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Abstract: This article focuses on using E-Bayesian estimation for the Weibull distribution based
on adaptive type-I progressive hybrid censored competing risks (AT-I PHCS). The case of Weibull
distribution for the underlying lifetimes is considered assuming a cumulative exposure model.
The E-Bayesian estimation is discussed by considering three different prior distributions for the
hyper-parameters. The E-Bayesian estimators as well as the corresponding E-mean square errors are
obtained by using squared and LINEX loss functions. Some properties of the E-Bayesian estimators
are also derived. A simulation study to compare the various estimators and real data application is
applied to show the applicability of the different estimators are proposed.

Keywords: adaptive type-I progressive hybrid censored; competing risks; cumulative exposure
model; Bayesian estimation; E-Bayesian estimation; E-mean-square error

1. Introduction

In life-testing and reliability studies, both type I and type II censoring schemes are widely used.
These two types of censoring schemes are described as follows: Consider n identical components
are placed in the test, in type I censoring, the experiment continues up to a predetermined time τ.
However, in the type II censoring scheme, the experiment is terminated when a predetermined number
of failures m < n occurs. For a mixture of type I and type II censoring schemes, which is called the
type I hybrid censoring scheme, is introduced by Epstein [1], and the life test experiment is terminated
at a random time τ∗ = min{xm:m:n, τ}. Childs et al. [2] proposed a new hybrid censoring scheme
called a type-II hybrid censoring scheme in which the experiment would terminate at the random time
τ∗ = max{xm:m:n, τ}. These schemes do not allow for removing the components from the experiment
at any time other than the terminal point. A more general censoring scheme called progressive type II
censoring is used to deal with this problem.

In the progressive type II censoring, n components are placed in a lifetime testing experiment, and
m is a fixed number of components to be failed. At the time of the first failure x1:m:n, R1 components
are randomly removed from the remaining n− 1 components. Similarly, at the time of the second
failure x2:m:n, R2 components of the remaining n− 2− R1 components are randomly removed, and so
on. At the time of the m-th failure xm:m:n, all the remaining n−m−∑m−1

i=1 Ri components are removed.
The Ri, i = 1, · · · , m are fixed and predetermined prior to the study.

The type I progressive hybrid censoring scheme is considered by Kundu and Joarder [3], which is
a mixture of type II progressive and hybrid type I censoring schemes—in which n identical components
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are put under testing with Ri, i = 1, · · · , m, predetermined progressive censoring scheme and the
experiment is terminated at random time τ∗ = min{xm:m:n, τ}. The experiment stops at the time
xm:m:n, if the m-th failure occurs before the time τ. However, if the m-th failure does not occur before
time τ and only J failures occur before the time τ; then, at the time τ, the experiment terminates and
all the remaining components are removed. In addition, a type II progressive hybrid censoring scheme
is discussed by Childs et al. [4], where the experiment is terminated at time τ∗ = max{xm:m:n, τ}.

A new censoring scheme, called an adaptive type II progressive hybrid censoring, is introduced
by Ng et al. [5], where the number of failures m and the corresponding progressively scheme is given,
but no components will be removed when the experimental time passes time τ; see, for example,
Balakrishnan and Kundu [6]. Another adaptive progressive hybrid censoring scheme, called the
adaptive type I progressive hybrid censoring scheme (AT-I PHCS), which assures the termination
of the lifetime testing experiment at a fixed time τ, and results in a higher efficiency in estimations,
is proposed by Lin and Huang [7]. The AT-I PHCS can be described as: suppose n identical components
are placed under testing with prefixed Ri, i = 1, · · · , m, 1 ≤ m ≤ n; the experiment is terminated
at a prefixed time τ, where τ ∈ (0, ∞). At the time x1:m:n, R1 of the remaining components are
randomly removed, at the time x2:m:n, R2 of the remaining components are randomly removed, and so
on. Let the number of failures that occur before time τ be J. If the m-th failure xm:m:n occurs before
time τ, the process will not stop, but continue to observe failures without any further withdrawals
until reach time τ. Then, all remaining components R∗J = n − J − ∑J

i=1 Ri are removed at time
τ, and the experiment is terminated. The progressive censoring scheme in this case will become
R1, R2, · · · , Rm, Rm+1, · · · , RJ , where Rm = Rm+1 = · · · = RJ = 0. Otherwise, when xm:m:n > τ,
the process will have a progressive censoring scheme such as R1, R2, · · · , RJ . AT-I PHCS is important
when the time is the main goal in the experiment, and it is requisite to terminate the experiment at a
predetermined time in any case of number of failures.

The point and interval estimation for the exponential distribution are studied by Lin and
Huang [7] and investigated Bayesian sampling plans under different progressive censoring schemes.
The maximum likelihood and Bayesian estimation for a two-parameter Weibull distribution based on
AT-I PHCS are discussed by Lin et al. [8]. They derived the Bayes estimates of the unknown parameters
by using the approximated form of Lindley [9] and Tierney and Kadane [10].

On the other hand, the loss function is important in Bayesian methods. In the Bayesian inference,
the most commonly used loss function is the squared error loss. It is well known that the use of
symmetric loss functions may be inappropriate in many circumstances, particularly when positive
and negative errors have different consequences. One of the most commonly used asymmetric
loss functions is the LINEX (linear exponential) loss function. It was introduced by Varian [11]
became popular due to Zellner [12].

The failure of components in reliability analysis at the same time may be attributable to more than
one reason. These reasons are competing for the experimental component for the failure. This is known
as the competing risks model. The data in the competing risks analysis are comprised of a failure
time and the associated reason for failure. The reasons for failure can be assumed to be independent
or dependent.

The latent failure times model in this paper is assumed as suggested by Cox [13]. In addition,
the failure times are independently distributed. The failure is due to more than one reason,
see Crowder [14]. The competing risks data discussed here under AT-I PHCS and Weibull distributions
with common shape parameters are assumed to the failure times. The competing risks data under
AT-I PHCS with the assumption of exponential distribution are analyzed by Ashour and Nassar [15].
The exponential distribution has a constant failure rate, so it has serious limitations in modeling
lifetime data. The inference for Weibull distribution under adaptive type-I progressive hybrid censored
competing risks data are investigated by Ashour and Nassar [16].
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The main aim of this paper is studying the competing risk model under AT-I PHCS. The lifetimes
under the competing risks have independent Weibull distributions with common shape parameters.
This paper can be organized as follows:

The model description and the notation are introduced in Section 1. The maximum likelihood
estimation of the unknown parameters is established in Section 3. Bayesian estimation of the
parameters under squared error (SE) and LINEX loss functions are discussed in Section 4. The expected
Bayesian estimation under squared error and LINEX loss functions are derived in Section 5.
Some properties of the E-Bayesian estimators are also derived in Section 6. Finally, two examples of
the real data set and numerical simulation results are presented in Section 7.

2. Model Description

Suppose n identical components are put into a lifetime test with prefixed progressive censoring
scheme Ri, i = 1, . . . , m, 1 ≤ m ≤ n and the experiment is terminated at time τ, where τ ∈ (0, ∞).
The lifetime for the components are assumed to be the Weibull distribution. Under the adaptive
type-I progressive censoring scheme and in the presence of competing risks data, we have the
following observation:

(X1:m:n, c1, R1), · · · , (Xm−1:m:n, cm−1, Rm−1), (Xm:m:n, cm, 0), · · · , (XJ:m:n, cJ , 0), (1)

where the indicator ci is denoting the reason of failure, and J is the number of failures before time τ.
Consider that R∗J is the number of remaining components left at the time point τ with Rm =

Rm+1 = · · · = RJ = 0. Let ci ∈ (1, 2), here, ci = k, k = 1, 2 means that the component i has failed due
to reason k. Furthermore, we define

I1(ci = 1) =

{
1, ci = 1
0, otherwise

and I2(ci = 2) =

{
1, ci = 2
0, otherwise

Thus, the random variables Dk = ∑J
i=1 I1(ci = k) describe the number of failures due to the

reason k, k = 1, 2 for failure.
The latent failure times X1i and X2i are assumed to be independent. Xki, i = 1, · · · , n, have Weibull

distributions with parameters β and λk, (k = 1, 2) (same shape and different scale parameter).
The corresponding survival function F̄k and the hazard rate function hk are given, respectively, by

F̄k(x; λk, β) = e−λkxβ
, x > 0, λk, β > 0, (2)

and
hk(x; λk, β) = λkβxβ−1, x > 0, λk, β > 0. (3)

3. Maximum Likelihood Estimation

Based on adaptive type-I progressive hybrid censoring with a sample of size m obtained from a
life test experiment of n items from the Weibull distribution, the likelihood function of the observed
data (x1, c1), · · · , (τ, R∗J ), for a given scheme R1, R2, · · · , Rm−1, 0 · · · , 0, R∗J , can be written as

