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Abstract: It is known that in pathological conditions, physiological systems develop changes in the
multiscale properties of physiological signals. However, in real life, little is known about how changes
in the function of one of the two coupled physiological systems induce changes in function of the
other one, especially on their multiscale behavior. Hence, in this work we aimed to examine the
complexity of cardio-respiratory coupled systems control using multiscale entropy (MSE) analysis
of cardiac intervals MSE (RR), respiratory time series MSE (Resp), and synchrony of these rhythms
by cross multiscale entropy (CMSE) analysis, in the heart failure (HF) patients and healthy subjects.
We analyzed 20 min of synchronously recorded RR intervals and respiratory signal during relaxation
in the supine position in 42 heart failure patients and 14 control healthy subjects. Heart failure
group was divided into three subgroups, according to the RR interval time series characteristics
(atrial fibrillation (HFAF), sinus rhythm (HFSin), and sinus rhythm with ventricular extrasystoles
(HFVES)). Compared with healthy control subjects, alterations in respiratory signal properties were
observed in patients from the HFSin and HFVES groups. Further, mean MSE curves of RR intervals
and respiratory signal were not statistically different only in the HFSin group (p = 0.43). The level of
synchrony between these time series was significantly higher in HFSin and HFVES patients than in
control subjects and HFAF patients (p < 0.01). In conclusion, depending on the specific pathologies,
primary alterations in the regularity of cardiac rhythm resulted in changes in the regularity of the
respiratory rhythm, as well as in the level of their asynchrony.

Keywords: cross multiscale entropy analysis; sample entropy; cardiopulmonary coupling; heart
rhythm; respiratory rhythm; heart failure; atrial fibrillation; sinus rhythm; sinus rhythm with
ventricular extrasystoles; autonomic nervous system

1. Introduction

Over the past few years, the quantification of the various types of interactions of complex
physiological systems and the properties of their own regulatory mechanisms, in physiological and
pathological states, has become a challenge for many physicists and mathematicians [1,2]. The most
explored interactions of the cardiovascular and respiratory system, as an example of the interaction of
two complex physiological systems, have recently become of great interest [2-7].

The approximate entropy and its refined version known as sample entropy, have been used in
analysis of biosignals to estimate the degree of randomness or regularity in physiological processes [7-13],
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including patterns of hormonal secretion, EEG, heart rate, and respiratory dynamics. These entropy
measures quantified the regularity of the data reflecting the correlation properties of the time series.
Furthermore, cross-approximate entropy, and its improved version cross-sample entropy, are measures
of asynchrony between two paired time series, and they are usually applied to compare sequences of
distinct intertwined variables in a network, estimating uncoupling, or changes in feedback regulatory
mechanisms [6-8,13,14].

It is known that biological systems are integrated systems that function at multiple time scales.
Usually, biosignals are multiscaled, and their properties depend on the scale at which the signals are
analyzed. Taking this into account, Costa and coauthors [15,16] developed a multiscale entropy (MSE)
analysis—an estimation of entropies from the whole set of coarse-grained time series with the goal
to quantify data complexity. Their findings revealed that entropy measures depend on time scale
determined features of the regulatory mechanisms of the analyzed system. Since its introduction,
numerous modifications and refinements of the original MSE algorithm have been proposed [17-21].
In general, they are based on alternative coarse-graining procedures and reduction of the decrease of
variation with increase of scale factor. This method has also been extended to multiscale permutation
entropy analysis [22], and multivariate multiscale entropy analysis [23,24]. In previous studies,
the difference between MSE curves has not been quantified.

Various properties of physiological signals carry information about the state of systems as well
as the state of their regulatory mechanisms. The aim of this study was to assess the regularity of
cardiac and respiratory control via MSE analysis of heartbeat intervals and respiratory signal, and the
synchrony between these time series by cross MSE analysis in heart failure patients. Understanding
the behavior of coupled physiological systems in pathological conditions through the analysis of
coupled physiological signals can reveal the existence and level of possible developed compensatory
mechanisms that could be complementary to common clinical parameters.

