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Abstract: Today, semi-structured and unstructured data are mainly collected and analyzed for data
analysis applicable to various systems. Such data have a dense distribution of space and usually
contain outliers and noise data. There have been ongoing research studies on clustering algorithms to
classify such data (outliers and noise data). The K-means algorithm is one of the most investigated
clustering algorithms. Researchers have pointed out a couple of problems such as processing clustering
for the number of clusters, K, by an analyst through his or her random choices, producing biased
results in data classification through the connection of nodes in dense data, and higher implementation
costs and lower accuracy according to the selection models of the initial centroids. Most K-means
researchers have pointed out the disadvantage of outliers belonging to external or other clusters
instead of the concerned ones when K is big or small. Thus, the present study analyzed problems
with the selection of initial centroids in the existing K-means algorithm and investigated a new
K-means algorithm of selecting initial centroids. The present study proposed a method of cutting
down clustering calculation costs by applying an initial center point approach based on space division
and outliers so that no objects would be subordinate to the initial cluster center for dependence lower
from the initial cluster center. Since data containing outliers could lead to inappropriate results when
they are reflected in the choice of a center point of a cluster, the study proposed an algorithm to
minimize the error rates of outliers based on an improved algorithm for space division and distance
measurement. The performance experiment results of the proposed algorithm show that it lowered
the execution costs by about 13–14% compared with those of previous studies when there was an
increase in the volume of clustering data or the number of clusters. It also recorded a lower frequency
of outliers, a lower effectiveness index, which assesses performance deterioration with outliers, and a
reduction of outliers by about 60%.

Keywords: initial seed; K-means; outliers; location division; density data; python data analysis; data
science; hybrid; data driven

1. Introduction

There have been active efforts to create a new industry or increase the quality of medicine with
data accumulated in the field of healthcare around the globe, and these efforts are contributing as
important elements in the era of Smart Revolution [1–3]. One of the core elements to lead the era of
smart revolution is data, whose production and spread have been developing at an alarming rate.
There are active research studies on data mining, which involves collecting large volumes of data across
various fields thanks to the advancement of information technologies, searching meanings, patterns,
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relations, and rules in collected data, and extracting useful knowledge by modeling data [4–6]. Data
analysis and machine learning are categorized according to supervised and unsupervised learning in
terms of data analysis [7–9]. In particular, unsupervised learning is a model of estimating relations
with no labels in input data and with no training data. Representative algorithms of unsupervised
learning are clustering and connection analysis [10–12]. Clustering is a technique of forming clusters
based on similarity or dissimilarity (distance) among objects, examining the characteristics of clusters
that have been formed, and analyzing multivariate data relations inherent between clusters [13–17].
In classification and clustering that is a basic algorithm of unsupervised learning, the K-means is
most extensively used for its advantage of lowering execution costs [18–25]. And the K-means is
a basic algorithm of unsupervised learning, and it is easily to development compared with other
unsupervised learning. Nevertheless, K-means is completely dependent on the centroid of the initial
clustering, whose selection causes widely differences in the execution time of clustering–repetition and
the clustering results. In the K-means investigated in existing studies, the user arbitrarily determines
the number of clusters to categorize initial data, and it leads to classification costs [26–29]. As data
become more and more diverse in form and bigger and bigger in size, the fast execution that is the
advantage of K-means cannot be maximized in the era of big-data [30–34]. When initial data sizes are
as large as data, the methods of determining the number of clusters based on K-means such as the
user’s will and the heuristic approach become a fundamental cause of lower clustering performance.
There is a need for research studies on the methods of clustering that are appropriate for data mining.
Many of the previous studies on the K-means algorithm selected initial centroids arbitrarily, measured
the similarity between selected objects and others, and assigned K, the number of clusters [35–37].
Most K-means researchers [38–45] have pointed out the disadvantage of outliers (data out of normal
scope) belonging to external or other clusters instead of the concerned ones when K is big or small [29].
Thus, this study set out to analyze problems with the selection of initial centroids in the old K-means
algorithm and investigate an algorithm of selecting initial centroids for new K-means. There is a lot of
study on algorithms in the model of selecting initial centroids through outliers and the division of
space to generate ideal clustering results according to the selection of initial centroids. The proposed
algorithm of selecting initial centroids would carry out clustering by choosing the objects of outliers
reflecting negative impacts on clustering outcomes as initial cluster centroids. In the selection of
outlier objects, the ones within the scope of P

(
X < xkl

)
= ±0.95 in the standard normal distribution of

clustering objects would be used as initial centroids. Temporary cluster centroids would be selected
in the set of outlier objects extracted from the standard normal distribution. Initial cluster centroids
were selected from objects with low similarity and density distribution with other objects, and initial
clusters were fragmented into two divided spaces (to secure two centroids). Once two centroids were
secured, the objects with low similarity and the density from them would be selected as new cluster
centroids. The two divided spaces would further fragmented into three divided spaces (to secure
three centroids). This process was repeated to expand the number of clusters through the division of
space. The algorithm of space division would be terminated when it matched the number of clusters
designated by the user. The proposed algorithm would be compared and assessed with the old
K-means algorithm according to various scales based on the datasets used in data analysis to check its
superior performance.

2. Related Research

2.1. K-Means Algorithm

The proposed K-means algorithm in this study can be useful when grouping input data into
K clusters for unsupervised learning. What makes this clustering algorithm different from the
conventional algorithms often used for the supervised learning is that the weight vectors are updated
at the same time only after entire input vector entry has been completed, rather than repeating the
update process each time a vector enters. The terms of cluster classification are as follows: the distance
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between clusters, dissimilarity of clusters, and minimized level of cost functions becoming similar or
equal. With this classification model (algorithm), the data objects in the same cluster become more
similar compared to the data objects in the other clusters. Meanwhile, the individual centroid of each
cluster and the sum of squares of distances between data objects are used to create a cost function
for the minimization task that will be repeated to classify and assign every data object to a certain
cluster [5,14–17,46–52]. The K-means algorithm is a clustering technique to classify input data into K
clusters based on unsupervised learning. Unlike supervised learning, which updates weight vectors
every time a vector is entered, the K-means algorithm updates weight vectors simultaneously after
all the input vectors are entered. The criteria of clustering classification are the distance between
clusters, dissimilarity among clusters, and minimization of the same cost functions. The similarity
between data objects increases within the same clusters, while the similarity to data objects in other
clusters decreases. The algorithm performs clustering by setting the centroid of each cluster and the
sum of squares between data objects and distance as cost functions and minimizing the cost function
values to repeat the cluster classification of each data object. By calculating the sum of each length of
an input vector from the centroid of a cluster and then measuring the distance between individual
centroids, an Intra-Cluster Distance (IntraCD) can be estimated, whereas Inter-Cluster Distance (ICD)
represents the distance (weight vector) between two clusters. In Equation (1), the sum of all the ICDs
calculated for each pair has been subtracted from the sum of all the IntraCDs to compute an error. In
the equation, both β and γ represent weighted values. The K-means algorithm repeats epochs until
the errors no longer decrease or the cluster composition no longer changes. Errors are checked by
measuring within-cluster and between-cluster distances. In general, β and γ are set at 0.9 and 0.1,
respectively, in an experiment. In this paper, we set weights of 0.9 and 0.1 in an experiment with the
K-means algorithm.