L = c
J

∏
i=1

{
[ f1(xi)F̄2(xi)]

I(ci=1)
[ f2(xi)F̄1(xi)]

I(ci=2)
[F̄1(xi)F̄2(xi)]

Ri
}
[F̄1(τ)F̄2(τ)]

R∗J , (4)

where xi = xi:m:n and c is a constant that doesn’t depend on the parameters.
The likelihood function can be represented by applying the identity fk = hk F̄k as follows:

L = c
J

∏
i=1

{
[h1(xi)]

I(ci=1) [h2(xi)]
I(ci=2) [F̄1(xi)F̄2(xi)]

Ri+1
}
[F̄1(τ)F̄2(τ)]

R∗J , (5)
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where J = D1 + D2 and J > 0.
From Equations (2), (3) and (5), the likelihood function ignoring the normalized constant can be

written as follows:

L(λ1, λ2|x¯
) = λD1

1 λD2
2 ϕ(β; x

¯
)e−(λ1+λ2)T , (6)

where x
¯
= (x1, x2, . . . , xr), ϕ(β; x

¯
) = βJ ∏J

i=1 xβ−1
i , T = ∑J

i=1(1 + Ri)xβ
i + R∗J τβ, R∗J = n− J −∑J

i=1 Ri,
and xi = xi:m:n for simplicity of notation.

Assume that the parameter β is known and takes the natural logarithm of (6); then, differentiating
with respect to λ1 and λ2, we can obtain the MLEs of λ1 and λ2 as

λ̂1 =
D1

T
and λ̂2 =

D2

T
. (7)

Before progressing further, we assume the case of 1 ≤ Di ≤ m, i = 1, 2 in all of the
next sections. Three ways to get an estimation performance assessment are the expectation,
variance, and mean-square error (MSE). It can be shown that T has a Gamma (Di, λi, i = 1, 2)
distribution. Therefore, the expectations and mean square errors for all estimators mentioned above
are obtained respectively as follows: For MLE, λ̂MLE , of λ,

E
(

λ̂i
MLE

)
=
∫ ∞

0

Di
t

λ
Di
i

Γ(Di)
tDi−1e−λitdt =

Di
Di − 1

λi, i = 1, 2,

and

MSE
(

λ̂i
MLE

)
= E

(
λi − λ̂i

MLE
)2

= λ2
i − 2λiE(λ̂i

MLE
) + E

(
λ̂i

MLE
)2

=
Di + 2

(Di − 1)(Di − 2)
λ2

i , i = 1, 2. (8)

4. Bayesian Estimation

In this section, we obtain the Bayes estimators of the parameters λ1 and λ2 based on SE and
LINEX loss functions. For developing the Bayesian estimation, we assume that the parameters λ1 and
λ2 are independently distributed according to gamma distribution. Let λj, j = 1, 2 have a gamma prior
with scale parameters cj and shape parameters dj. The joint prior density of λ1 and λ2 can be written
as follows:

g(λ1, λ2) ∝ λd1−1
1 λd2−1

2 e−c1λ1−c2λ2 , cj, dj > 0, j = 1, 2. (9)

The joint prior (9), can be derived as a special case from the dependent prior proposed by Kundu
and Pradhan [17]. Based on the likelihood function (6) and the joint prior density (9), the joint posterior
density of λ1 and λ2 given β, and the data can be written as

q(λ1, λ2|x¯
) ∝ λD1+d1−1

1 λD2+d2−1
2 e−λ1(T+c1)−λ2(T+c2). (10)

From (10), we observe that the posterior density functions of λ1 and λ2 are gamma(D1 + d1, T + c1)

and gamma(D2 + d2, T + c2), respectively. Based on the SE loss function, the Bayes estimators of λ1

and λ2 can be obtained as the posterior means with the following forms:

λ̂BS
j =

Dj + dj

T + cj
, j = 1, 2. (11)

Considering d1 = d2 = c1 = c2 = 0, the Bayes estimators in (11) coincide with the MLEs in (7).
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Now, we obtain the Bayes estimators based on LINEX loss function proposed by Varian [11].
The LINEX loss function with parameter ω is given by

ψ(µBL, µ) = eω(µBL−µ) −ω(µBL − µ)− 1, (12)

where ω 6= 0 is a constant, µ is the parameter to be estimated, and µBL is the Bayes estimator under
the LINEX loss function. From (12), the Bayes estimator µBL is

µBL = − 1
ω

ln E(e−ωµ), ω 6= 0. (13)

From (10) and (13), the Bayes estimators of the parameters λ1 and λ2 can be obtained as

λ̂BL
j =

Dj + dj

ω
ln

(
1 +

ω

T + cj

)
, j = 1, 2. (14)

Under the SE loss function, the MSE of the parameters, λj, j = 1, 2, can be obtained as

MSE
(

λ̂BS
j (cj, dj)|T

)
= E

(
(λj − λ̂BS

j (cj, dj))
2|T
)

= E(λ2
j |T)− 2λ̂BS

j (cj, dj)E(λj|T) + (λ̂BS
j (cj, dj))

2

=
(Dj + dj + 1)(Dj + dj)

(T + cj)2 − 2

(
Dj + dj

T + cj

)(
Dj + dj

T + cj

)
+

(
Dj + dj

T + cj

)2

=
Dj + dj

(T + cj)2 , j = 1, 2.

(15)

In addition, when −1 < w
T+cj

< 1, the Bayesian estimator, λ̂BL
j (cj, dj), j = 1, 2, has the

following properties:

MSE
(

λ̂BL
j (cj, dj)|T

)
= E

(
(λj − λ̂BL

j (cj, dj))
2|T
)

= E(λ2
j |T)− 2λ̂BL

j (cj, dj)E(λj|T) + (λ̂BL
j (cj, dj))

2

=
(Dj + dj + 1)(Dj + dj)

(T + cj)2 − 2
(Dj + dj)

2

w(T + cj)
ln(1 +

w
T + cj

) (16)

+
(Dj + dj

w
ln(1 +

w
T + cj

)
)2

=
Dj + dj

(T + cj)2 +

(Dj + dj

T + cj

)2{ ∞

∑
i=2

w(i−1)(−1)(i−1)

i(T + cj)(i−1)

}2

, j = 1, 2.

5. E-Bayesian Estimation

E-Bayesian (Expected Bayesian) estimation was first introduced in literature by Han [18].
He obtained the estimate of the scale parameter of the Weibull distribution based on SE loss function
and also derived the properties of the E-Bayesian estimation. E-Bayesian based on three different
prior distributions of hyper parameter are used in this section to investigate the influence of different
prior distributions on the E-Bayesian of λj, j = 1, 2. For more relevant research about the E-Bayesian
estimation, see Han [19], Jaheen and Okasha [20], Azimi et al. [21], Okasha [22], Okasha and Wang [23],
and Abdallah and Jumping [24].

Han [18] stated that the prior distribution of dj and cj, j = 1, 2 should be determined to ensure
that the prior distribution g(λj), j = 1, 2 is a decreasing function in λj, j = 1, 2. To be sure from this
condition, we find the first derivative of g(λj), j = 1, 2 with respect to λj, j = 1, 2 as
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∂g(λj)

∂λj
∝ λ

dj−2
j e−cjλj [dj − 1− cjλj], j = 1, 2.

Thus, for 0 < dj < 1 and cj > 0, j = 1, 2, the function
∂g(λj)

∂λj
< 0, j = 1, 2, and therefore

g(λj), j = 1, 2 is a decreasing function of λj, j = 1, 2. Suppose that dj and cj, j = 1, 2 are independent
with bivariate PDF given by

π(dj, cj) = πj(dj)πj(cj), j = 1, 2.

Then, the E-Bayesian estimate of the parameter λj, j = 1, 2, (expectation of the Bayesian estimate
of λj, j = 1, 2), according to Han [18] can be obtained as follows:

λ̂j
EB

=
∫ ∫

D
λ̂j

B
(dj, cj)π(dj, cj)ddjdcj, j = 1, 2, (17)

where λ̂j
B
(dj, cj) is the Bayesian estimator of λj given by Equations (11) and (14), λ̂j

EB
(dj, cj) is the

expected Bayes estimate of λj, j = 1, 2 under any loss function. The value range of hyper parameter dj
and cj, j = 1, 2 satisfy D =

{
(a, b)|0 < dj < 1, 0 < cj < s, j = 1, 2

}
. Suppose the prior distribution of dj

and cj, j = 1, 2 are beta distribution and uniform distribution in (0, s), respectively. For more details
about E-Bayesian estimation, see Han [18], Okasha [22] and Okasha, and Wang [23].

