and SVHN [35], which are widely used for active learning tasks. Furthermore, two
real-world datasets (scene-15 [36] and UIUC-Sports [37]) for scene classification tasks were also utilized
to test the performance of our MALDB. The Fashion-MNIST dataset consists of 70,000 gray images
that are labeled as 10 everyday wear categories like t-shirts, trousers and so on. The resolution of
each image is 28 × 28. The Fashion-MNIST dataset has been officially split into 60,000 training images
and 10,000 testing images, respectively. The Cifar-10 includes 60,000 color images with 10 complex
categories, which has been officially divided into 50,000 training images and 10,000 testing images.
The resolution of each image in Cifar-10 dataset is 32 × 32. The SVHN dataset is obtained from house
numbers in Google Street View images. There are 73,257 RGB images for training and 26,032 images for
testing. All digits in SVHN have been resized to a fixed resolution of 32 × 32. The Scene-15 dataset [36]
consists of 15 scene categories with a total of 4485 images, which are approximately 300 × 250 in
average resolution. In this experiment, we resize the resolution of images in this dataset as 200 × 200.
The UIUC-Sports dataset [37] contains 1585 images of eight sports scene classes, and the minimum
resolution of the images is about 800 × 600. We resize the resolution of images in this dataset as
400 × 400 in our experiment. Figure 2 shows example images of these five datasets.

Figure 2. Example images of different datasets. (a) Fashion-MNIST [33], (b) CIFAR-10 [34], (c) SVHN [35],
(d) Scene-15 [36], (e) UIUC-Sports [37].



Entropy 2020, 22, 901 8 of 23

4.1.2. Experimental Setup

Models

For the Fashion-MNIST dataset, we made some minor changes based on LeNet architecture [38],
and merged it with the Bayesian CNN mentioned in [25]. The details of each branch structure in
our double-branch network are: (a) Branch-1: convolution-relu-maxpooling-dropout- convolution-
relu-maxpooling-dropout-convolution-dense-dropout-dense-softmax, (b) Branch-2: convolution-
relu-convolution-relu-maxpooling-dropout-dense-relu-dropout-dense-softmax, with 32 convolution
kernels, 4 × 4 kernel size, 2 × 2 pooling, dense layer with 128 units, and dropout probabilities are set
to 0.25 and 0.5. For the Cifar-10, SVHN, Scene-15 and UIUC-Sports datasets, we replaced the LeNet
architecture with the model in [21].

Hyper Parameter

In our experiments, the initial labeled training samples for training our model are completely
randomly selected. To reduce the interference of randomness, when we compare our proposed method
with other approaches, we ensure that the same initial labeled data are input into them. Specifically,
we randomly select 10% of training data as the validation set, and then randomly choose 1000 samples
from the rest training data as the initial labeled data to train the models. The remaining samples are
regarded as unlabeled data pool. The number of iterations of sample selection process is set as 150.
At each iteration, the weights of the best validation accuracy in all epochs will be saved and q samples
will be queried from the unlabeled data pool to join the training set. Then the best test accuracy of
various models is reported. For Fashion-MNIST dataset, we set q as 100. For Cifar10 and SVHN,
q is set as 200. For Scene-15 and UIUC-Sports, the images are randomly split into labeled training
set, unlabeled set and testing set according to proportions of 10%, 60% and 30%, respectively. The
parameter q is set as 200 and 100 samples for UIUC-Sports and Scene-15 datasets. The maximum
number of iterations is set to 10 for the Scene-15, while it is set to 8 for the UIUC-Sports dataset
because the number of samples in this dataset is small. The SGD optimizer with learning rate 0.001
and momentum 0.9 is employed to optimize our model. We set the batch size as 32 and set max epoch
as 50 with early stopping. In this study, 100 sets of parameters (i.e., ω in BCNN) are sampled from the
model parameter distribution for each forward pass. No data augmentation is used during training.

Environment

Our experiments are performed on a machine with a single graphics card (NVIDIA GTX 1080Ti),
a six-core Intel i7 processor and 16 Gb memory.