Error = β

k∑
i=0

(Intra CD) − γ
k∑

i=0

(ICD) (1)

The early K-means clustering algorithm (Lloyd’s 1957) is one of the most widely used algorithms
even today for its speed and simplicity, but the initial clustering algorithm based on the greedy approach
has been pointed out to have a couple of issues, including sensitivity to initialization according to
classification data and a deterioration of classification performance according to initial center selection.
Thus, the basic K-means algorithm has been partially altered with various research studies done
according to the initial center selection of classification data. Ref. [53] proposed a series of refined initial
starting points for K-means clustering algorithms with datasets divided into small random subsamples.
K-means clustering and the minimum error values of these subsamples were calculated and used
as initial clustering centers. Ref. [54] introduced a clustering center initialization algorithm (CCIA)
to calculate initial centers for K-means clustering and conducted research based on the similarity of
data patterns. Ref. [55] introduced a method of obtaining initial centroids for K-means clustering and
proposed an algorithm combined with K-means and hierarchy algorithms. In its early stage, K-means
clustering was applied through random initialization. The algorithm performed hierarchical clustering
after the convergence of initial clustering results to get better results, being usually used for bigger
numbers of clusters or attributes. Ref. [56] proposed an algorithm of calculating initial cluster centers
for the K-means algorithm. The proposed algorithm chose two major axes with an ‘f’ variable and
calculated the initial central axes based on these axes. The two axes were chosen for smaller correlations
between variables, and at the same time, they had a problem of a high deviation coefficient. Ref. [57]
defined the closest neighbor pair and proposed four hypotheses for it. These hypotheses were based on
the center initialization method of the K-means algorithm for datasets containing two clusters. Ref. [58]
proposed a revised K-means algorithm making use of proper centers. The researchers maintained that
this algorithm should reduce the number of repetitions. Ref. [59] proposed weighted values for the
distributed data of K-means algorithm, assigning weighted values to clusters related to dispersion
and optimizing the initialization issue. Ref. [60] proposed an algorithm to determine the initial center
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of K-means clustering for labeling and non-labeling datasets. Ref. [61] proposed a new initialization
process for K-means clustering based on the binary search technique. In this process, the minimum
and maximum values of each attribute were selected after the application of binary search attributes to
the calculation of initial cluster centers. Ref. [62] proposed an initialization algorithm for K-means
clustering based on hybrid distance, combining Euclidean distance and density-based distance.

2.2. Clustering K Value in Non-Labeling Data

The simplest approach to selecting the appropriate K without domain knowledge is an empirical
model, i.e., increasing the initial cluster number gradually. Nonetheless, this approach requires large
computation power and considerable cost as the size of the dataset increases. To solve this problem,
a large number of previous studies focused on how to achieve clustering with high accuracy without
domain knowledge based on the finite mixture model. In a study that proposed rival penalized
controlled competitive learning for data clustering without knowing the exact number of clusters,
the centers of two parties, a winner and a competitor, were considered; the winner was the closest
center, and the competitor was the second closest center to each data point. This model lets the
competitor choose the appropriate center by utilizing an unlearning rate parameter. Competitive
learning may perform data clustering without knowing the initial number of clusters, but it was
sensitive to the unlearning rate of the competitor selected in advance, and it could not guarantee the
optimized model. Unlike existing K-means algorithms, the proposed K-means algorithm consists
of two major steps. In the first step, the K-means algorithm performs initial clustering followed by
pre-processing for assigning a seed point to each cluster. Finally, the assigned seed point is adjusted
to be minimized. In this step, a cluster whose number of data is larger is selected as the priority,
and a cluster whose number of data is smaller becomes the center of the empty cluster; thus, it is
excluded from the priority candidate. As such, K-means selects the initial center point, which has no
domain knowledge. The K-means++ algorithm has proposed an initialization process for the K-means
clustering algorithm. It was based on choosing a random starting center with a specific probability,
and it was called the K-means++ algorithm. The K-means++ algorithm is provided to solve the
problem of unstable learning results of clustering when it is terminated. The K-means++ algorithm
proposed for this adjusts the sampling probability distribution. In other words, a point whose distance
is greater than that of the previously selected point is selected with higher probability in the step that
selects the initial point. Accordingly, the initial point is selected as the point whose distance is greater
than that of the previously selected point. Note that the K-means ++ algorithm cannot solve the cluster
locking problem, hence the need to have a strategy for selecting the initial point to solve the clustering
locking problem.

2.3. Clustering Initial Approach Algorithm

The initialization approach for K-means clustering is to select the number of clusters by changing
it from an initial value to a set value and checking the clustering results. Then, a heuristic approach
is often used to determine the optimal number of clusters. Although it would be possible to select
the value that minimizes the resulting value of either Akaike Information Criterion (AIC) or Bayesian
Inference Criterion (BIC) as a centroid value of a cluster when a clustering methodology based on
probabilistic structure was used, it is not easy to determine the optimized centroid value otherwise.
For the selection of an initial value for K-means clustering, which is a non-hierarchical model, the sum
of the squared distances tends to decrease in most cases as the initial K-value increases. For this reason,
there is a model of calculating the sum of the squared distances while increasing the K-value and
selecting the one whose decrement in sum was reduced from the previous sum when K-1, if there is any.
Another type of model, i.e., hierarchical clustering, does not require setting the number of clusters in the
early stage but has to select it when distinguishing the clusters in the end. Although a variety of models
can be utilized for this type of clustering when determining an adequate number of clusters, a model
that searches the optimal number through the visualization of objects is used widely. The Macqueen
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Approach, Kaufman Approach, Max–Min model, and K-means++ model are being used these days
along with some types of heuristic approaches, but the other models are also being researched as well.
Some of the typical research works on selecting an initial K-value and centroid value for K-means
clustering are described below. Macqueen Approach K-means (MAK) presents a model usually used
in researches on the utilization of the K-means clustering algorithm [63]. The user arbitrarily selects
K, the initial number of clusters, from the initial objects for clustering. K can be randomly selected
from the entire objects. K is assigned to the closest cluster according to the measurement of distance
from the cluster centroid to all of the objects. The objects assigned to a cluster will be finally used for
reassignment to new centroids. The algorithm will be terminated when centroids are measured under
the threshold value set by the user. Kaufman Approach K-means (KAK) introduces an algorithm to
supplement the rising costs of measurement due to the calculation of distance from all of the objects,
which had been pointed out as a problem with MAK [64]. The algorithm is faster in measurement
than MAK. This algorithm determines the centroids of all the objects distributed as initial centroids.
The distance is measured from an object of the entire group to the initial cluster value. When a selected
object has a distance from the initial value over the threshold value set by the user and has a certain
number of objects nearby or more, it will be determined as a cluster centroid. The algorithm would
repeat the process until the initial K value matches the selected outcome until termination. However,
the approaches of MAK and KAK to initialization have problems of selecting initial values arbitrarily
and choosing initial values according to certain conditions and rules. Max–Min Approach K-means
(MMK) selects an object from the entire group and determines it as the first initial value and measures
its distance from the other objects [64]. The object with the longest distance from the first initial value
is assigned as the second initial value. The distance from the other objects will be calculated based on
the first and second initial values. Since two initial values are needed to calculate distance, the sets of
distance pairs will be measured to save two measurements. The initial value of distance pairs from the
measured set of distance pairs will be defined as the distance measured between the concerned object
and two values. The observed value with the maximum distance measurement will be determined as
the third initial value, which will have the longest distance from the earlier two initial values assigned.
The algorithm will continue until the initial values of K are all met through the repeated process.
K-means++ (KMP) selects an object from the entire group arbitrarily and assigns it as the first initial
value [65]. Distance is measured from the first initial value to the entire objects. Each measurement
will be converted into squared distance and divided by the squared addition of distance of all the
objects to calculate the probability of selecting the second initial value. Starting with the third initial
value, the distance from the other objects will be calculated in the same model as MMK. Then, the
probability calculation will be repeated to assign initial values.