The expected mean square error (E-MSE) of the parameter λj, j = 1, 2 according to Han [19] can be
obtained as follows:

E-MSE(λ̂j) =
∫ ∫

D
MSE(λ̂j)(dj, cj)π(dj, cj)ddjdcj, j = 1, 2, (18)

where MSE(λ̂j)(dj, cj) is the MSE of λj, j = 1, 2 under any loss function.

5.1. E-Bayesian Estimation under SE Loss Function

Based on three different prior distributions of the hyper-parameters dj and cj, the E-Bayesian
estimates of the parameter λj, j = 1, 2 can be obtained. Accordingly, these prior distributions are
selected to show the effect of the different prior distributions on the E-Bayesian estimation of the
parameter λj, j = 1, 2. The selected priors distributions are given by

π1(dj, cj) =
1

sB(a,b)da−1
j (1− dj)

b−1 0 < dj < 1, 0 < cj < s
π2(dj, cj) =

2
s2B(a,b) (s− cj)da−1

j (1− dj)
b−1, 0 < dj < 1, 0 < cj < s

π3(dj, cj) =
2cj

s2B(a,b)da−1
j (1− dj)

b−1, 0 < dj < 1, 0 < cj < s

 . (19)

These prior distributions are used to guarantee that g(λj), j = 1, 2 is a decreasing function in
λj, j = 1, 2. Now, under SE loss function, the E-Bayesian estimates of the parameter λj, j = 1, 2 can be
obtained from (11), (17), and (19). Using the prior distribution, π1(dj, cj) is given by

λ̂j
EBS1

=
∫ ∫

D
λ̂j

BS
(dj, cj)π1(dj, cj)dcjddj

=
1
s

(
Dj +

a
a + b

)
ln
(

1 +
s
T

)
, j = 1, 2.

(20)

Similarly, under SE loss function, the E-Bayesian estimates of λj, j = 1, 2 based on π2(dj, cj) and
π3(dj, cj) are given, respectively, by

λ̂j
EBS2

=
2
s

(
Dj +

a
a + b

) [(
1 +

T
s

)
ln
(

1 +
s
T

)
− 1
]

, j = 1, 2, (21)
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and

λ̂j
EBS3

=
2
s

(
Dj +

a
a + b

) [
1− T

s
ln
(

1 +
s
T

)]
, j = 1, 2. (22)

The E-MSE of the parameter λj, j = 1, 2 can be obtained from (15), (18), and (19). Using the prior
distribution, π1(dj, cj) is given by

E-MSE(λ̂j
BS1

) =
∫ ∫

D
MSE(λ̂j

BS
)(dj, cj)π1(dj, cj)dcjddj

=

(
Dj +

a
a + b

)(
1

T(T + s)

)
, j = 1, 2. (23)

Similarly, under SE loss function, the E-MSE of λj, j = 1, 2 based on π2(dj, cj) and π3(dj, cj) are
given, respectively, by

E-MSE(λ̂j
BS2

) =
2
s2

(
Dj +

a
a + b

) [ s
T
− ln

(
1 +

s
T

)]
, j = 1, 2, (24)

and

E-MSE(λ̂j
BS3

) =
2
s2

(
Dj +

a
a + b

) [
ln
(

1 +
s
T

)
− s

T + s

]
, j = 1, 2. (25)

5.2. E-Bayesian Estimation under LINEX Loss Function

Under LINEX loss function, the E-Bayesian estimation of λj, j = 1, 2 can be obtained by using
the different prior distributions of the hyper-parameters given by (19). For the prior distribution,
π1(dj, cj), j = 1, 2 and, based on (14), (17), and (19), the E-Bayesian estimate of λj, j = 1, 2 is obtained as

λ̂j
EBL1

=
∫ ∫

D
λ̂j

BL
(dj, cj)π1(dj, cj)dcjddj

=
1

sω

(
Dj +

a
a + b

) [
s ln

(
1 +

ω

s + T

)
+ (T + ω) ln

(
1 +

s
T + ω

)
− (26)

T ln
(

1 +
s
T

)]
, j = 1, 2.

Similarly, under LINEX loss function, the E-Bayesian estimates of λj, j = 1, 2 using π2(dj, cj) and
π3(dj, cj) are given, respectively, by

λ̂j
EBL2

=

(
Dj +

a
a + b

) [
1
ω

ln
(

1 +
ω

T

)
− (T + s)2

s2ω
ln
(

1 +
s
T

)
+

(T + ω + s)2

s2ω
×

ln
(

1 +
s

T + ω

)
− 1

s

]
, j = 1, 2,

(27)

and

λ̂j
EBL3

=

(
Dj +

a
a + b

) [
1
ω

ln
(

1 +
ω

s + T

)
+

T2

s2ω
ln
(

1 +
s
T

)
− (T + ω)2

s2ω
×

ln
(

1 +
s

T + ω

)
+

1
s

]
, j = 1, 2.

(28)

The E-MSE of the parameter λj, j = 1, 2 can be obtained from (16), (18), and (19). Using the prior
distribution, π1(dj, cj) is given by

E-MSE(λ̂j
BLk

) =
∫ ∫

D
MSE(λ̂j

BL
)(dj, cj)πk(dj, cj)dcjddj, j = 1, 2, k = 1, 2, 3, (29)
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where λ̂j
BL

, j = 1,2, is the Bayesian estimator of λj given by Equation (14), MSE(λ̂j
BL
) is the mean

square error of Bayesian estimator of λj given by Equation (16) and D is the domain of dj and cj for
which the prior density is decreasing in λj.

The E-MSE of the parameter λj, j = 1, 2 can be obtained from (14), (18), and (19). Using the prior
distribution, π1(dj, cj) is given by

E-MSE(λ̂j
BL1

) =
∫ ∫

D
MSE(λ̂j

BL
)(dj, cj)π1(dj, cj)dcjddj

=
1
s

{
s

T(T + s)
I1j +

2
sω

I2j

(
Li2(−

ω

T
)− Li2(−

ω

s + T
)

)
− 1

sω2 I2j

[
−ω

+2ω log(T) log[T + ω]2 + 2ω log(T + ω) log
(

T + ω

T

)
+ T log

(
T + ω

T

)2

×
(

log(T + ω)− log
(

T + ω

ω

))
− 2ω log(s + T) log(s + T + ω) (30)

+ω log(s + T + ω)2 + 2ω log(s + T) log
(

s + T + ω

ω

)
− 2ω log(s + T + ω)

× log
(

1 +
ω

s + T

)
− (s + T) log

(
1 +

ω

s + T

)2
− 2ωLi2(−

T
ω
)

+2ωLi2(−
s + T

ω
)
]}

,

where Lin(z) = ∑∞
k=1

zk

kn , |z| < 1 is the polylogarithm function,

I1j = D2
j +

3a + b
a + b

Dj +
a(2 + 2a + b)

(a + b)(a + b + 1)
, j = 1, 2,

and

I2j = D2
j +

2a
a + b

Dj +
a(a + 1)

(a + b)(a + b + 1)
, j = 1, 2.

Similarly, under LINEX loss function, the E-MSE of λj, j = 1, 2 based on π2(dj, cj) and π3(dj, cj)

are given, respectively, by

E-MSE(λ̂j
BL2

) =
2I1j

s2

( s
T
− log

(
1 +

s
T

))
−

4I2j

s2ω

(
ω log (T + ω) + T log

(
T + ω

T

)
−ω log (s + T + ω)− (s + T) log

(
1 +

ω

s + T

)
− (s + T)Li2(−

ω

T
)

+ (s + T)Li2(−
ω

s + T
)− 1

4ω

(
ω(2(s + T) + ω) log (T + ω)2 + 2Tω log

(
T + ω

T

)
− T(2s + T) log

(
T + ω

T

)2
+ 2ω log (T + ω) (ω− (2(s + T) + ω) (log(T)

+ log
(

T + ω

T

)))
+ ω

(
2(2(s + T) + ω) log(T) log

(
T + ω

ω

)
+ (−2ω

+(2(s + T) + ω) (2 log(s + T)− log(s + T + ω))) log(s + T + ω)

−2(2(s + T) + ω) log(s + T) log
(

s + T + ω

ω

))
+ 2ω (−s− T + (2(s + T) + ω)

× log(s + T + ω)) log
(

1 +
ω

s + T

)
+ (s + T)2 log

(
1 +

ω

s + T

)2

+ 2ω(2(s + T) + ω)

(
Li2(−

T
ω
)− Li2(−

s + T
ω

)

)))
.