Baselines

To prove that our proposed model and sample selection measurement are effective we compare
our method (MALDB for short) with the following baselines: selecting samples randomly (our
model-RAND for short) and full data training (ALL for short). The above two baselines utilize the
double-branch BCNN as their backbone networks, which is the same as our proposed MALDB. Besides,
we also compare the performance of our approach with other existing methods including: max-entropy
selection strategy based on Bayesian CNN (BCNN-EN for short) [25], active learning with multiple
views (AL-MV for short) [21] and standard CNN with random sample selection (CNN for short) [3].

4.2. Experimental Results and Analysis

In this section, we present the classification results on five datasets to demonstrate the effectiveness
of our active learning algorithm. In order to reduce the deviation caused by randomness, we repeat
the experiments five times to obtain the average test accuracy, standard deviation, precision, recall and
F1-score of different methods.
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Table 1 lists the average test accuracy and standard deviation of each method on Fashion-MNIST
dataset when selecting 100, 5000, 10,000 and 15,000 samples. Tables 2 and 3 show the results on Cifar-10
and SVHN datasets when selecting 200, 10,000, 20,000 and 30,000 samples, respectively. Table 4 shows
the results on Scene-15 dataset when selecting 400, 800, 1200, 1600 and 2000 samples. Table 5 shows
the results on UIUC-Sports dataset when selecting 200, 400, 600, 800 samples.

Table 1. Test accuracy (%) ± standard deviation (%) obtained by each method under different number
of query iterations on Fashion-MNIST.

Iteration
Methods

1 50 100 150

BCNN-EN 80.334 ± 0.570 88.130 ± 0.265 89.930 ± 0.203 90.662 ± 0.217

AL-MV 76.712 ± 1.369 86.768 ± 0.301 88.502 ± 0.327 89.022 ± 0.262

Our model-RAND 74.532 ± 1.021 86.528 ± 0.253 88.180 ± 0.260 88.850 ± 0.427

CNN 76.096 ± 0.362 88.194 ± 0.198 90.212 ± 0.193 90.812 ± 0.144

MALDB 75.122 ± 0.353 86.137 ± 0.085 87.804 ± 0.256 88.461 ± 0.243

ALL 91.500 ± 0.320 91.500 ± 0.320 91.500 ± 0.320 91.500 ± 0.320

Table 2. Test accuracy (%) ± standard deviation (%) obtained by each method under different number
of query iterations on Cifar-10.

Iteration
Methods

1 50 100 150

BCNN-EN 43.418 ± 0.401 72.787 ± 0.652 80.625 ± 0.363 85.204 ± 0.228

AL-MV 41.381 ± 0.453 71.069 ± 0.484 78.911 ± 0.353 84.356 ± 0.352

Our model-RAND 38.236 ± 1.319 75.310 ± 0.732 82.464 ± 0.477 86.098 ± 0.314

CNN 45.683 ± 0.371 72.087 ± 0.363 79.022 ± 0.237 83.238 ± 0.313

MALDB 39.242 ± 0.085 76.712 ± 0.566 84.704 ± 0.427 87.496 ± 0.188

ALL 90.020 ± 0.170 90.020 ± 0.170 90.020 ± 0.170 90.020 ± 0.170

Table 3. Test accuracy (%) ± standard deviation (%) obtained by each method under different number
of query iterations on SVHN.

Iteration
Methods

1 50 100 150

BCNN-EN 83.395 ± 0.877 91.313 ± 0.357 92.368 ± 0.181 92.804 ± 0.129

AL-MV 80.794 ± 0.837 89.377 ± 0.071 90.884 ± 0.186 91.443 ± 0.163

Our model-RAND 73.492 ± 0.817 92.133 ± 0.281 93.140 ± 0.165 93.273 ± 0.209

CNN 80.844 ± 0.324 89.094 ± 0.253 90.376 ± 0.281 90.873 ± 0.266

MALDB 73.363 ± 0.934 92.657 ± 0.346 93.413 ± 0.133 93.487 ± 0.103

ALL 93.723 ± 0.523 93.723 ± 0.523 93.723 ± 0.523 93.723 ± 0.523

Table 4. Test accuracy (%) ± standard deviation (%) obtained by each method under different number
of query iterations on Scene–15.