3. Proposed Reinforcement K-Means Algorithm

3.1. Overview of Proposed Reinforcement K-Means Algorithm

The initialization approach model of K-means clustering is a model of selecting the number of
clusters, which is changed from the initial value to the setting value to check the cluster results. After
this, the heuristic approach model that determines the optimal number of clusters is largely utilized.
For clustering methodologies based on a probabilistic structure, the results that minimize the values
of Akaike Information Criterion (AIC) or Bayesian Inference Criterion (BIC) may be selected as a
center point of the cluster. However, for clustering methodologies that are not based on a probabilistic
structure, it is not easy to find a model that determines the optimized center point of the cluster. For the
selection of the initial value of K-means clustering, which is a non-hierarchical model, the sum of
squares of distances tends to decrease in general as the initial center K value increases. As a result of
this, in some models, the sum of squares of distances is calculated while increasing the initial center
K value, and the cluster center value is selected if there is a K value that reduces the decrement of
sum of squares of distances more than the previous sum of squares of distances when K-1. For other
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clustering models such as hierarchical clustering methodology, the number of clusters need not be
determined initially. Nonetheless, the number of clusters must be selected when the cluster is finally
classified. Although various models may be utilized to determine the appropriate number of clusters
in hierarchical clustering, a model of searching for the optimized number of clusters through object
visualization is ideal. There is a need for a scale to assess whether analysis data are similar or dissimilar
in the clustering model not based on the probability model of data. Clustering is usually done with
dis-similarity (or distance) rather than similarity. The model of determining K, the number of clusters,
is critical for optimal clustering. The present study used K, the optimal number of clusters, to set
a temporary scope through the principal component analysis of input data. The scope of principal
components to minimize the sum of distance squares within the set scope was appointed as the final
number of clusters, i.e., K.

3.2. Selection of Proposed Reinforce K-Means Initial Centroid Approach

3.2.1. Outliers Generating Condition

An outlier is an element influencing the classification outcomes in a data classification algorithm.
Previous studies on outliers uniformly tended to increase the accuracy of classification algorithms
based on distance measurement and lower the number of outliers. Their approach was not to resolve
issues with the number of outliers fundamentally, but to lower the number of outliers while increasing
classification outcomes. The present study proposed a method of measuring outliers predicted in a
way of reducing them in advance and making use of them to determine an initial centroid of a cluster.
There are three major conditions required to generate outliers: first, outliers will happen in most cases
of high K, the number of clusters is set high before generating an initial value. Figure 1a shows an
example of outliers in case of high K. The example had outliers discovered in two clusters in a case of
clustering the data with 10 initial clusters. Secondly, the probability of outliers will rise according to
the dispersion of input data. The data of K-means clustering can be regarded as good clustering when
there is a density around the centroid of a cluster and the overall density of data is high. In particular,
dispersion is the degree of data being scattered. When its measurement is smaller, the variate is
located closer to the mean. When the standard deviation based on the dispersion value is over the
threshold value, certain objects will often become farther from the center of variates. For instance, the
probability of outliers will be high when the standard deviation is over the threshold value based on
the dispersion value of the entire data with clustering completed. Figure 1b presents an example of
outliers according to dispersion. Thirdly, the probability of outliers is also high when some of the
entire objects have lower density and similarity than others. Similarity between objects is measured
with squared Euclidean distance. When the mean distance measurement from all the objects except for
the initial cluster centroid is higher than the mean of each cluster, the probability of outliers increases.
When the distance measurement from neighboring objects is high on average, the density will be low,
which means a higher probability of outliers. Figure 1c introduces an example of judging distance
measurements based on density and similarity.

3.2.2. Algorithm to Determine the Initial Center with Outliers and Space Division

Remark 1. This study proposed an algorithm to select an initial center with [Consideration 1, solving
the outliers of given objects.] and [Consideration 2, maximizing the efficiency of the initial value K
selection by using space and cluster distance.] that were necessary and sufficient conditions of outliers.
The proposed algorithm was designed to select individuals that could be outliers among input data and choose
one as a temporary centroid of a cluster. The initial centroid of clustering is chosen among outlier-predicting
individuals with low inter-individual similarity and density based on standard normal distribution. An initial
cluster is divided into two spaces (securing two centroid). After selecting two centroid of a cluster, an additional
individual with low similarity and density to the two centroid will be chosen as a new centroid of a cluster with
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two spaces further divided into three spaces (securing three centroid). As this process is repeated, the number
of clusters will grow through spatial division. Once the number matches the optimal number of clusters, the
spatial division algorithm will be completed. Clustering will proceed for the remaining individuals. Below is the
definition of details to implement a clustering algorithm based on outliers and spatial division.

Entropy 2020, 22, x FOR PEER REVIEW 7 of 30 

 

clusters, the spatial division algorithm will be completed. Clustering will proceed for the remaining 
individuals. Below is the definition of details to implement a clustering algorithm based on outliers and 
spatial division. 

   
(a) Outlier Detection 

(K = 10) 
(b) Outlier Detection 
(Standard Deviation) 

(c) Outlier Detection 
(Density and Similarity) 

Figure 1. Clustering outliers generating condition. 

Assumption 1. All of the input data can provide all sorts of information to set the initial centroid of 
repeating clusters, and the similarity and density distribution of objects can be used along with the location of 
standard normal distribution to remove anticipated outliers. The entire between-data data were altered with 
continuous probability distribution based on a proximity scale between data according to random data 
(outermost point in distance measurement among multidimensional data) to choose the initial center point of 
clustering. In a proximity scale, a log-likelihood value between random data and each data was divided by the 
log-likelihood value of a random data model. A proximity scale is smaller than 1 in most cases and can be 
defined as the "degree of explaining distance components between data with connection components between 
data". In other words, when a proximity scale value is close to 1, connection components between two data 
will be excluded from clustering as outlier candidates for connectivity and clustering. When it is close to 0, it 
can be chosen as an initial center point. 

Theorem 1. Equation (2) is a formula to define the objects of observed values. When selecting the centroid 
(𝑚௞) of the first cluster (𝐶ଵ) of all the input vector data, the user can define it with the objects of observed 
values in the scope based on the standard normal distribution (𝑁ఓ,ఙమ(𝑥௞, 𝑦௞)) of 𝑃൫𝑋 ≥ 𝑥௞, 𝑦௞൯ = ±0.95. 

𝑁ఓ,ఙమ(𝑥௞, 𝑦௞) = ( ଵఙ√ଶగ 𝑒ି(ೣషഋ)మమ഑మ )*( ଵఙ√ଶగ 𝑒ି(೤షഋ)మమ഑మ ) (2) 

𝑁ఓ,ఙమ(𝑥௞, 𝑦௞) = (ଵఙ 𝑁 ቀ௫ିఓఙ ቁ)* (ଵఙ 𝑁 ቀ௬ିఓఙ ቁ)  

Figure 2 presents an example image of a standard normal distribution of input data. When the 
number of input example data is n, it will follow the standard normal distribution. When the 
objects are within ±0.95 of the standard normal distribution scope, the observed values will be 
assigned to 𝑚௞, the first cluster centroid. 