2. Materials and Methods

2.1. Participants and Data Collection

Experiments were done early in the morning in a quiet surrounding at the Pacemaker Center,
Clinical Center of Serbia. The study was conducted in accordance with the Declaration of Helsinki,
and the protocol was approved by the Ethics Committee of the Faculty of Medicine the University of
Belgrade (Approve Date: 17th March 2017, Ref. Numb. 29/I1I-4). All subjects gave their informed
consent for inclusion before they participated in the study. We included symptomatic heart failure (HF)
patients with reduced left ventricular ejection fraction (LVEF < 35%). This population was divided into
three groups by the properties of their RR interval time series (Figure 1): with atrial fibrillation (HFAF),
with sinus rhythm (HFSin), and sinus rhythm with ventricular extrasystoles (HFVES) (approximately
60 VES per subject during a 20 min period). The control group consisted of healthy subjects who
had no previous history of any disease. Characteristics of included patients and control subjects are
presented in Table 1.

All subjects underwent 20 min of simultaneous ECG and respiration measurement in supine
position at spontaneous breathing frequency, after 15 min of relaxation. Both signals, ECG and
respiratory, were acquired with 1000 Hz sampling frequency by Biopac MP100 system with
AcgKnowledge 3.9.1. software (BIOPAC System, Inc., Santa Barbara, CA, USA). Respiratory signal
was recorded via transducer attached to the belt, which is used to measure abdominal expansion and
contraction. OriginPro 8.6 (OriginLab Corporation, Northampton, MA, USA) tool was used to extract
interbeat (RR) intervals from ECG and to form the time series of RRs. The respiratory signal was low
pass filtered with the cutoff frequency of 1 Hz. Since the respiratory signal was uniformly sampled
with sampling frequency of 1 kHz, while samples of RR were unequally positioned, equal equidistant
resampling of Resp and RR signal was done with our original MATLAB R2010a (Version 7.10.0.499)
program using the mean value of RR for each subject data [13]. The mean RR interval was calculated
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from a 20 min RR interval time series for each person. This value was used to resample both RR interval
series and respiratory signal for this subject, in order to obtain two comparable series with an equal
number of equidistant samples. The resampling procedure was performed by linear interpolation
between two corresponding adjacent existing samples.
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Figure 1. Examples of RR interval time series and respiratory signal in a one healthy subject (A),
and heart failure patients in the case of atrial fibrillation (B), sinus rhythm (C) and sinus rhythm with
ventricular extrasystoles (D).

Table 1. Characteristics of participants.

Control HFAF HFSin HFVES
N (Females) 14 (4) 12 (4) 14 16 (4)
Age (years) 40+1 68+3 59+3 64 +2
RR (s) 0.845 + 0.033 0.835 + 0.064 0.911 + 0.040 0.802 + 0.026

2.2. Sample Entropy, Multiscale Entropy, and Cross Multiscale Entropy

Sample entropy (SampEn) is a measure of time series irregularity (unpredictability) over single
scale. It was developed by Richman and Moorman [9] as a refinement of the approximate entropy
introduced by Pincus (1991) [8]. For some time series, SampEn is defined as the negative natural
logarithm of the conditional probability that two sequences, similar for m points, remain similar within
tolerance r at the next point (i.e., for m + 1 points), where self-matches are not included:

A™(r)
B(r)

SampEn(N,m,r) = —In 1)
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where B™(r) is the probability that two sequences will match for m points, whereas A™(r) is probability
that two sequences will match for m + 1 points, N is the number of equidistant data points. The time
series with a small number of similarities is characterized by large values of sample entropy, which
indicates its higher unpredictability (irregularity).