Iteration
Methods

2 4 6 8 10

BCNN-EN 68.766 ± 0.321 74.524 ± 0.562 78.744 ± 0.365 81.393 ± 0.268 82.612 ± 0.265

AL-MV 65.234 ± 0.413 70.991 ± 0.674 74.961 ± 0.535 78.429 ± 0.478 79.534 ± 0.301

Our model-RAND 72.563 ± 0.619 77.808 ± 0.522 81.312 ± 0.625 83.190 ± 0.236 84.121 ± 0.253

CNN 64.248 ± 0.417 69.522 ± 0.733 73.103 ± 0.423 75.673 ± 0.573 76.647 ± 0.198

MALDB 74.602 ± 0.266 80.392 ± 0.386 84.349 ± 0.465 86.217 ± 0.320 86.360 ± 0.085

ALL 87.82 ± 0.233 87.82 ± 0.233 87.82 ± 0.233 87.82 ± 0.233 87.82 ± 0.233
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Table 5. Test accuracy (%) ± standard deviation (%) obtained by each method under different number
of query iterations on UIUC-Sports.

Iteration
Methods

2 4 6 8

BCNN-EN 69.339 ± 0.674 76.442 ± 0.522 79.876 ± 0.417 81.682 ± 0.625

AL-MV 64.352 ± 0.365 72.575 ± 0.321 77.454 ± 0.535 80.790 ± 0.478

Our model-RAND 68.125 ± 0.733 76.802 ± 0.562 81.312 ± 0.268 84.468 ± 0.573

CNN 66.125 ± 0.413 73.40 ± 0.619 77.065 ± 0.386 79.225 ± 0.236

MALDB 69.523 ± 0.465 79.475 ± 0.423 85.067 ± 0.266 86.816 ± 0.320

ALL 88.68 ± 0.414 88.68 ± 0.414 88.68 ± 0.414 88.68 ± 0.414

From these tables, we can find that the performance of MALDB is generally superior to that of
the other methods. Furthermore, it can be seen that though only 22.86%, 51.67%, 42.32%, 54.58% and
60.60% of training data in Fahsion-MNIST, Cifar-10, SVHN, Scene-15 and UIUC-Sports datasets is
selected by the proposed method for training, the classification accuracy obtained by our MALDB is
very close to the results obtained by the entire training sets (ALL), which indicates that our method
can effectively find sample subsets which provide nearly the same information as the entire datasets.

Figures 3–7 show the average test accuracy curves of different methods under different number of
query iterations on five datasets. Combining the information of these results, we can get the following
observations. First, due to the network structures of BCNN-EN and AL-MV are one branch and the
number of parameters needed to be optimized in them is less than our method, they have a better
ability to capture feature information than our double-branch model when the amount of training
data is small. Thus, their performance is better than the proposed MALDB in the first few iterations.
This phenomenon is particularly evident for SVHN and UIUC-Sports since these datasets are more
complex. Nevertheless, with the increase in the number of iterations, our MALDB outperforms
BCNN-EN and AL-MV rapidly, which indicates our model can better remove interference information
in a short time and capture useful information. Second, the classification accuracy obtained by our
MALDB is superior to random sample selection strategy (our model-RAND) on all datasets. This result
demonstrates that the active learning can effectively select the most informative samples to improve
the performance of our model. Third, the advantage of our MALDB over standard CNN with random
sample selection (referred as CNN) can also show the effectiveness of active learning mechanism and
double-branch structure in our approach. At last, we can find the standard deviations obtained by our
proposed MALDB are less than other approaches on all datasets, which justifies that the double-branch
network structure in our model can reduce the performance fluctuation and improve the stability of
active learning.

Here, it should be noted that since the within-class scatter of samples in Cifar-10, scene-15 and
UIUC-Sports datasets is high, the accuracy obtained by all methods is relatively low (less than 90%).
However, our MALDB still outperforms other approaches in these three datasets, which indicates the
proposed active learning and sample selection mechanisms are effective.

Then, the precision and recall are adopted as two measurements to evaluate the performance of
our MALDB. For the i-th class, its precision and recall can be obtained by:

precision =
TPi

TPi + FPi
(5)

recall =
TPi

TPi + FNi
(6)

where TPi is the number of samples that belong to the i-th class and are correctly classified, FPi is the
number of cases that don’t belong to the i-th class but are incorrectly classified as belonging to this
class, FNi is the number of cases that belong to the i-th class but are incorrectly classified as belonging
to other classes.
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Figure 3. Test accuracy curve of different methods on Fashion-MNIST dataset.