(31)
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E-MSE(λ̂j
BL3

) =
2I1j

s2

(
log(1 +

s
T
)− s

s + T

)
+

4I2j

s2ω

(
ω log(T + ω) + T log

(
T + ω

T

)
−ω log(s + T + ω)− (s + T) log

(
1 +

ω

s + T

)
− TLi2(−

ω

T
) + TLi2(−

ω

s + T
)

)
+

I2j

s2ω2

(
−ω(2T + ω) log(T + ω)2 − 2Tω log

(
T + ω

T

)
+ T2 log

(
T + ω

T

)2

+ 2ω log(T + ω)

(
−ω + (2T + ω)

(
log(T) + log

(
T + ω

T

)))
+ ω

(
−2(2T + ω) log(T) log

(
T + ω

ω

)
+ log(s + T + ω) (2ω− 2(2T + ω) log(s + T)

+(2T + ω) log(s + T + ω)) + 2(2T + ω) log(s + T) log
(

s + T + ω

ω

))
+ 2ω(s + T − (2T + ω) log(s + T + ω)) log

(
1 +

ω

s + T

)
+ (s− T)(s + T)

× log
(

1 +
ω

s + T

)2
+ 2ω(2T + ω)

(
−Li2(−

T
ω
) + Li2(−

s + T
ω

)

))
.

(32)

6. Properties of E-Bayesian Estimation Based on SE Loss Function

Now, the relations among λ̂j
EBSi

and E-MSE(λ̂j
EBSi

), (j = 1, 2, i = 1, 2, 3) estimations will
be discussed.

I. Relations among λ̂j
EBSi

, (j = 1, 2, i = 1, 2, 3)

Proposition 1. Let 0 < s < T, a > 0, b > 0 and λ̂j
EBSi, (j = 1, 2, i = 1, 2, 3) be given by (20)–(22).

Then, the following inequalities are

(i) λ̂j
EBS3

< λ̂j
EBS1

< λ̂j
EBS2.

(ii) limT→∞ λ̂j
EBS1

= limT→∞ λ̂j
EBS2

= limT→∞ λ̂j
EBS3.

Proof. See Appendix A.

II. Relations among λ̂j
EBLi

, (j = 1, 2, i = 1, 2, 3)

Proposition 2. Let 0 < s < T, a > 0, b > 0 and λ̂j
EBLi, (j = 1, 2, i = 1, 2, 3) be given by (26)–(28).

Then, the following inequalities are

(i) λ̂j
EBL3

< λ̂j
EBL1

< λ̂j
EBL2.

(ii) limT→∞ λ̂j
EBL1

= limT→∞ λ̂j
EBL2

= limT→∞ λ̂j
EBL3.

Proof. See Appendix A.

III. Relations among E-MSE (λ̂j
EBSi

), (j = 1, 2, i = 1, 2, 3)

Proposition 3. Let 0 < s < T, a > 0, b > 0, and E-MSE(λ̂j
EBSi

) (i = 1, 2, 3) be given by (23)–(25).
Then, the following inequalities are

(i) E-MSE(λ̂j
EBS3

) < E-MSE(λ̂j
EBS1

) < E-MSE(λ̂j
EBS2

).
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(ii) limT→∞ E-MSE(λ̂j
EBS1

) = limT→∞ E-MSE(λ̂j
EBS2

) = limT→∞ E-MSE(λ̂j
EBS3

).

Proof. See Appendix A.

7. Numerical Results

In this section, the numerical discussion is performed on the hypothesis that the scale parameters
and common shape parameter are unknown. MATHCAD 2007 was used to perform all calculations.
Numerical clarification is made to evaluate these estimates and to clarify the behavior of the proposed
methods. We reanalyze the real data set analyzed by Hoel [25], and reused by Kundu et al. [26].
The simulation study used a comparison of performance of the different estimators values and
different schemes.

7.1. Real Data

In this subsection, we reanalyze a real data set, which was originally reported in Hoel [25] and later
by Kundu et al. [26], Pareek et al. [27], and Cramer and Schmiedt [28]. The data were obtained from
a laboratory experiment in which male mice received a radiation dose of 300 roentgens at 35 days
to 42 days (5–6 weeks) of age. The cause of death for each mouse was determined by reticulum cell
sarcoma as cause 1 and other causes of death as cause 2; there were n = 77 observations that remain in
the analysis.

Example 1. Suppose τ = 600, the censoring scheme D = 25, R1 = R2 = · · · = R19 = 2 and R20 = R21 =

· · · = RD = 0. The adaptive type I progressive hybrid censored sample from the original data is given as follows:
(40,2), (42,2), (51,2), (62,2), (163,2), (179,2), (206,2), (222,2), (228,2), (252,2), (317,1), (324,2), (341,2), (385,2),
(399,1), (407,2), (420,2), (517,2), (524,2), (536,1), (554,1), (571,1), (586,1), (586,2), (594,1).

The first component of the data denotes the lifetime and the second indicate the reason of failure.
There were D = 25, D1 = 7 deaths due to reason 1 and D2 = 18 deaths due to reason 2. The maximum
likelihood (ML), the Bayesian estimates (BE) for Prior 0: d1 = d2 = c1 = c2 = 0 and Prior 1:
d1 = 0.5, c1 = 1.2, d2 = 0.6, c2 = 1.3, and the E-Bayesian estimate (E-BE) are computed for the
following initial values β = 0.018, ω = 1.5, s = 15, a = 2, b = 3, see Table 1.

Table 1. The MLE, BE, E-BE, and the MSE(E-MSE).

BE E-BE

λ̂j MLE LF Prior 0 Prior 1 Prior I Prior II Prior III

λ̂1 SE 0.08217456 0.08682112 0.08001569 0.08217776 0.07785363
(MSE) 0.08217456 (9.8767× 10−4) (9.8669× 10−4) (8.6710× 10−4) (9.1394× 10−4) (8.2026× 10−4)

(2.0258× 10−3) LINEX 0.08145945 0.08607594 0.07937234 0.08149984 0.07724485
(9.8718× 10−4) (9.8623× 10−4) (8.6652× 10−4) (9.1340× 10−4) (8.1064× 10−4)

λ̂2 SE 0.21130602 0.21415876 0.19895794 0.20433388 0.193582
(MSE) 0.21130602 (2.5806× 10−3) (2.4868× 10−3) (2.1560× 10−3) (2.2725× 10−3) (2.0396× 10−3)

(3.2831× 10−3) LINEX 0.20946715 0.21232066 0.19735826 0.20264825 0.19206827
(2.5739× 10−3) (2.4802× 10−3) (2.1486× 10−3) (2.2654× 10−3) (2.0319× 10−3)

Example 2. The same data are used, m and Ri’s are the same as before, while τ = 650 instead of τ = 600.
The adaptive type-I progressive hybrid sample from the original data in this case is given as: (40,2), (42,2), (51,2),
(62,2), (163,2), (179,2), (206,2), (222,2), (228,2), (252,2), (317,1), (324,2), (341,2), (385,2), (399,1), (407,2),
(420,2), (517,2), (524,2), (536,1), (554,1), (571,1), (586,1), (586,2), (594,1), (619,2), (621,1), (622,2).

Here, D = 28 , D1 = 8 and D2 = 20. The MLE, BEs, and E-BE are computed for the following initial
values: β = 0.018, d1 = 0.5, c1 = 1.2, d2 = 0.6, c2 = 1.3, ω = 1.5, s = 3, a = 2, b = 3, see Table 2.
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Table 2. The MLE, BE, E-BE, and the MSE(E-MSE).

BE E-BS

λ̂j MLE LF Prior 0 Prior 1 Prior I Prior II Prior III

λ̂1 SE 0.09389191 0.09837467 0.090809 0.093262 0.088356
(MSE) 0.09389191 (1.1219× 10−3) (1.1177× 10−3) (9.8386× 10−4) (1.0369× 10−3) (9.3072× 10−4)

(2.0889× 10−3) LINEX 0.09307501 0.09753052 0.090079 0.092493 0.087665
(1.1216× 10−3) (1.1174× 10−3) (9.8339× 10−4) (1.0366× 10−3) (9.3020× 10−4)

λ̂2 SE 0.23472978 0.23725655 0.220536 0.226494 0.214579
(MSE) 0.23472978 (2.7549× 10−3) (2.7529× 10−3) (2.3894× 10−3) (2.5184× 10−3) (2.2603× 10−3)

(3.5343× 10−3) LINEX 0.23268753 0.23522066 0.218764 0.224626 0.212901
(2.7491× 10−3) (2.7471× 10−3) (2.3825× 10−3) (2.5119× 10−3) (2.2532× 10−3)

From two examples of previous real data, we noticed that:

1. Exact time τ plays an important role in estimating unknown parameters.
2. Based on the SE and LINEX loss functions for Prior 0, we note that MLE performance is very

close to BEs and E-BEs.
3. The E-BEs of λ1 and λ2 under LINEX loss function with Prior III give smaller E-MSEs.
4. The ordering of performance of estimates of λ1 and λ2 in terms of minimum MSEs (E-MSEs)

(from best to worst) are E-BEs with prior III, E-BEs with Prior I, E-BEs with prior II, BEs with
prior 1, with BEs with prior 0 and MLs.