Figure 1. Clustering outliers generating condition.

Assumption 1. All of the input data can provide all sorts of information to set the initial centroid of repeating
clusters, and the similarity and density distribution of objects can be used along with the location of standard
normal distribution to remove anticipated outliers. The entire between-data data were altered with continuous
probability distribution based on a proximity scale between data according to random data (outermost point
in distance measurement among multidimensional data) to choose the initial center point of clustering. In a
proximity scale, a log-likelihood value between random data and each data was divided by the log-likelihood value
of a random data model. A proximity scale is smaller than 1 in most cases and can be defined as the "degree of
explaining distance components between data with connection components between data". In other words, when
a proximity scale value is close to 1, connection components between two data will be excluded from clustering as
outlier candidates for connectivity and clustering. When it is close to 0, it can be chosen as an initial center point.

Theorem 1. Equation (2) is a formula to define the objects of observed values. When selecting the centroid (mk)
of the first cluster (C1) of all the input vector data, the user can define it with the objects of observed
values in the scope based on the standard normal distribution (Nµ, σ2(xk, yk)) of P

(
X ≥ xk, yk

)
= ±0.95.

Nµ, σ2(xk, yk) = (
1

σ
√

2π
e−

(x−µ)2

2σ2 ) ∗ (
1

σ
√

2π
e−

(y−µ)2

2σ2 ) (2)

Nµ, σ2(xk, yk) = (
1
σ

N
(x− µ
σ

)
)∗ (

1
σ

N
( y− µ
σ

)
)

Figure 2 presents an example image of a standard normal distribution of input data. When the
number of input example data is n, it will follow the standard normal distribution. When the objects
are within ±0.95 of the standard normal distribution scope, the observed values will be assigned to mk,
the first cluster centroid.
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selected objects based on the application of basic standard normal distribution according to the algorithm defined
in Theorem 1. The conditions of an observed value include X that is the set of input data, µ that is a mean, and
that is standard deviation. When clustering proceeds with 1 or higher for K, the number of optimized clusters,
it will satisfy Equation (3) [66].

P
(∣∣∣x− µ ≥ kσ

∣∣∣) ≤ k2 (3)

P
(∣∣∣x− µ ≥ kσ

∣∣∣) = P(x− µ)2
≥ k2σ2

= k2σ2

E[(x−µ)2]

= k2σ2

σ2

= k2

�

Theorem 2. The formula to measure an objectAkdistance will be defined as Equation (4) to measure similarity
and density among objects when there is one object or more in the observed values of centroids defined in Theorem
1. The mean distance measurement between objects, AVGk, will be defined as Equation (5).

Ak = d(xki, xli) =
k∑

k=1

∑
i∈C1

(Xi −Xk)
2 (4)

AVGk =
1
k

k∑
k=1

∑
i∈C1

(Xi −Xk)
2 (5)

Figure 3 presents an example of using squared Euclidean distance to measure similarity and
density between the entire objects and certain objects (predictive value according to standard normal
distribution) when the entire initial objects are considered as a cluster. The measurement A1k is lower
in similarity and density than other objects and then assigned as the initial value of the first cluster as
in Figure 4. In Figure 4, clustering happens at m1, the centroid of the initial cluster C1, to select outliers
according to the standard normal distribution as in Figure 5. The entire data that have been entered
will be grouped into a cluster according to the initial conditions.
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Theorem 3. Distance between objectsAk will be measured for all the objects x1 except for the centroids according
to m1, the centroid of the initial cluster C1. The object with the maximum measurement will be assigned to C2,
the centroid of the second cluster. Equation (6) defines the way of assignment to the second cluster.

C2(m2) = αi ← max
1≤i≤n

(Ak) (6)

C2(m2) = max
1≤i≤n

(Ak)‖ xi −m1 ‖

C2(m2) = ‖ αi −m1 ‖

Figures 6 and 7 show the centroid of the first cluster C1 (Green Color) by applying Equation (6).
Of the measurement data of the observed value sets, the object with the maximum distance from m1

will be assigned to m2, the centroid of the second cluster C2.
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Theorem 4. Distance between objects for the remaining objects xi will be measured as follows except for m1, the
centroid of the initial cluster C1, and m2, the centroid of the second cluster C2, through the two clusters defined
in Theorem 3: the sets of distance pairs from initial centroids m1,m2 will be distinguished, and the set values
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of distance pairs will be measured. Of the sets, the object with the maximum value will be assigned to m3, the
centroid of the third cluster C3.

CAi = max‖ x j −m1 ‖, ‖ x j −m2 ‖, 1 ≤ j ≤ n (7)

C3(m3) = xi ← max
1≤ j≤n

(
CA j

)
= CAi (8)

In Figure 7, the distance from the remaining objects m3 . . . mk is measured after defining m1 and
m2 as the centroids of two clusters C1 and C2 according to Theorem 4. When the old cluster centroids
are m1 and m1 = (2, 1) and m2 = (8, 10), for instance, the measurement of distance from a certain object
mi = (12, 3) can be summarized as Vector X = 14 and Vector Y = 9. Based on these vector length results,
an object with maximum length will be assigned to m3, the centroid of C3.

In the final stage, Ck, when the number of newly generated clusters matches K, the number of
initial clusters for clustering, the initialization algorithm will be ended with the remaining observed
values moved or assigned to the old clusters. The centroids of each cluster, m1, m2, m3 . . . , mk, will be
recalculated and assigned as new centroids. Figure 8 shows the outcomes of the final clustering when
the entire number of objects was 57 with K = 3.
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3.3. Proposed Reinforcement K-Means (PKM) Initial Approach Algorithm

Algorithm 1 shows the entire algorithm of the system to which the classification technique
of data proposed in the study was applied [5,66,67]. Most of data for classification is basically
multi-dimensional and multi-variate with individuals connected to one another. Many previous
studies investigated approaches to the costs of data classification and the initial centroid of a cluster.
The realization of a clustering algorithm requires the following necessary conditions: first, methodology
for the clustering of data includes methods to measure space and distance. The given method of
dividing individual spaces should be utilized along with the method of measuring distance between
individuals and clusters especially for the assignment of initial cluster values; secondly, there is a
need to secure an optimal central value early for a multi-dimensional individual. The reduction of
dimensions should be considered as an optimal way of clustering for multi-dimensional individuals.
If connections between clusters are minimized through the reduction of dimensions, it can increase the
accuracy of selecting an initial cluster; and finally, the outliers of given individuals should be reduced
to the minimum. When an outlier is chosen for the central value of a cluster, it can result in improper
outcomes. Error rates of outliers should be minimized with an algorithm of improved spatial division
and distance measurement. Along with these three necessary conditions, the present study proposed
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PKM based on two methods to improve the efficient clustering of multi-dimensional input data, which
was its main purpose. First, it proposed a technique of selecting K, the number of clusters [66] through
principal component analysis for the reduction of multiple dimensions. And secondly, it proposed a
technique of approaching the center of K-means initialization in non-hierarchical clustering through
outliers and spatial division.