Multiscale entropy (MSE) analysis is a method in which by calculation of sample entropy of
coarse-grained time series overall complexity of the original time series is quantified. This method
has two steps. Firstly, coarse-grained time series of RR interval and respiratory signals were obtained
by averaging the data points within non-overlapping windows of increasing length 7, the length of
coarse grained series becoming N/7, as in the original approach of MSE [15]. Secondly, we calculated
sample entropy for each set of cardiac and respiratory coarse-grained time series. The Matlab code
for calculation of sample entropy used in this work was taken from PhysioNet [25]. In congruence
with previous study [16], m = 2 and the tolerance level of r = 15% x SD (standard deviation) of the
normalized time series (RR and Resp) were used as input parameters. In the original MSE approach
proposed by Costa et al., (2002) [15] value of r was constant for all scale factors. Calculations were
performed on the whole series from 20 min recording (approximately 1200 data points). The scale
factor T determines the number of data points averaged to obtain each element of the coarse-grained
time series. In our work, the scale factor 7 was in the range T = (1, ... , 20), and N/7 was approximately
between 600 data points for T = 2 and 60 data points for 7 = 20. Furthermore, we averaged data for
each scale factor 7 and calculated their standard errors in the group. As the final result, we presented
the curve of connected averaged values. Further, we statistically tested the difference between these
curves in a group or between groups.

It is known that the properties of time series depend on the degree of correlation between
data points. White noise is an example of random walk fluctuations with uncorrelated data (rough
“landscape”). When data are correlated, precisely when long-range correlations are present, this
process corresponds to 1/f noise. Processes where strong correlations exist but cease to be power law
as in 1/f noise, are known as an integral of white noise, so called Brownian noise (smooth “landscape”).
Costa et al., 2002 [15] tested the MSE method on simulated white and 1/f noise and showed that
for coarse-grained 1/f noise time series SampEn constant over all scale factor range (approximately
with SampEn values around 1.8), while, in the case of coarse-grained white noise, the entropy values
monotonically decreased.

The cross-approximate entropy as a measure of asynchrony between two time series was also
introduced by Pincus (1991) [8]. We used cross-sample entropy (cross-SampEn) as a measure of the
asynchrony between RR interval and respiratory time series [8,9]. This measure is a non-linear measure
of time series irregularity derived from the probability of finding a similarity between two signals.

Generally, for paired, normalized and equally sampled time series of length N, u = [u(1), u(2),
..., u(N)] and v = [v(1), u(2), ..., v(N)], we formed the vector sequences x(i) = [u(i), u(i + 1), ...,
u(i+m-1)]1,1<i<N-m,and y(j) = [v(j), v(j + 1), ... ,0( + m —1)],1 <j <N — m. Input parameters
were defined as for MSE: m as template length and r as matching tolerance. Then, we defined the
maximum distance between x(i) and y(j), d[x(i), ¥(j)], as the maximum absolute difference in their
scalar components:

dln (i), ym(j)] = max{ju(i + k) —o(j + )|}, k=0,1,...,m -1 @)
Foreachi <N —m,

B(r)(vllu) = (numberof1 < j< N —m

such that
dlxm (i), ym(j)] < 1)/ (N —m)
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B(r) (U“u) is the probability that any y,(j) is within 7 of x,,(i), and its average value is defined as:

X B (r)(vllu)

m =1
B () (o) = ®
Similarly,
A;”(r)(U”u) = (numberof1 < j< N — m)
such that
A2 1(0), Ymia (] < 7)/ (N =m)
and average value of A" (r) (v”u) is
N-m
T AN ol
A0 ollu) = S @

Therefore, B™ (r) (U”u) is the probability that the two templates match for m points, and A™ (r) (v”u)
is the probability that the two templates match for m+1 points.

Finally, cross-SampEn is defined as:
A" (1) (v||u) } -
B (r) (o]|u)

The coupling of two signals resulting in small values of cross-sample entropy indicates high
synchrony of signals i.e., high association between analyzed systems. Calculations were done with
the same input parameters, m = 2 and the tolerance level of r = 15% x SD (standard deviation) of the
normalized coarse-grained time series.