5. Based on prior 0, it can be seen that the BEs are quite close to the MLEs.
6. Based on LINEX loss function and minimum MSE’s (E-MSE’s), the E-BEs and BEs are better than

those under SE loss function; this due to the use of SE which is symmetric loss function and based
on the assumption that the loss is the same in any direction.

7.2. Simulation Study

In this subsection, we performed a simulation study to evaluate the performance of different
methods presented above. The simulation was conducted according to the following steps:

1. For given values, the sample size n = 30, 50 and different effective number of failures m = 5, 10
and τ = 0.8, 1.2.

2. For given values, the parameters (λ1, λ2, β) = (0.4, 0.6, 1.5) for each case.
3. Determine three different sampling schemes:

• Scheme 1: R1 = · · · = Rm−1 = 0 and Rm = n−m,
• Scheme 2: R1 = · · · = Rm−1 = 1 and Rm = n− 2m + 1, and
• Scheme 3: R1 = · · · = Rm−1 = Rm = (n−m)/m.

4. Determine n, m, R′is, T and the value of the parameters λj, j = 1, 2.
5. If xm:m:n < τ, the progressive censoring scheme will become R1, R2, · · · , Rm, Rm+1, · · · , RD,

where Rm = Rm+1 = · · · = RD = 0.
6. All Bayesian estimates are calculated by two types of priests:

• Prior 0 described the case of hyper-parameter values, d1 = d2 = c1 = c2 = 0.
• Prior 1 described the case of hyper-parameter values, d1 = 0.8, c1 = 2, d2 = 0.6, c2 = 1,

see Tables 3–6.

7. Generate the conventional progressive type-I censored sample from the Weibull model according

to the method proposed by Kemp and Kemp [29], by using X =
(

1
λk

log
(

1
1−U

))1/β
, k = 1, 2,

where U is uniform (0, 1).
8. The assumption that the number of failures due to each reason of failures is at least one.
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9. Under the SE loss function, the estimates λ̂j
BS

, MSE(λ̂j
BS
), λ̂j

EBSi
and E-MSE(λ̂j

BSi
), j = 1, 2,

and i = 1, 2, 3 are computed from (11), (15), (20)–(25).

10. Using the LINEX loss function by choosing (ω = 1.5) in all the cases, the estimates λ̂j
BL

,

MSE(λ̂j
BL
), λ̂j

EBLi
and E-MSE(λ̂j

BLi
), j = 1, 2, i = 1, 2, 3 are computed from (14), (16),

and (26)–(32).
11. Repeat the above steps 10,000 times. The average of all 10,000 estimated values from Steps 9–10

are respectively calculated and summarized.
12. The computational results are displayed in Tables 3–6.

Table 3. The average values of the MLE, BE, E-BE, and the MSE(E-MSE) in parentheses, under different
censoring schemes and different τ’s, for n = 30 and m = 5.

BE E-BE

S λ̂j MLE LF Prior 0 Prior 1 Prior I Prior II Prior III

τ = 0.8

SE 0.07113 0.09168 0.06427 0.0702 0.05923
λ̂1 0.07113 (2.3712× 10−3) (2.3652× 10−3) (1.6893× 10−3) (1.9745× 10−3 (1.4041× 10−3)

(MSE) (2.7518× 10−3) LINEX 0.06941 0.0896 0.06348 0.06876 0.0582
1 (2.3546× 10−3) (2.3498× 10−3) (1.67115× 10−3) (1.9569× 10−3) (1.3854× 10−3)

SE 0.09552 0.1118 0.08341 0.09048 0.07634
λ̂2 0.09552 (3.1837× 10−3) (3.6059× 10−3) (2.1769× 10−3) (2.5444× 10−3) (1.8095× 10−3)

(MSE) (NA) LINEX 0.09321 0.10918 0.08182 0.08863 0.07502
(3.1694× 10−3) (3.5931× 10−3) (2.1599× 10−3) (2.5283× 10−3) (1.7915× 10−3)

SE 0.0714 0.09197 0.06492 0.07043 0.05941
λ̂1 0.0714 (2.3846× 10−3) (2.3792× 10−3) (1.69710× 10−3) (1.9840× 10−3) (1.4102× 10−3)

(MSE) (4.1442× 10−3) LINEX 0.06967 0.08988 0.06368 0.06898 0.05838
2 (2.3681× 10−3) (2.3639× 10−3) (1.6789× 10−3) (1.9665× 10−3) (1.3915× 10−3)

SE 0.09556 0.11186 0.08342 0.09051 0.07634
λ̂2 0.09556 (3.1908× 10−3) (3.1144× 10−3) (2.1806× 10−3) (2.549× 10−3) (1.8119× 10−3)

(MSE) (NA) LINEX 0.09324 0.10923 0.08183 0.08865 0.07502
(3.1766× 10−3) (3.1017× 10−3) (2.1635× 10−3) (2.5331× 10−3) (1.7939× 10−3)

SE 0.07173 0.09243 0.06514 0.07070 0.05958
λ̂1 0.07173 (2.4134× 10−3) (2.3135× 10−3) (1.7133× 10−3) (2.0045× 10−3) (1.4219× 10−3)

(MSE) (4.1634× 10−3) LINEX 0.06998 0.09031 0.06389 0.06924 0.05854
3 (2.3969× 10−3) (2.3084× 10−3) (1.6952× 10−3) (1.9871× 10−3) (1.4033× 10−3)

SE 0.09648 0.11287 0.08407 0.09124 0.07689
λ̂2 0.09648 (3.2457× 10−3) (3.1735× 10−3) (2.2109× 10−3) (2.5867× 10−3) (1.8349× 10−3)

(MSE) (NA) LINEX 0.09412 0.11020 0.08245 0.08936 0.07555
(3.2317× 10−3) (3.1609× 10−3) (2.1939× 10−3) (2.5708× 10−3) (1.8170× 10−3)

τ = 1.2

SE 0.07108 0.09164 0.06468 0.07017 0.0592
λ̂1 0.07108 (2.3696× 10−3) (2.3638× 10−3) (1.6884× 10−3) (1.9734× 10−3) (1.4033× 10−3)

(MSE) (NA) LINEX 0.06936 0.08956 0.06345 0.06873 0.05817
1 (2.3531× 10−3) (2.3485× 10−3) (1.6702× 10−3) (1.9559× 10−3) (1.3846× 10−3)

SE 0.09557 0.11184 0.08345 0.09052 0.07638
λ̂2 0.09557 (3.1853× 10−3) (3.1674× 10−3) (2.1779× 10−3) (2.5455× 10−3) (1.8103× 10−3)

(MSE) (6.7849× 10−2) LINEX 0.09326 0.10922 0.08186 0.08867 0.07505
(3.1711× 10−3) (3.1547× 10−3) (2.1609× 10−3) (2.5295× 10−3) (1.7923× 10−3)

SE 0.07117 0.09176 0.06474 0.07024 0.05925
λ̂1 0.07117 (2.3770× 10−3) (2.3725× 10−3) (1.6925× 10−3) (1.9787× 10−3) (1.4064× 10−3)

(MSE) (NA) LINEX 0.06945 0.08967 0.06351 0.0688 0.05822
2 (2.3604× 10−3) (2.3572× 10−3) (1.6744× 10−3) (1.9611× 10−3) (1.3877× 10−3)

SE 0.09579 0.11208 0.0836 0.0907 0.0765
λ̂2 0.09579 (3.1986× 10−3) (3.1627× 10−3) (2.1852× 10−3) (2.5546× 10−3) (1.8158× 10−3)

(MSE) (5.0019× 10−3) LINEX 0.09347 0.10945 0.0820 0.08883 0.07517
(3.1844× 10−3) (3.1609× 10−3) (2.1682× 10−3) (2.5386× 10−3) (1.7979× 10−3)
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Table 3. Cont.

BE E-BE

S λ̂j MLE LF Prior 0 Prior 1 Prior I Prior II Prior III

SE 0.07194 0.09262 0.0653 0.07088 0.05973
λ̂1 0.07194 (2.4206× 10−3) (2.4199× 10−3) (1.7176× 10−3) (2.0096× 10−3) (1.4255× 10−3)

(MSE) (4.1995× 10−3) LINEX 0.07018 0.0905 0.06405 0.06941 0.05868
3 (2.4042× 10−3) (2.4041× 10−3) (1.6995× 10−3) (1.9922× 10−3) (1.4068× 10−3)

SE 0.09628 0.11268 0.08392 0.09108 0.07675
λ̂2 0.09628 (3.2392× 10−3) (3.1674× 10−3) (2.2069× 10−3) (2.5822× 10−3) (1.8317× 10−3)

(MSE) (NA) LINEX 0.09393 0.11001 0.0823 0.0892 0.07541
(3.2252× 10−3) (3.1549× 10−3) (2.2189× 10−3) (2.5662× 10−3) (1.8138× 10−3)

Table 4. The average values of the MLE, BE, E-BE, and the MSE(E-MSE) in parentheses, under different
censoring schemes and different τ’s, for n = 30 and m = 10.