The proposed algorithm had the following flow: the stage of determining K, the optimal cluster,
performs clustering for data and selects K, the optimal number of clusters. The pre-processing stage
conducts principal component analysis by changing the multi-dimensional data of characteristic vector
linearly and selects K, the optimal number of clusters emerging from the scope of principal component
analysis. K, the optimal number of clusters, is determined based on differences in the scope of principal
component analysis [66]. At the stage of determining an initial central model, an initial centroid of
clustering is selected through outlier objects and spatial division based on K defined at the stage of
determining K. An object predicted based on standard normal distribution is selected as an initial
centroid. Distance is measured between the selected object of initial centroid and all the objects.
The object of maximum value among them is selected as the second centroid of clustering. This process
will be repeated until K, the optimal number of clusters, is satisfied. Each data object is determined
with a cluster of the highest similarity level to the centroid of a cluster.

Principal components were identified until the point where a certain value was maintained to
explain the entire data through principal component analysis for the entire input data objects. Based on
the principal components identified through principal component analysis, the center point division
method was applied to Cki, the number of random clusters, and nk, the number of center points
randomly selected. Random cluster index vectors were used to measure mk, the center point of each
initial cluster. k is a random maximum value. The number of clusters was set at a maximum value in
an experiment. It was set at 100 in my study. A minimum value was calculated with Ak, the addition
of each object’s distance square from the center point of each divided area. Bk was obtained, which
was the minimum value of mean distance between random center points in a cluster and the objects
included in an external cluster. S(K), cluster dissimilarity with a maximum value, was processed as
Ck, the number of clusters K, based on differences between Ak of separation, which uses the mean
distance between objects included in a different cluster and the other objects, and Bk of cohesion,
which uses the mean distance between an object in a cluster and one in an external cluster. S(K) is
between −1 and 1. As it is closer to 1, it is defined as an optimized number of clusters. The defined
vector data was set with Ck, the number of clusters. Mean µ, standard deviation σ, and standard
normal distribution Nµ,σ2(xk, yk) were measured for all the vector data (α). A spatial quantile value
was selected, which used the mean µ and standard deviation σ of vector data along with objects
distributed in P

(
X ≥ xk, yk

)
= ±0.95. When there was one object distributed, it was assigned to the

center point m1 of the first cluster C1. When there were two objects or more distributed, the one with
the maximum distance between two vectors was first assigned to the center point m1 of the first cluster
C1. The distance between the other objects (xi) and the center point m1 of the first cluster C1 was
measured, and the object with maximum distance was assigned to the center point m2 of the second
cluster C2. Except for m1 and m2, the center points of clusters C1 and C2, respectively, the remaining
objects (xi) were measured for distance as follows: distance pairs were measured with the center points
of clusters, and a maximum value was measured with sets of distance pairs. The object with the highest
maximum value measurements was assigned to m3, the center point of the third cluster C3.
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Algorithm 1 Reinforcement Clustering using PCA and Initial Centroid Subspace

Data: Non-Labeling Dataset
Output: Data by Cluster

Input:
Training set x(1),x(2),x(3), . . . x(n)

where x(i) ∈ Rn (drop x1 = 1 by convention)
repeat each SKi, α ∈ {1, 2, . . . , n}, do
for each temporary initial centroid(mk) < SKi−1 ,, do

calculation from each data to cluster centroid(cohension),Ak

Ak =
∑k

k=1
∑

i∈Ck
(xi −mk)

2

calculation from each data to cluster centroid(separation), Bk

Bk = min
{
(xi −mk)

}2

assign the initial centroid number, S(K)
S(K) = 1

N
Bk−Ak

max(Ak , Bk)

end
if Selection -> Clustering number K

then
for check of each vector data, α ∈ ck

each ck=Nµ,σ2 (xk, yk) =

(
1

σ
√

2π
e−

(x−µ)2

2σ2

)
∗

(
1

σ
√

2π
e−

(y−µ)2

2σ2

)
if P

(
X ≥ xk, yk

)
= ±0.95> ck, which is the initial centroid

if when there is two object distributed
then assign the object to m1, the centroid of C1, the first cluster

else
then assign the object whose two vectors record the biggest length first to

m, the centroid of C1, the first cluster
for check of each vector data, α ∈ ci

C2(m2) = ai ← max
1≤i≤n

(Ak) = max
1≤i≤n

‖ xi −m1 ‖ = ‖ αi −m1 ‖

for check of each vector data, α ∈ c j
if (of the maximum measurements)

then CAi = max ‖ x j −m1 ‖, ‖ x j −m1 ‖

until each cluster centroid.
end

end
end

end
end main

4. Experiments and Performance Evaluation

4.1. Environments of Experiments and Performance Evaluation

The Proposed Reinforce K-means algorithm(PKM) proposed in the present study can be assessed
and developed further with its counterparts in previous studies under the following conditions:
Windows 10 64 bit, RAM 16 GB, Python as the language of development, and Python 3.6 as the tool of
development.; and in experimentation and performance valuation, experimental data include Iris [68],
Wine [68], and Yeast [68] and KDDCUP99 [69] data usually used in other studies for performance
comparison and assessment. In this paper, data were divided into multidimensional data-based
small and large-scale data to conduct the performance evaluation. Iris and Wine data are used in an
experiment with the altered K-means algorithm. The Iris datasets used in the experimentation of the
altered K-means algorithm have three classes (setosa, versicolor, and viginica) and four attributes.
The Wine datasets have three classes (1, 2, and 3) and 13 attributes. The Yeast datasets have 9 attributes.
Of a total of 47,112 samples, approximately 5436 samples and 78 attributed volumes of Iris, Wine, and
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Yeast objects were used in the study. For this study, the UCI open datasets were used, and the collected
data (i.e., Wine, Iris, and Yeast data) were expanded by 26-fold each time, and finally, 5436 necessary
data were selected after reprocessing them. The large-scale data are based on multidimensional data,
utilizing the Blobs data and KDDCUP99 data provided by Scikit-learn. The KDDCUP99 data belong
to the Python Feach family, which has 34-dimensional 4,898,431 samples and 42 attributes. It was
utilized in the DARPA intrusion detection system in 1998. The dataset is classified into three groups
whose scope is divided into basic, traffic, and content features. In this study, data whose scope is traffic
features were utilized in the performance evaluation.

4.2. The Data and Procedure for Algorithm Verification

In this section, the Proposed Reinforce K-means algorithm (PKM) was compared through
experiments with regard to PKM and MAK by utilizing Iris, Wine, Yeast, and the KDDCUP99 dataset
provided by Scikit-learn. We conducted a performance evaluation in this section, focusing on the
performance verification regarding the previously proposed algorithm problems. In this section,
verification of the optimal number of clusters through principal component analysis, proof of optimized
convergence, and data classification accuracy according to the selection of an initial centroid was
performed. For this, we performed two types of experiments. Both types had the following conditions
in the experiment: the maximum number of repeats was 100 or smaller, and the difference in square
error was < 0.01%. In addition, the center point was flexibly selected in the existing K-means algorithm
by utilizing DB, Silhouette, and SSE, and the initial center point was selected in the proposed algorithm
PKM by applying outliers and a space partitioning model. First, the cluster correct classification rate,
execution cost, and outliers were verified with regard to multi-dimensional small-scale data using the
Iris, Wine, and Yeast datasets to compare and evaluate the performances of PKM and existing K-means
algorithm. Second, the cluster validity, F-measure, and execution cost in relation to the initial k were
verified with regard to multidimensional large-scale data by utilizing the KDDCUP99 data provided
by Scikit-learn for the comparison and evaluation of performances of PKM and existing K-means
algorithm. Furthermore, the data applied was divided into two scopes. In a clustering experiment
of data included in performance evaluation as small data, a random center point of proximity scale
should be utilized and applied to the choice of initial center point. The data distribution scope should
be within 95% for data distance in standard normal distribution with a standard error rate of ± 3%.
In a clustering experiment of data included in performance evaluation as large-scale data, a standard
error rate of ± 3% should be applied for data distance in standard normal distribution applied to the
selection of an initial center point.