In this work, we used our designed Matlab script for calculation of cross multiscale entropy
(CMSE (RR—Resp)) as cross sample entropy for each pair of normalized coarse-grained heart intervals
(RR) and respiratory (Resp) time series.

cross — SampEn = — ln{

2.3. Statistics

By Shapiro-Wilk test we found that all the data were normally distributed, every measure in each
of four groups. A mixed design repeated measures ANOVA with one within subject factor (scale) and
one between subject factor (group) was performed to find the interaction between scale and group,
and main effects of group with the least significant difference (LSD) post-hoc comparisons i.e., to find
difference between MSE curves of one measure between the groups (for MSE (RR), MSE (Resp) and
CMSE (RR-Resp)). Two way repeated measures ANOVA with two within subject factors (measure
and scale) in each analyzed group was performed, to find difference between mean MSE curves
for two measures (MSE (RR) and MSE (Resp)). In both types of ANOVAs for repeated measures,
a significant main effect of scale factor was revealed. A point by point comparison for each scale factor
was performed by paired t-test (Table 2). Detailed statistical analyses were performed by one way
ANOVA with multiple post-hoc (LSD test) comparisons, on mean MSE (for both time series), as well as
on mean CMSE (RR—Resp), in the ranges of pooled scale factors; short scales (1-4), middle scales (5-12)
and large scales (13-20). The results are given as mean + standard error of the mean. Significance level
p < 0.05 was used as significant. Statistical analyses were performed using the software package SPSS
Statistics for Windows version 17.0, (SPSS Inc, Chicago, IL, USA).
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Table 2. Statistical significance of comparisons of sample entropy values for RR interval series and for
respiratory signal for each scale factor 7.

Group
Scale Factor, T Control HFAF HFSin HFVES
SampEn (RR) vs. SampEn (Resp)
1 0.675 0.513 0.620 0.001
2 0.001 0.011 0.302 0.002
3 0.001 0.004 0.433 0.013
4 0.001 0.002 0.435 0.013
5 0.001 0.002 0.487 0.030
6 0.001 0.002 0.533 0.019
7 0.001 0.003 0.355 0.023
8 0.001 0.013 0.494 0.027
9 0.001 0.022 0.519 0.007
10 0.001 0.006 0.766 0.019
11 0.001 0.003 0.304 0.030
12 0.001 0.001 0.335 0.030
13 0.001 0.012 0.071 0.048
14 0.001 0.002 0.335 0.012
15 0.001 0.007 0.528 0.028
16 0.001 0.002 0.801 0.008
17 0.001 0.003 0.427 0.045
18 0.001 0.017 0.834 0.061
19 0.001 0.001 0.095 0.040
20 0.001 0.006 0.718 0.156

Statistically significant values are in bold.

3. Results

Figure 2 shows averaged MSE profiles for RR intervals, respiratory signal and cross RR—Resp
signals obtained from connected mean sample entropy values for each coarse-grained time series at
scale factor T = (1, ... ,20).
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Figure 2. Multiscale entropy curves of RR time series, MSE (RR)—red down triangles, multiscale
entropy of respiratory time series, MSE (Resp)—blue up triangles and cross multiscale sample entropy
between RR and respiratory time series, CMSE—Dblack open circles: in control healthy subjects (A),
heart failure patients with atrial fibrillation, HFAF (B), heart failure patients with sinus rhythm,
HFSin (C) and heart failure patients with ventricular extrasystoles, HFVES (D). Mean value + standard
error. Significance of comparison between MSE (RR) and MSE (Resp) profiles are given for each group
of subjects. Detailed, point by point, comparisons for each scale factor are given in Table 2.
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Multiscale entropy analysis of RR interval time series, MSE (RR), revealed expected differences
in MSE profiles between analyzed groups (F = 29.56, p < 0.01). Moreover, for MSE (RR), we found
a significant scale X group interaction (F = 11.84, p < 0.01). Alterations of RR series regularity over
different scales in heart failure patients depended on their sub-pathology.