BE E-BE

S λ̂j MLE LF Prior 0 Prior 1 Prior I Prior II Prior III

τ = 0.8

SE 0.14286 0.15895 0.11966 0.12982 0.10951
λ̂1 0.14286 (4.7681× 10−3) (4.6730× 10−3) (3.1266× 10−3) (3.6549× 10−3) (2.5983× 10−3)

(MSE) (7.3873× 10−3) LINEX 0.1394 0.15534 0.11738 0.12715 0.10761
1 (4.7609× 10−3) (4.6667× 10−3) (3.1126× 10−3) (3.6429× 10−3) (2.5824× 10−3)

SE 0.19086 0.20407 0.15643 0.16971 0.14316
λ̂2 0.19086 (6.3693× 10−3) (6.2941× 10−3) (4.0869× 10−3) (4.7775× 10−3) (3.3965× 10−3)

(MSE) (7.6945× 10−3) LINEX 0.18624 0.19928 0.15345 0.16622 0.14067
(6.3715× 10−3) (6.2940× 10−3) (4.0771× 10−3) (4.7708× 10−3) (3.3833× 10−3)

SE 0.14365 0.15975 0.1202 0.13043 0.10997
λ̂1 0.14365 (4.8142× 10−3) (4.0175× 10−3) (3.1512× 10−3) (3.6854× 10−3) (2.6171× 10−3)

(MSE) (5.1985× 10−3) LINEX 0.14016 0.1561 0.1179 0.12775 0.10805
2 (4.8073× 10−3) (4.0115× 10−3) (3.1374× 10−3) (3.6735× 10−3) (2.6012× 10−3)

SE 0.19146 0.20471 0.1568 0.17014 0.14345
λ̂2 0.19146 (6.4159× 10−3) (6.3375× 10−3) (4.1103× 10−3) (4.8070× 10−3) (3.4136× 10−3)

(MSE) (2.1338× 10−3) LINEX 0.1868 0.19989 0.15379 0.16664 0.14095
(6.4185× 10−3) (6.3215× 10−3) (4.1005× 10−3) (4.8005× 10−3) (3.4005× 10−3)

SE 0.14398 0.16012 0.12038 0.13066 0.1101
λ̂1 0.14398 (4.8463× 10−3) (4.0498× 10−3) (3.1672× 10−3) (3.7059× 10−3) (2.6286× 10−3)

(MSE) (5.6554× 10−3) LINEX 0.14046 0.15645 0.11807 0.12796 0.10817
3 (4.8395× 10−3) (4.0439× 10−3) (3.1535× 10−3) (3.6942× 10−3) (2.6128× 10−3)

SE 0.19261 0.20587 0.15757 0.17102 0.14411
λ̂2 0.19261 (6.4829× 10−3) (6.4238× 10−3) (4.1455× 10−3) (4.8505× 10−3) (3.4404× 10−3)

(MSE) (6.6906× 10−3) LINEX 0.1879 0.2010 0.15454 0.16749 0.14159
(6.4859× 10−3) (6.4183× 10−3) (4.1358× 10−3) (4.8442× 10−3) (3.4274× 10−3)

τ = 1.2

SE 0.14344 0.15949 0.12011 0.1303 0.10992
λ̂1 0.14344 (4.7873× 10−3) (4.6898× 10−3) (3.1381× 10−3) (3.6683× 10−3) (2.6079× 10−3)

(MSE) (3.3292× 10−3) LINEX 0.13997 0.15587 0.11782 0.12762 0.10801
1 (4.7802× 10−3) (4.6837× 10−3) (3.1242× 10−3) (3.6564× 10−3) (2.5919× 10−3)

SE 0.19028 0.20351 0.15599 0.16922 0.14275
λ̂2 0.19028 (6.3498× 10−3) (6.2721× 10−3) (4.0753× 10−3) (4.7639× 10−3) (3.3868× 10−3)

(MSE) (7.3309× 10−3) LINEX 0.18567 0.19873 0.15301 0.16575 0.14027
(6.3519× 10−3) (6.2656× 10−3) (4.0653× 10−3) (4.7571× 10−3) (3.3735× 10−3)

SE 0.14403 0.16011 0.12049 0.13075 0.11023
λ̂1 0.14403 (4.8272× 10−3) (4.0289× 10−3) (3.1589× 10−3) (3.6945× 10−3) (2.6235× 10−3)

(MSE) (5.0914× 10−3) LINEX 0.14053 0.15645 0.11818 0.12805 0.10831
2 (4.8203× 10−3) (4.0229× 10−3) (3.1452× 10−3) (3.6827× 10−3) (2.6077× 10−3)

SE 0.1911 0.20436 0.15652 0.16984 0.14319
λ̂2 0.1911 (6.4044× 10−3) (6.5267× 10−3) (4.1033× 10−3) (4.7989× 10−3) (3.4078× 10−3)

(MSE) (6.3308× 10−3) LINEX 0.18645 0.19955 0.15352 0.16634 0.1407
(6.4069× 10−3) (6.5306× 10−3) (4.0935× 10−3) (4.7923× 10−3) (3.3946× 10−3)
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Table 4. Cont.

BE E-BE

S λ̂j MLE LF Prior 0 Prior 1 Prior I Prior II Prior III

SE 0.14393 0.16008 0.12034 0.13062 0.11006
λ̂1 0.14393 (4.8448× 10−3) (4.0485× 10−3) (3.1663× 10−3) (3.7048× 10−3) (2.6278× 10−3)

(MSE) (3.5418× 10−3) LINEX 0.14041 0.15641 0.11803 0.12792 0.10814
3 (4.8380× 10−3) (4.0427× 10−3) (3.1525× 10−3) (3.6931× 10−3) (2.6119× 10−3)

SE 0.19267 0.20593 0.15761 0.17107 0.14415
λ̂2 0.19267 (6.4850× 10−3) (6.4747× 10−3) (4.1467× 10−3) (4.8519× 10−3) (3.4414× 10−3)

(MSE) (6.8266× 10−3) LINEX 0.18796 0.20106 0.15458 0.16753 0.14163
(6.4880× 10−3) (6.4713× 10−3) (4.1370× 10−3) (4.8457× 10−3) (3.4284× 10−3)

Table 5. The average values of the MLE, BE, E-BE, and the MSE(E-MSE) in parentheses, under different
censoring scheme and different τ’s, for n = 50 and m = 5.

BE E-BE

S λ̂j MLE LF Prior 0 Prior 1 Prior I Prior II Prior III

τ = 0.8

SE 0.04273 0.05646 0.04267 0.04506 0.04029
λ̂1 0.04273 (8.5401× 10−4) (8.3850× 10−4) (7.2425× 10−4) (8.0513× 10−4) (6.4337× 10−4)

(MSE) (1.4851× 10−3) LINEX 0.0421 0.05566 0.04214 0.04447 0.03981
1 (8.5247× 10−4) (8.6570× 10−4) (7.2259× 10−4) (8.0354× 10−4) (6.4164× 10−4)

SE 0.05719 0.06782 0.05483 0.0579 0.05177
λ̂2 0.05719 (1.4270× 10−3) (1.3287× 10−3) (7.3054× 10−4) (8.0344× 10−4) (7.2664× 10−4)

(MSE) (NA) LINEX 0.05635 0.06684 0.05415 0.05714 0.05116
(1.1235× 10−3) (1.0968× 10−3) (7.29066× 10−4) (8.0151× 10−4) (7.2505× 10−4)

SE 0.04275 0.0565 0.04269 0.0450 0.0403
λ̂1 0.04275 (8.5542× 10−4) (8.456× 10−4) (7.2528× 10−4) (8.0635× 10−4) (6.4422× 10−4)

(MSE) (NA) LINEX 0.04213 0.0557 0.04216 0.04449 0.03983
2 (8.5388× 10−4) (8.4756× 10−4) (7.2362× 10−4) (8.0476× 10−4) (6.4248× 10−4)

SE 0.05727 0.06791 0.0549 0.05798 0.05183
λ̂2 0.05727 (1.4565× 10−3) (1.3320× 10−3) (9.3260× 10−4) (1.0368× 10−3) (8.2838× 10−4)

(MSE) (2.4449× 10−3) LINEX 0.05643 0.06693 0.05422 0.05721 0.05122
(2.1264× 10−3) (1.3129× 10−3) (9.3113× 10−4) (1.0175× 10−3) (8.2679× 10−4)

SE 0.04316 0.05701 0.04304 0.04547 0.04061
λ̂1 0.04316 (1.7145× 10−3) (1.1063× 10−3) (7.3691× 10−4) (8.1991× 10−4) (6.5391× 10−4)