4.3. Experiments and Performance Evaluation in Small Data

Reduction of dimensions and predicted outlier variables for multi-dimensional data were used
to assess the proposed PKM and its counterparts in previous studies. Four criteria were applied to
performance evaluation. First, the accurate classification rate will be measured to check the reliability of
classification results of input data. Second, time complexity will be measured to measure the complexity
of the proposed algorithm compared with the ones in previous studies. Third, the implementation
costs of the K-means algorithm will be measured to compare and analyze its classification costs with
those of the old algorithms. The implementation costs will be measured differently according to K.
Fourth, the frequency of outliers will be measured, including the input data.

4.3.1. Clustering Classification Ratio

In the present study, all the objects were used based on the re-substitution rule to obtain
discriminants and calculate correct classification rates. A correct classification rate is obtained by
dividing the number of misclassified objects with the total number of objects. The accuracy of clustering
is assessed based on the differential levels of reliability for multi-dimensional data. An incompletion
ratio makes an increment by 5% for each stage of evaluation data in the range of 10~30% with random
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virtual clustering outcomes in five stages. In the clustering process before the classification and analysis
stage, the number of clusters increases from 2 to 8 in four stages for evaluation. Figures 9–11 show the
results of an experiment with four cases of K, the number of clusters, including 2, 4, 6, and 8 for each
data set. Data clustering was conducted 150 times for each of the reliability levels. When data had
higher reliability with the number of clusters within the scope of 2~4, the correct classification rate
of the entire data was high. It also shows the application results of the altered K-means algorithm
for each dataset. The Iris and Wine data are included in the range of K = 2–4, and the Yeast data are
included in the range of K = 6–9. The findings indicate that the higher the reliability of the data, the
higher the accurate classification rate of the entire data. Compared with the model of MAK [27] that
did not conduct principal component analysis, the proposed model recorded higher accuracy for the
classification results of the entire data, including the old data and error data. As seen in Table 1, the
accurate classification rate tends to rise according to smaller numbers of clusters for Iris and Wine data
and according to bigger number of clusters for Yeast data. The results of Table 1 have something to
do with the optimal number of clusters through the principal component analysis of each dataset.
The accurate classification rate rises according to the smaller number of clusters, because the number
of objects classified as a different cluster from the initial one drops relatively in the process of assigning
the objects to a cluster of high response rate after their clustering. In addition, the problems may lie in
the formation of data rather than the model of clustering and analysis when the accurate and error
classification rates are low and high, respectively. The causes are found in many error data being
entered and distributed in the formation of initial data.
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Table 1. Clustering Classification Ratio. MAK: Macqueen Approach K-means.

Reliability Dataset Existing Model
(MAK)

Proposed Reinforcement K-Means Algorithm (PKM)

Average K = 2 K = 4 K = 6 K = 8

90%

Wine 0.9663 0.9874 0.9944 0.9944 0.9831 0.9775
Yeast 0.9461 0.9618 0.9596 0.9677 0.9589 0.9609
Iris 0.9667 0.9867 0.9933 0.9933 0.9867 0.9733

Average 0.9824 0.9851 0.9762 0.9706

85%

Wine 0.9551 0.9635 0.9888 0.9831 0.9382 0.9438
Yeast 0.9124 0.9532 0.9555 0.9319 0.9555 0.9697
Iris 0.9467 0.9700 0.9733 0.9867 0.9600 0.9600

Average 0.9725 0.9673 0.9512 0.9578

80%

Wine 0.9494 0.9438 0.9438 0.98788 0.9663 0.9382
Yeast 0.8484 0.9313 0.9319 0.9340 0.9171 0.9420
Iris 0.9333 0.9533 0.9600 0.9533 0.9600 0.9400

Average 0.9453 0.9587 0.9478 0.9401

75%

Wine 0.8820 0.9185 0.9270 0.9326 0.9213 0.8933
Yeast 0.8248 0.8972 0.8962 0.8747 0.8868 0.9313
Iris 0.8800 0.9033 0.9133 0.9200 0.9067 0.8733

Average 0.9122 0.9091 0.9049 0.8993

70%

Wine 0.7528 0.8708 0.8820 0.9101 0.8315 0.8596
Yeast 0.7951 0.8624 0.8726 0.8315 0.8336 0.9117
Iris 0.8400 0.8900 0.9133 0.8800 0.8933 0.8733

Average 0.8893 0.8739 0.8528 0.8815
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4.3.2. Clustering Time Complexity

The model proposed in the study needs a calculation process of using principal component analysis
and outliers compared with the approaches of initialization in the old K-means clustering. Thus, it is
needed to interpret relations between time and input functions to treat the K-means algorithm in order
to compare its performance with that of previous studies. Equation (9) shows the time complexity of
the entire K-means algorithm.

Time Complexit
= T(Initial Cluster K) + T(Initial Centroid)
+T(Assignment Recalculation)

(9)
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O(kn), the time complexity of the proposed algorithm, takes two major forms: T(k), the time
complexity to process multidimensional data reduction, and T(2k), time complexity to calculate
anticipated outliers and their cluster centroids according to the scatter plot vector. T(k), which
represents time complexity to assign basic objects to their clusters and recalculate the centroids,
is repeated (i), which means an increase by T(ik). The time complexity of the proposed algorithm will
be eventually O(n) in Equation (10).

PKMTC = O(kn) + O(2kn) + O(ikn)
= O(n)

(10)

4.3.3. Clustering Performance Time (Cost)

The implementation costs of the proposed PKM algorithm were measured with multidimensional
datasets: Iris, Wine, and Yeast. The measurement of implementation costs spanned from the entry of
multidimensional datasets to the completion of final clustering. It was repeated 150 times to measure
the mean time when K was 2, 3, 5 and 7. It was also compared and evaluated from those of previous
studies to check its performance additionally.

Table 2 and Figure 12 show the measurement results of implementation costs when the number of
clusters was 2. In case of K = 2, the proposed algorithm recorded considerably lower implementation
costs of clustering across all the datasets than KMP, MMK, MAK, and KAK. In case of clustering Wine
and Iris datasets, the proposed algorithm recorded similar implementation costs to the KMP algorithm
using distance and density and faster implementation costs by about 1–18% than the other algorithms.
In case of Yeast datasets, the proposed algorithm recorded faster implementation costs by 33% or
more than the MAK algorithm with concise time complexity. When the number of clusters was 2, the
proposed algorithm reduced the implementation costs more than the KMP, MMK, MAK, and KAK
algorithms by 7%, 17%, 22%, and 6%, respectively.

Table 2. Mean Performance Cost (Iteration = 150). KAK: Kaufman Approach K-means, MMK: Max–Min
Approach K-means.