Figure 4. Test accuracy and standard deviation curve of different methods on Cifar-10 dataset.
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Figure 5. Test accuracy and standard deviation curve of different methods on SVHN dataset.

Figure 6. Test accuracy and standard deviation curve of different methods on Scene-15 dataset.

From the average precision and recall of all classes after the last iteration obtained by each method
in Tables 6–10, it can be seen that our MALDB outperforms other approaches. In addition, the F1-score,
which is a harmonic mean of precision and recall, is also employed in our experiment to further
compare the performance of different approaches. From the F1-score of each class obtained by various
methods in Figures 8–12, it can be seen that our MALDB is superior to other approaches in most cases.
The average F1-score of all classes on five datasets in Table 11 also demonstrates the advantage of the
proposed method.
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Figure 7. Test accuracy and standard deviation curve of different methods on UIUC-Sports dataset.

Table 6. Average recall and precision of all classes obtained by each method after the 150th iteration on
Fashion-Mnist dataset.

Evaluate
Methods

BCNN-EN AL-MV Our Model-RAND CNN MALDB

Recall 0.9079 0.8918 0.8903 0.8909 0.9098

Precision 0.9083 0.8924 0.8902 0.8913 0.9102

Table 7. Average recall and precision of all classes obtained by each method after the 150th iteration on
Cifar-10 dataset.

Evaluate
Methods

BCNN-EN AL-MV Our Model-RAND CNN MALDB

Recall 0.8509 0.8450 0.8632 0.8541 0.8733

Precision 0.8523 0.8472 0.8655 0.8564 0.8747

Table 8. Average recall and precision of all classes obtained by each method after the 150th iteration on
SVHN dataset.

Evaluate
Methods

BCNN-EN AL-MV Our Model-RAND CNN MALDB

Recall 0.9230 0.9070 0.9272 0.9171 0.9293

Precision 0.9221 0.9061 0.9269 0.9165 0.9295

Table 9. Average recall and precision of all classes obtained by each method after the 10th iteration on
Scene-15 dataset.

Evaluate
Methods

BCNN-EN AL-MV Our Model-RAND CNN MALDB

Recall 0.9370 0.9249 0.9420 0.9153 0.9524

Precision 0.9369 0.9272 0.9439 0.9180 0.9540
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Table 10. Average recall and precision of all classes obtained by each method after the 8th iteration on
UIUC-Sports dataset.

Evaluate
Methods

BCNN-EN AL-MV Our Model-RAND CNN MALDB

Recall 0.8143 0.7961 0.8296 0.7828 0.8554

Precision 0.8219 0.8005 0.8319 0.7881 0.8565

Figure 8. F1-score of the 150th iteration obtained by different methods on Fashion-MNIST dataset.

Figure 9. F1-score of the 150th iteration obtained by different methods on Cifar-10 dataset.
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Figure 10. F1-score of the 150th iteration obtained by different methods on SVHN dataset.

Figure 11. F1-score of the 10th iteration obtained by different methods on Scene-15 dataset.
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Figure 12. F1-score of the 8th iteration obtained by different methods on UIUC-Sports dataset.

Table 11. The average F1-score obtained by each method on five datasets.