(MSE) (NA) LINEX 0.04252 0.0562 0.0425 0.04486 0.04013
3 (1.7172× 10−3) (1.0871× 10−3) (7.3526× 10−4) (8.1833× 10−4) (6.5218× 10−4)

SE 0.05777 0.0685 0.05531 0.05843 0.05219
λ̂2 0.05777 (1.6633× 10−3) (1.3556× 10−3) (9.4698× 10−4) (1.0536× 10−3) (8.4033× 10−4)

(MSE) (2.4824× 10−3) LINEX 0.05692 0.06751 0.05461 0.05766 0.05157
(1.1471× 10−3) (1.3366× 10−3) (9.4553× 10−4) (1.0343× 10−3) (8.3876× 10−4)

τ = 1.2

SE 0.04253 0.05627 0.04251 0.04489 0.04013
λ̂1 0.04253 (8.5009× 10−3) (1.0814× 10−3) (7.2145× 10−4) (8.0201× 10−4) (6.4088× 10−4)

(MSE) (9.0935× 10−3) LINEX 0.04191 0.05548 0.04198 0.04429 0.03966
1 (8.4853× 10−3) (1.0621× 10−3) (7.1978× 10−4) (8.0041× 10−4) (6.3914× 10−4)

SE 0.05738 0.06801 0.0550 0.05808 0.05192
λ̂2 0.05738 (1.1466× 10−3) (1.1325× 10−3) (9.3335× 10−4) (1.0376× 10−3) (8.2913× 10−4)

(MSE) (NA) LINEX 0.05654 0.06703 0.05431 0.05731 0.05131
(1.1274× 10−3) (1.1135× 10−3) (9.3188× 10−4) (1.0182× 10−3) (8.2755× 10−4)

SE 0.04278 0.05652 0.04271 0.0451 0.04032
λ̂1 0.04278 (8.5592× 10−3) (1.0873× 10−3) (7.2564× 10−4) (8.0674× 10−4) (6.4453× 10−4)

(MSE) (1.4880× 10−3) LINEX 0.04215 0.05572 0.04218 0.04451 0.03985
2 (8.5437× 10−3) (1.0680× 10−3) (7.2397× 10−4) (8.0515× 10−4) (6.4279× 10−4)

SE 0.05725 0.06789 0.05489 0.05796 0.05181
λ̂2 0.05725 (1.4526× 10−3) (1.3316× 10−3) (9.3232× 10−4) (1.0365× 10−3) (8.2813× 10−4)

(MSE) (NA) LINEX 0.05641 0.06692 0.0542 0.0572 0.0512
(1.3603× 10−3) (1.3126× 10−3) (9.3085× 10−4) (1.0172× 10−3) (8.2654× 10−4)
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Table 5. Cont.

BE E-BE

S λ̂j MLE LF Prior 0 Prior 1 Prior I Prior II Prior III

SE 0.04314 0.05699 0.04302 0.04545 0.04059
λ̂1 0.04314 (8.7087× 10−3) (1.1058× 10−3) (7.3649× 10−4) (8.1944× 10−4) (6.5355× 10−4)

(MSE) (NA) LINEX 0.0425 0.05617 0.04248 0.04484 0.04011
3 (8.6934× 10−3) (1.0965× 10−3) (7.3484× 10−4) (8.1786× 10−4) (6.5182× 10−4)

SE 0.05779 0.06852 0.05533 0.05845 0.0522
λ̂2 0.05779 (1.1665× 10−3) (1.1557× 10−3) (9.4711× 10−4) (1.0538× 10−3) (8.4046× 10−4)

(MSE) (2.4932× 10−3) LINEX 0.05693 0.06752 0.05463 0.05767 0.05158
(1.1473× 10−3) (1.1368× 10−3) (9.4566× 10−4) (1.0344× 10−3) (8.3888× 10−4)

Table 6. The average values of the MLE, BE, E-BE, and the MSE(E-MSE) in parentheses, under different
censoring scheme and different τ’s, for n = 50 and m = 10.

BE E-BE

S λ̂j MLE LF Prior 0 Prior 1 Prior I Prior II Prior III

τ=0.8

SE 0.08591 0.09799 0.0790 0.08342 0.07458
λ̂1 0.08591 (1.7174× 10−3) (1.6835× 10−3) (1.3411× 10−3) (1.4909× 10−3) (1.1913× 10−3)

(MSE) (1.7436× 10−3) LINEX 0.08465 0.0966 0.07801 0.08232 0.0737
1 (1.6991× 10−3) (1.6655× 10−3) (1.3222× 10−3) (1.4722× 10−3) (1.1721× 10−3)

SE 0.11398 0.12351 0.10262 0.10836 0.09687
λ̂2 0.11398 (2.27844× 10−3) (2.2205× 10−3) (1.7419× 10−3) (1.9364× 10−3) (1.5473× 10−3)

(MSE) (4.7343× 10−3) LINEX 0.11231 0.12173 0.10133 0.10693 0.09573
(2.2614× 10−3) (2.2037× 10−3) (1.7237× 10−3) (1.9186× 10−3) (1.5287× 10−3)

SE 0.08613 0.09822 0.07917 0.08361 0.07473
λ̂1 0.08613 (1.7261× 10−3) (1.6926× 10−3) (1.3469× 10−3) (1.4976× 10−3) (1.1691× 10−3)

(MSE) (1.7476× 10−3) LINEX 0.08486 0.09683 0.07817 0.08250 0.07385
2 (1.7078× 10−3) (1.6747× 10−3) (1.3279× 10−3) (1.4789× 10−3) (1.1769× 10−3)

SE 0.11427 0.12382 0.10284 0.1086 0.09707
λ̂2 0.11427 (2.290× 10−3) (2.2325× 10−3) (1.7495× 10−3) (1.9453× 10−3) (1.5537× 10−3)

(MSE) (2.7584× 10−3) LINEX 0.11259 0.12203 0.10155 0.10717 0.09592
(2.2729× 10−3) (2.2158× 10−3) (1.7313× 10−3) (1.9275× 10−3) (1.5351× 10−3)

SE 0.08657 0.09874 0.0795 0.08399 0.07501
λ̂1 0.08657 (1.7484× 10−3) (1.7167× 10−3) (1.3615× 10−3) (1.5149× 10−3) (1.2082× 10−3)

(MSE) (2.2551× 10−3) LINEX 0.08529 0.09733 0.0785 0.08287 0.07412
3 (1.7301× 10−3) (1.6988× 10−3) (1.3427× 10−3) (1.4963× 10−3) (1.1890× 10−3)

SE 0.11538 0.12497 0.10369 0.10955 0.09784
λ̂2 0.11538 (2.3300× 10−3) (2.2738× 10−3) (1.7759× 10−3) (1.9759× 10−3) (1.5758× 10−3)

(MSE) (2.7765× 10−3) LINEX 0.11366 0.12315 0.10239 0.10809 0.09668
(2.3130× 10−3) (2.2572× 10−3) (1.7577× 10−3) (1.9582× 10−3) (1.5573× 10−3)

τ = 1.2

SE 0.08561 0.09769 0.07874 0.08315 0.07434
λ̂1 0.08561 (1.7113× 10−3) (1.6778× 10−3) (1.3367× 10−3) (1.4859× 10−3) (1.1874× 10−3)

(MSE) (NA) LINEX 0.08435 0.09631 0.07776 0.08205 0.07346
1 (1.6929× 10−3) (1.6598× 10−3) (1.3178× 10−3) (1.4673× 10−3) (1.1682× 10−3)

SE 0.11429 0.1238 0.10287 0.10862 0.09711
λ̂2 0.11429 (2.2844× 10−3) (2.2262× 10−3) (1.7462× 10−3) (1.9412× 10−3) (1.5512× 10−3)

(MSE) (2.7105× 10−3) LINEX 0.11261 0.12202 0.10158 0.10719 0.09597
(2.2673× 10−3) (2.2095× 10−3) (1.7279× 10−3) (1.9235× 10−3) (1.5325× 10−3)

SE 0.08613 0.09822 0.07917 0.08361 0.07473
λ̂1 0.08613 (1.7261× 10−3) (1.6926× 10−3) (1.3469× 10−3) (1.4976× 10−3) (1.1961× 10−3)

(MSE) (2.4756× 10−3) LINEX 0.08486 0.09683 0.07817 0.0825 0.07385
2 (1.7078× 10−3) (1.6747× 10−3) (1.3279× 10−3) (1.4789× 10−3) (1.1769× 10−3)

SE 0.11427 0.12382 0.10284 0.1086 0.09707
λ̂2 0.11427 (2.2900× 10−3) (2.2325× 10−3) (1.7495× 10−3) (1.9453× 10−3) (1.5537× 10−3)

(MSE) (2.7584× 10−3) LINEX 0.11259 0.12203 0.1015 0.10717 0.09592
(2.2729× 10−3) (2.2158× 10−3) (1.7313× 10−3) (1.9275× 10−3) (1.5351× 10−3)
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Table 6. Cont.