Cluster Item Wine (s) Yeast (s) Iris (s) Avg. (s)

2

KMP 0.85 1.65 0.82 1.10
MMK 1.00 1.74 1.00 1.24
MAK 0.88 2.10 0.95 1.31
KAK 0.89 1.44 0.94 1.09
PKM 0.84 1.41 0.82 1.02

3

KMP 0.82 1.85 0.82 1.16
MMK 0.81 1.65 0.99 1.15
MAK 0.91 1.95 0.93 1.26
KAK 0.98 1.56 0.91 1.15
PKM 0.79 1.74 0.78 1.01

5

KMP 0.84 1.67 0.99 1.17
MMK 0.87 1.45 1.24 1.19
MAK 1.15 2.15 1.33 1.54
KAK 1.45 1.75 1.24 1.48
PKM 0.79 1.41 1.89 1.03

7

KMP 0.85 1.77 1.00 1.21
MMK 0.87 1.65 1.33 1.28
MAK 1.22 2.20 1.35 1.59
KAK 1.50 1.80 1.32 1.54
PKM 0.81 1.34 0.94 1.03
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Table 2 and Figure 13 show the measurements of implementation costs when the number of
clusters was 3. The overall results are similar to those of performance evaluation when K = 2, bu the
implementation cost assessment results of the Wine and Iris datasets were higher by 3% each. The partial
reasons were the choice of optimal K = 3 through principal component analysis and the reduced final
implementation costs of clustering according to the optimal number of clusters. When the number of
clusters was 3, the proposed algorithm reduced the implementation costs more than the KMP, MMK,
MAK, and KAK algorithms by 13%, 12%, 20%, and 12%, respectively.
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Table 2 and Figure 14 show the implementation costs results when the number of clusters was 5.
In addition, Table 2 and Figure 15 show the implementation costs results when the number of clusters
was 7. When K was 5 and 7 for the Iris datasets, the proposed algorithm reduced the implementation
costs by an average of 24.5% more than the other algorithms. When the optimal number of clusters
was 7 for the Yeast datasets through principal component analysis, it reduced the implementation
costs by an average of 27% more than the other algorithms. When the number of clusters was 5, the
proposed algorithm reduced the implementation costs more than the KMP, MMK, MAK, and KAK
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algorithms by 12%, 13%, 33%, and 30%, respectively. When the number of clusters was 7, it reduced
the implementation costs more than the KMP, MMK, MAK, and KAK algorithms by 15%, 20%, 35%,
and 33%, respectively.
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4.3.4. Clustering Performance of Outlier Detection

When objects are included in a cluster containing three objects or less or record a considerably
smaller dissimilarity distance from the cluster centroid or cohesion with the internal objects, they will
be classified as outliers. In the performance experiment, clustering was repeated 150 times for the
Wine, Iris, and Yeast datasets when the optimal number of clusters K was 3, 5, and 7. Table 3 and
Figure 16 show the average frequency of outliers for each dataset between the old algorithms and the
proposed one, which lowered the frequency of outliers to a great degree by using the initial cluster
centroids as anticipated outliers and the object with the longest distance from the initial centroid as the
second centroid. The production rate of outliers decreased by approximately 69% when the number of
clusters was 3 in the Wine datasets. It decreased by approximately 70% when the number of clusters
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was 3 in the Iris datasets. It decreased by approximately 51% when the number of clusters was 7 in the
Yeast datasets.

Table 3. Mean Performance of Outlier Detection (Iteration = 150).

Item Wine (K = 3) Yeast (K = 7) Iris (K = 3) Total

KMP 11 20 13 46
MMK 12 20 9 41
MAK 7 21 9 37
KAK 11 19 10 40
PKM 3 10 3 16
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4.4. Experiments and Performance Evaluation in Large Data

In this section, experiments employing a large-scale dataset were conducted to apply the Proposed
Reinforce K-means algorithm (PKM) to large data. The reduction in multidimensional data dimension
and prognostic variables of outliers were utilized to improve the accuracy of clustering results in the
experiments. For the performance evaluation of the K-means initialization approach algorithm, two
measures were used: the clustering validity measure of the proposed algorithm that can evaluate the
cohesion and separation between clusters compared to those of the existing K-means algorithm, and the
F-measure, which can evaluate the accuracy of clustering. In particular, since the K-means algorithm is
effective in the non-labeled data classification of large data, cluster validity through the selection of an
automated K value and initial center point, which is the goal of this study, is a very important measure.
Performance evaluation was conducted utilizing 250,458 data records (prior labeling processed) out of
18-dimension traffic features data from the KDDCUP99 dataset previously utilized in the performance
evaluation. Figure 17 shows the results when the K value is 2 as the minimum value of clustering,
up to 9.
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4.4.1. Performance Evaluation of CVI

In the experiment, a K value from 2 to 9 was used to verify the cluster validity by K value,
i.e., the optimized scope of cluster K value. The existing K-means algorithm and the PKM (Proposed
Reinforcement K-means) algorithm proposed in this study were compared by using the Davies–Bouldin
(DB) model, Silhouette, and Sum of Squared Errors (SSE) to determine the validity with regard to
the optimized K value. The reliability of PKM proposed in the study was measured with CVI
(Clustering aVailability Index), a measuring model to divide the total sum of inter-cluster cohesion
based on individuals and centroids of clusters with the separation between centroids of clusters.
The measurements show that K, the minimum value, could be determined as an optimal number
of clusters. It followed the old research approach of deciding K based on the DB model to measure
distance, the silhouette method, and the comparison and analysis of SSE measurements. A DB model
metric is the addition of cohesion among clusters based on the objects and center points of a cluster
divided by the separation between the center points of the cluster. The scope of the minimum value
can be selected as an optimal value K. A silhouette metric offers a criterion to measure the coherence of
data grouping within clustering. A silhouette coefficient is between −1 and 1. When the separation
force of clustering equals the cohesion force of clustering, the silhouette coefficient is 0. An SSE metric
measures the distance between each data and their adjacent clusters. When SSE differences are smaller
between clusters, they can be defined as an optimal number of clustering. The DB model, Silhouette,
and SSE as the evaluation techniques used in the experiment were repeatedly executed 150 times for
each section, and optimized results of Silhouette (0.1223) and SSE (84.000) were found when K was
3 through the proposed K-means algorithm (PKM). Good clusters were derived if the K value was
selected when the slope was lower compared to the number of the next cluster in SSE. As measurement
models conducted in the existing K-means algorithm (Abi.) [64], Silhouette (0.1513) had K = 2 and
SSE (91.00) had K = 7, which selected extremely different values, thus giving rise to problems of high
probability of outlier occurrence and many duplicate objects in a cluster. In the existing K-means
algorithm, the K value selection through the DB model derived the same results as those of our study
results. When K was 3, the duplicate data were removed, and the classification scope was clearly
separated. To verify the optimized cluster results and accuracy of the previously labeled data, the
accuracy was verified through F-measure. Figure 18 and Table 4 present the results that verify the
cluster validity index of the classified results from the KDDCUP99 data.
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Table 4. Experiment of Clustering Availability Index (Iteration = 10). DB: Davies–Bouldin, SSE: Sum of
Squared Errors.