Methods
Dataset

Fahsion-MNIST CIFAR-10 SVHN Scene-15 UIUC-Sports

BCNN-EN 0.9080 0.8515 0.9225 0.9369 0.8180

AL-MV 0.8920 0.8460 0.9065 0.9260 0.7982

Our model-RAND 0.8902 0.8643 0.9270 0.9429 0.8307

CNN 0.8910 0.8552 0.9167 0.9166 0.7854

MALDB 0.9099 0.8739 0.9293 0.9531 0.8559

Next, the computational complexity of the proposed MALDB is analyzed. In deep learning- based
models, the computational complexity is closely related to the number of parameters needed to be
optimized in it. Thus, we first tabulate the number of parameters in different methods in Table 12.
Then, the average time of each epoch in training different methods is shown in Table 13. From this
table, we can find that the computational complexity in the training process of the proposed MALDB is
higher than other methods. This is due to the following two reasons. First, the double-branch structure
in our MALDB contains more parameters than other approaches. Thus, it needs more time to optimize
them. Second, the proposed MALDB estimate the uncertainty of each sample by combining multi-view
information to calculate the weighted entropy, which also increases the training time. Nevertheless,
from Table 13, it also can be seen that the average test time for classifying each sample of our MALDB
is not much longer than other methods, which means the proposed method is executable.
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Table 12. The number of parameters in each model on different datasets. (m indicates million).

Methods
Dataset

Fahsion-MNIST CIFAR-10 SVHN Scene-15 UIUC-Sports

BCNN-EN 0.149 m 0.191 m 0.191 m 16.706 m 74.050 m

AL-MV 0.302 m 1.770 m 1.770 m 121.225 m 514.262 m

Our model-RAND 0.548 m 2.550 m 2.550 m 173.3 m 735.869 m

CNN 0.302 m 1.770 m 1.770 m 121.225 m 514.262 m

MALDB 0.548 m 2.550 m 2.550 m 173.3 m 735.869 m

Table 13. Average time of each epoch in training and test time for classifying each sample of
different methods.

Dataset

Methods
Avg. Epoch Time/Test Time

Fashion-MNIST CIFAR-10 SVHN Scene-15 UIUC-Sports

BCNN-EN 36.1s/0.201s 42.0s/0.219s 42.0s/0.219s 556.0s/0.351s 276.3s/0.498s

AL-MV 58.9s/0.307s 74.3s/0.387s 74.3s/0.387s 824.1s/0.511s 488.8s/0.865s

Our model-RAND 128.3s/0.611s 132.5s/0.631s 132.5s/0.631s 1655.8s/0.880s 990.6s/1.229s

CNN 58.9s/0.307s 78.5s/0.374s 78.5s/0.374s 824.1s/0.511s 488.8s/0.865s

MALDB 128.3s/0.611s 145.9s/0.695s 145.9s/0.695s 1655.8s/0.880s 990.6s/1.229s

To visually compare different approaches, 20 images of SVHN dataset with the largest uncertainty
selected by different methods after the first iteration are shown in Figure 13. We can see the samples
selected by our MALDB are more ambiguous than those selected by other methods. That is, they are
either difficult to distinguish from background or contain more than one numbers in the picture. Thus,
incorporating these informative samples into the training set will help to improve the performance of
the model. Moreover, the informative samples selected by our approach are consistent with human’s
intuition to some extent. In other words, some images selected by MALDB are also unclear for us.

Figure 13. The images with the largest uncertainty selected by different methods on SVHN dataset.

4.3. Ablation Experiment

In order to justify the multi-view information and BCNN utilized in our method, two ablation
experiments are conducted in this subsection. In the first ablation experiment, we compare the
performance of our MALDB with the same model without multi-view information (referred to as
‘MALDB-EN’). MALDB-EN neglects the information of middle hidden layers in the network and
selects the samples only based on the information of final output. In the second ablation experiment,
we replace the BCNN in our model with the standard CNN (referred to as ‘MALDB-CNN’). From the
experimental results in Figures 14–18 and Tables 14–18, we can find that our MALDB outperforms
MALDB-EN and MALDB-CNN, which means both the multi-view and BCNN are essential for our
method to improve the performance.
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Figure 14. Test accuracy curve of ablation experiment on Fashion-MNIST dataset.

Figure 15. Test accuracy curve of ablation experiment on Cifar-10 dataset.
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Figure 16. Test accuracy curve of ablation experiment on SVHN dataset.

Figure 17. Test accuracy curve of ablation experiment on Scene-15 dataset.
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Figure 18. Test accuracy curve of ablation experiment on UIUC-Sports dataset.

Table 14. Test accuracy (%) ± standard deviation (%) obtained by various methods under different
number of query iterations on Fashion-MNIST dataset.