BE E-BE

S λ̂j MLE LF Prior 0 Prior 1 Prior I Prior II Prior III

SE 0.08642 0.09859 0.07937 0.08385 0.07489
λ̂1 0.08642 (1.7454× 10−3) (1.7139× 10−3) (1.3594× 10−3) (1.5125× 10−3) (1.2062× 10−3)

(MSE) (1.9812× 10−3) LINEX 0.08513 0.09718 0.07837 0.08274 0.0740
3 (1.7271× 10−3) (1.659× 10−3) (1.3405× 10−3) (1.4939× 10−3) (1.1871× 10−3)

SE 0.11554 0.12513 0.10383 0.10969 0.09797
λ̂2 0.11534 (2.3334× 10−3) (2.2771× 10−3) (1.7783× 10−3) (1.9786× 10−3) (1.5779× 10−3)

(MSE) (2.6643× 10−3) LINEX 0.11382 0.12331 0.10252 0.10823 0.09681
(2.31647× 10−3) (2.2605× 10−3) (1.7601× 10−3) (1.9609× 10−3) (1.5594× 10−3)

From Tables 3–6, we have the following observations:

1. The MSE and E-MSE of the different estimators decrease as n increases.
2. For fixed n, the MSE of the different estimators decreases as m increases.
3. For fixed n and m, the MSE of the different estimators of λ1 decrease as T increases.
4. For fixed n and m, the MSE of the different estimators of λ2 increases as T increases.
5. As m increases for fixed n, the MSE and E-MSE decrease.
6. For fixed n and m, the MSE and E-MSE of λ1 decrease as T increases.
7. For fixed n and m, the MSE and E-MSE of λ2 increase as T increases.
8. The Bayesian and E-Bayesian estimates of λ1 and λ2 perform better than MLEs in terms of

minimum MSE.
9. The E-Bayesian estimates of λ1 and λ2 have the minimum MSE among all other estimates.

10. The E-Bayesian estimates of λ1 and λ2 using prior distribution 3 perform better than other
estimates in terms of minimum MSE.

11. The E-Bayesian estimates of λ1 and λ2 based on SE loss function under prior distribution 3 have
the minimum MSE comparing with all other estimates.

12. The E-posterior risk of E-Bayesian estimation of λ1 and λ2 using prior distribution 3 under LINEX
loss function have the minimum values among all other prior distributions.

Combining all the above results, we recommend using the E-Bayesian procedure to estimate the
parameters λ1 and λ2 for the Adaptive Type-I Progressive Hybrid Censoring scheme based on the
prior distribution 3 which performs better than other estimates in terms of minimum MSE and E-MSE.

8. Conclusions

In this article, we have investigated the E-Bayesian estimation of the parameter and the reliability
function of the Weibull distribution based on A-I PHCS. The E-Bayesian estimation is considered
by using three different prior distributions under two loss functions, namely the SE and LINEX
loss functions. The properties of the E-Bayesian estimation as well as the E-posterior risk are also
derived. We compare the performance of the E-Bayesian estimation with the maximum likelihood
and Bayesian estimators via an extensive simulation study. The simulation results reveal that the
E-Bayesian estimation performs better than the maximum likelihood and Bayesian estimators in terms
of minimum biases and MSEs. Moreover, we analyze two real data sets for illustration purposes,
and the results coincide with those in the simulation part.
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Appendix A

Proof of Proposition 1.
(i) From (22)–(24), we have
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According to (A1) and (A2), we have
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That is, limT→∞ λ̂j
EBS1

= limT→∞ λ̂j
EBS2

= limT→∞ λ̂j
EBS3

, j = 1, 2.
Thus, the proof is complete.

Proof of Proposition 2.
(i) From (26)–(28), we have
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For −1 < x < 1, we have: ln(1 + x) = x − x2
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3

(
s

T + ω

)3
− 1

4

(
s

T + ω

)4
+

1
5

(
s

T + ω

)5
− . . .

)

+

(
−1

2

(
s

T + w

)3
+

1
3

(
s

T + ω

)4
− 1

4

(
s

T + ω

)5
+

1
5

(
s

T + ω

)6
− . . .

)}
(A4)

− T2

s2ω

{(
−1

2

( s
T

)2
+

1
3

( s
T

)3
− 1

4

( s
T

)4
+

1
5

( s
T

)5
− . . .

)

+

(
−1

2

( s
T

)3
+

1
3

( s
T

)4
− 1

4

( s
T

)5
+ . . .

)}

=
(T + ω)2

s2ω

{
1
2

(
s

T + w

)2
− 1

6

(
s

T + ω

)3
+

1
12

(
s

T + ω

)4
− . . .

}
−

T2

s2ω

{
1
2

( s
T

)2
− 1

6

( s
T

)3
+

1
12

( s
T

)4
− . . .

}

=
1
6

(
1

T + ω

)( s
T

)
− 1

12

(
2T + ω

(T + ω)2

)( s
T

)2
+ . . . > 0.

According to (A3) and (A4), we have

λ̂j
EBL2 − λ̂j

EBL1
= λ̂j

EBL1 − λ̂j
EBL3

> 0,

that is,
λ̂j

EBL3
< λ̂j

EBL1
< λ̂j

EBL2
, j = 1, 2.

(ii) From (A3) and (A4), we get

lim
T→∞

(
λ̂j

EBL2 − λ̂j
EBL1

)
= lim

T→∞

(
λ̂j

EBL1 − λ̂j
EBL3

)
=

(
Dj +

a
a + b

)
lim

T→∞

{
1
6

(
1

T + ω

)( s
T

)
− 1

12

(
2T + ω

(T + ω)2

)( s
T

)2
+ . . .

}
= 0.

That is, limT→∞ λ̂j
EBL1

= limT→∞ λ̂j
EBL2

= limT→∞ λ̂j
EBL3

, j = 1, 2.
Thus, the proof is complete.

Proof of Proposition 3.
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(i) From (23)–(25), we have

E-MSE(λ̂j
EBS3

)− E-MSE(λ̂j
EBS1

) = E-MSE(λ̂j
EBS1

)− E-MSE(λ̂j
EBS2

)

=

(
Dj +

a
a + b

) [
s + 2T

sT(T + s)
− 2

s2 ln
(

1 +
s
T

)]
, j = 1, 2.

(A5)

Let x = s
T , when 0 < s < T, 0 < s

T < 1, we get:

s + 2T
sT(T + s)

− 2
s2

[
ln
(

1 +
s
T

)]
=

s + 2T
sT(T + s)

− 2
s2

[( s
T

)
− 1

2

( s
T

)2
+

1
3

( s
T

)3
− 1

4

( s
T

)4
+

1
5

( s
T

)5
− . . .

]
=

s
T2(T + s)

− 2
s2

[
1
3

( s
T

)3
− 1

4

( s
T

)4
+

1
5

( s
T

)5
− 1

6

( s
T

)6
+

1
7

( s
T

)7
− . . .

]
=

s
(
1− 2s

T
)

3T2(T + s)
+

2s
T3

[
1
4
− 1

5

( s
T

)
+

1
6

( s
T

)2
− 1

7

( s
T

)3
+ . . .

]
=

s
(
1− 2s

T
)

3T2(T + s)
+

2s
T3

[
1
20

(
5− 4

( s
T

))
+

1
42

( s
T

)2 (
7− 6

( s
T

))
+

1
72

( s
T

)4 (
9− 8

( s
T

))
+ . . .

]
>0,

(A6)
implying

E-MSE(λ̂j
EBS3

) < E-MSE(λ̂j
EBS1

) < E-MSE(λ̂j
EBS2

).

Thus, the proof is complete. �
(ii) From (A5) and (A6), we get

lim
T→∞

E-MSE(λ̂j
EBS2 − lim

T→∞
E-MSE(λ̂j

EBS1
) = lim

T→∞
E-MSE(λ̂j

EBS1
)− lim

T→∞
E-MSE(λ̂j

EBS3
)

=

(
Dj +

a
a + b

)
lim

T→∞

{
s
(
1− 2s

T
)

3T2(T + s)
+

2s
T3

{ 1
20

(
5− 4

( s
T

))
+

1
42

( s
T

)2

×
(

7− 6
( s

T

))
+

1
72

( s
T

)4 (
9− 8

( s
T

))
+ . . .

}}
= 0.

That is, limT→∞ E-MSE(λ̂j
EBS1

) = limT→∞ E-MSE(λ̂j
EBS2

) = limT→∞ E-MSE(λ̂j
EBS3

).
Thus, the proof is complete.
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