Item K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9

Abi.-DB 0.6400 0.670 0.400 0.5500 0.5100 0.4900 0.5500 0.7900
Abi.-Shilhoutte 0.1513 0.2609 0.2683 0.2073 0.1964 0.1931 0.1847 0.1945

Abi.-SSE 84.0000 87.0000 94.0000 90.0000 92.0000 91.0000 95.0000 96.0000
PKM-DB 0.4800 0.6800 0.2500 0.5100 0.3400 0.4200 0.6400 0.4400

PKM-Shiloutte 0.1654 0.1510 0.1223 0.1744 0.1451 0.1324 0.1247 0.1642
PKM-SSE 88.000 85.0000 84.0000 97.0000 94.0000 97.0000 99.0000 94.0000

4.4.2. Performance Evaluation

Labeling was processed for the dataset before the F-measure measurement conducted in this
section. Through such processing, the cluster data were analyzed to determine the accuracy of the
clustering results regarding the dataset and different accuracy values were measured depending on
whether the correct cluster data were present or not based on the clustering results. The accuracy was
measured by F-measure, which was the most widely used to measure the accuracy of clustering in
terms of clustering results for the implementation of the K-means algorithm. Clustering was conducted
in advance for data for performance evaluation. The experiments were performed using 50,000 data
records in the KDDCUP99 dataset used in the performance evaluation. The first group collects only
the connections for the past two seconds that have the same host function and same destination host
as those of the current connection. This group contains data in relation to protocol behavior and
service, etc. The second group has data that inspect only the connections for the past two seconds
with the same service as that of the current connection. These two groups are categorized into nine
areas: count, serror rate, rerror rate, same srv rate, doft srv rate, srv count, srv serror rate, srv rerror
rate, and srv dift host rate. Here, 50,000 records of the count data that collect the connections with the
same destination host as that of the current connection from the previously classified data are verified.
The detailed criteria of the accuracy measurement were defined by the clusters of the dataset as follows:
true positive (TP), true negative (TN), and false positive (FP). More specifically, TP refers to a case
wherein the clustered object in Cluster 2 is also clustered in Cluster 2 after the experiment. TN refers
to a case wherein the clustered object in Cluster 2 is not clustered in Cluster 2 after the experiment.
FP refers to a case wherein objects that are not clustered in Cluster 2 are clustered in Cluster 2 after the
experiment. Table 5 presents the measurement results of clustering. The performance evaluations were
conducted based on a K value of 4, which was optimized through the PKM algorithm, and the K values
2, 3, and 7, which were selected through the existing K-means algorithm. Nonetheless, evaluations
may deviate when K was 2. Thus, the K 2 scope was excluded, and evaluations were conducted
with the scopes of the rest, i.e., 3, 4, and 7. As presented in Table 5, when PKM was applied to the
KDDCUP99 data, the performance evaluation results showed an average precision rate of 94.61% and
a recall rate of 96.91% when K values 3, 4, and 7 were applied during the classification of 50,000 records
of count data. F-measure was 95.30% based on the data precision and recall rates. In particular, the
precision, recall rates, and F-measure results were all higher in a scope classified with the optimized
K value. When the K value was 7, the TN and FP values were relatively higher due to the duplicate
arrangement between objects. These performance evaluation results demonstrate that the proposed
algorithm guarantees higher precision for data clustering. In case of applying the proposed algorithm
along with accuracy rates, another round of performance evaluation would be added to identify and
assess errors in the given dataset. The sizes and values of error data were added according to the
scope of artificial datasets to detect error data. In case of KDDCUP99, the integers sampled from a
set {r: 1500 < r < 2000} were added for errors added to each characteristic. A total of 10 of the entire
datasets were used in evaluation. Two standard datasets and four error datasets were added to the
standard dataset by 0%, 5%, 10%, 15%, and 20%. A total of 10 datasets were used including two
containing no outliers and eight containing an outlier. Table 6 shows the results of 100 performance
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evaluations for the KDDCUP99 dataset and the comparison outcomes of mean errors. Each algorithm
had 50 repetitions. Datasets to be applied to the existing clustering initial approach algorithm [64]
and the proposed clustering algorithm were applied the same randomly within the dataset scope to
assess the proposed initialization selection program after 100 experiments. The clustering K value
was set at 4 to ensure the accuracy of evaluation. As seen in Table 6, when the same K value was
applied, mean errors according to an initialization choice were lower in the proposed algorithm than
the old clustering technique across all the datasets in the experiment. These findings indicate that
the proposed algorithm had superior performance to the old clustering algorithm in the clustering
of outliers instead of inliers at a random initial center point. Unlike the proposed algorithm, the old
clustering algorithm was not able to tell outliers from inliers and carried out clustering only after the
choice of initial center point.

Table 5. Clustering by Data Classification (Iteration = 10).

Cluster Object TP TN FP Precision Recall F-Measure

3 50,000 30,000 914 747 97.04 97.57 97.31
4 50,000 30,000 874 642 97.17 97.90 97.54
7 50,000 30,000 3476 2415 89.62 92.06 91.06

Avg. 50,000 30,000 1755 1268 94.61 96.01 95.30

Table 6. Comparing Errors of Proposed Reinforcement K-Means.

Dataset (with Outlier Rate in %)
Mean Square Error

Abi. PKM

KDDCUP99 (0%) 853.21 614.45
KDDCUP99 (5%) 1847.79 1518.16
KDDCUP99 (10%) 1974.45 1644.55
KDDCUP99 (15%) 2674.84 1879.68
KDDCUP99 (20%) 3074.58 2378.17

5. Conclusions

Many of the previous studies on the K-means algorithm selected an initial centroid arbitrarily,
used it to measure the similarity of an object to other objects, and assigned K, the number of clusters,
accordingly. Most of the K-means researchers have pointed out a disadvantage of outliers belonging to
external or other clusters instead of the concerned ones when K is big or small. Thus, the present study
analyzed problems with the selection of initial centroids in the old K-means algorithm and investigated
a new K-means algorithm of selecting initial centroids. In addition to the algorithm [66] of selecting K,
the optimal number of clusters, in previous studies, the present study proposed another algorithm
of selecting an initial centroid of a cluster through the outliers and spatial division of classification
data capable of producing ideal clustering outcomes. In previous studies on clustering, users would
select an initial centroid arbitrarily or use a randomly selected individual to measure its similarity to
other individuals. The algorithm proposed in the present study proceeded with clustering by choosing
an outlier individual reflecting negative impacts on clustering as an initial centroid of clustering.
An individual within the outlier scope on its standard normal distribution was used as an initial
centroid in the proposed method. For the selection of outlier objects, the objects in the range of outliers
in the standard normal distribution of clustering objects were used as initial centroids. The findings
demonstrate the effects of reducing the overall clustering calculation costs in the proposed algorithm
that was not dependent on the initial cluster centroid and made use of the lower dependency between
objects. The performance experiment results of the proposed algorithm show that it lowered the
execution costs by about 13–14% from those of previous studies (MAK, KAK, MMK, KMP) when
there was an increase in the volume of clustering data or the number of clusters. It also recorded a
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lower frequency of outliers, a lower effectiveness index, which assesses performance deterioration
with outliers, and a reduction of outliers by about 60%.

An improved algorithm for selecting an initial centroid for a K-means algorithm was proposed in
this study in an attempt to enhance the data classification accuracy and performance for the future
studies. It is expected that the analyzing or predicting of various types of structured data will be
improved in terms of ‘performance’ compared to the existing studies.

As a future work, the optimized K-value algorithm proposed in the previous paper [66] and the
initial centroid approach algorithm based on ideal points and space division proposed in this paper
were established to conduct performance evaluation. However, if there are dense data in the optimal
K-value measurement and initial centroid approach selection, it will be necessary to make up for
the fact that there is an increase in the misclassification rate or a mis-selection of the initial centroid
approach in the stochastic space measurement.
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