Iteration
Methods

1 50 100 150

MALDB-EN 74.014 ± 0.320 87.840 ± 0.347 89.974 ± 0.323 90.512 ± 0.211

MALDB-CNN 75.882 ± 0.728 87.253 ± 0.264 89.155 ± 0.204 89.888 ± 0.217

MALDB 76.096 ± 0.362 88.194 ± 0.198 90.212 ± 0.193 90.812 ± 0.144

Table 15. Test accuracy (%) ± standard deviation (%) obtained by various methods under different
number of query iterations on Cifar-10 dataset.

Iteration
Methods

1 50 100 150

MALDB-EN 37.452 ± 0.437 76.388 ± 0.398 84.166 ± 0.560 86.542 ± 0.474

MALDB-CNN 38.183 ± 1.541 72.997 ± 0.479 80.782 ± 0.319 84.194 ± 0.307

MALDB 39.242 ± 0.085 76.712 ± 0.566 84.704 ± 0.427 87.496 ± 0.188

Table 16. Test accuracy (%) ± standard deviation (%) obtained by various methods under different
number of query iterations on SVHN dataset.

Iteration
Methods

1 50 100 150

MALDB-EN 71.848 ± 0.806 91.875 ± 0.174 92.655 ± 0.248 92.773 ±0.182

MALDB-CNN 74.735 ± 0.809 90.808 ±0.346 91.756 ± 0.287 91.984 ±0.230

MALDB 73.363 ± 0.934 92.657 ±0.533 93.413 ± 0.133 93.487 ± 0.103
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Table 17. Test accuracy (%) ± standard deviation (%) obtained by various methods under different
number of query iterations on Scene-15 dataset.

Iteration
Methods

2 4 6 8 10

MALDB-EN 73.843 ± 0.605 79.088 ± 0.103 82.592 ± 0.230 84.470 ± 0.533 85.401 ± 0.133

MALDB-CNN 70.939 ± 0.558 76.698 ± 0.230 80.917 ± 0.103 83.566 ± 0.346 84.785 ± 0.248

MALDB 74.602 ± 0.714 80.392 ± 0.182 84.349 ± 0.182 86.217 ± 0.174 86.360 ± 0.287

Table 18. Test accuracy (%) ± standard deviation (%) obtained by various methods under different
number of query iterations on UIUC-Sports dataset.

Iteration
Methods

2 4 6 8

MALDB-EN 69.285 ± 0.756 77.962 ± 0.103 82.541 ± 0.364 85.628 ± 0.127

MALDB-CNN 69.397 ± 0.695 77.233 ± 0.248 81.367 ± 0.230 83.873 ± 0.287

MALDB 69.523 ± 0.827 79.475 ± 0.519 85.067 ± 0.182 86.816 ± 0.174

Finally, for the sake of demonstrating the impact of entropy obtained by different intermediate
layer outputs on the selected samples, some images from SVHN dataset, which have low uncertainty
on the final outputs but high uncertainty on the intermediate layers, are shown in Figure 19. From
this figure, it can be found that most of these images have two or one and a half numbers. Therefore,
though the intermediate layers of the network can capture some useful features of the numbers in
these images, the final outputs of the network will still be confused.

Figure 19. Images with contrary uncertainty from the SVHN dataset.

5. Conclusions

In this paper we propose an intelligent multi-view active learning method based on a double-branch
network for image classification tasks. The proposed method employs two BCNNs with different
architecture and adopts a dynamic multi-view sample selection strategy to select informative samples.
Extensive experiments were performed on three commonly used datasets, Fashion-MNIST, Cifar-10,
SVHN, Scene-15 and UIUC-Sports. The experimental result illustrates that our method achieves better
performance than other approaches.

At last, it should be pointed out that although we only utilized the image datasets to evaluate the
performance of our MALDB in this study, the application of our proposed approach is not restricted
to image classification tasks. For example, through replacing the 2D convolution kernel in BCNN
with a 1D or 3D convolution kernel, our MALDB can be applied to natural language processing or
video analysis problem. Thus, one of our future tasks will be to apply the proposed model to other
research fields so that it can be more widely used. Besides, another direction of our future study is
to introduce some more state-of-the-art techniques (such as attention mechanisms [39], graph neural
networks [40] and Res-Net [41]) into MALDB to test their impact on our model and try to further
improve its effectiveness and flexibility.
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