Mean MSE (RR) curve of cardiac rhythm in control subjects and heart failure patients with sinus
rhythm, appeared as MSE profile of 1/f correlated noise, and they were not statistically different
(Figure 2A,C and Table 3). The MSE (RR) mean curve in patients with sinus rhythm and ventricular
extrasystoles had the feature of strongly correlated time series with lower values of entropy (approaching
Brownian noise) (Figure 2). Furthermore, profiles of MSE (RR) for heart failure patients with sinus
rhythm and the HFAF group showed a tendency for statistically significant difference (Table 3).

Table 3. Significance of least significant difference (LSD) post-hoc multiple comparisons between the
groups of multiscale entropy profiles for cardiac rhythm (MSE (RR)), respiratory rhythm (MSE (Resp)),
cross multiscale entropy profiles (CMSE (RR—Resp)).

MSE (RR) MSE (Resp) CMSE (RR—Resp)
Control vs. HFAF 0.007 0.188 0.246
Control vs. HFSin 0.282 0.001 0.001
Control vs. HFVES 0.001 0.001 0.001
HFAF vs. HFSin 0.082 0.001 0.001
HFAF vs. HFVES 0.001 0.005 0.001
HFSin vs. HFVES 0.001 0.387 0.593

Statistically significant values are in bold.

On the other hand, multiscale entropy analysis of respiratory signal MSE (Resp) revealed
unexpected differences between the analyzed groups (F = 11.93, p < 0.01) and the scale X group
interaction (F = 7.93, p < 0.01). We found that there was no significant difference between MSE (Resp)
curves for control subjects and HFAF patients. Their MSE profiles look like previously reported MSE
profiles for simulated white noise (Figure 2, Table 3, [15]). This feature was in marked contrast to those
for the MSE (Resp) curve profiles in the HFSin group and HFVES patients, which showed MSE (Resp)
profiles typical for 1/f noise (Figure 2, Table 3).

Furthermore, by comparing MSE (RR) and MSE (Resp) mean curve profiles in the analyzed groups,
we obtained the following results. Only in the control group the interaction between scale factor
and measures was significant (F = 34.14, p < 0.01) (Figure 2A) i.e., cardiac 1/f noise was statistically
different from respiratory white noise. In the heart failure groups with arrhythmias, HFAF and HFVES,
the obtained profiles showed a significant difference between MSE (RR) and MSE (Resp) profiles
(Figure 2). Irregularity of the cardiac rhythm in AF patients was statistically higher than irregularity
of respiratory rhythm (p < 0.01), while respiratory rhythm had statistically greater complexity over
different scales than heart rhythm in HFVES patients (p < 0.01). Only in the HFSin group there was
no significant difference between regularity of heart and respiratory rhythm over scales of different
length, where both signals had the properties of correlated 1/f noise (Figure 2, p = 0.43).

The cross multiscale entropy method was applied to examine the asynchrony between heart and
respiratory rhythm by calculating the cross-sample entropy over different scales (Figure 2). Statistical
analysis of CMSE (RR—-Resp) mean profiles showed a significant scale X group interaction (F = 2.21,
p = 0.01) and a significant main effect of the group (F = 17.70, p < 0.01). Multiple comparisons between
analyzed groups showed that the asynchrony between the analyzed signals decreased from control
subjects via HFAF to HFSin and HFVES patients. Post hoc multiple comparisons of CMSE (RR—Resp)
profiles revealed that all analyzed groups’ profiles were significantly different, except for the CMSE
(RR—Resp) profiles between the control and HFAF group, and between HFSin and HFVES patients
(Table 3).

All previously mentioned measures were calculated in the range over short scales (1-4), middle
scales (5-12) and larger scales (13-20), and then compared between the analyzed groups (Figure 3
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and Table 4). The main group effect was statistically significant for all SampEn measures in all three
ranges (p < 0.001), with the exception of SampEn (Resp) in the short range of pooled scales MSE (1-4)
(F=0.489, p = 0.690).
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N
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Figure 3. Means (plus standard errors) for sample entropy of heart rhythm, SampEn (RR), (A), sample
entropy of respiratory thythm, SampEn (Resp), (B) and cross sample entropy, CrossSampEn (RR—Resp),
(C) over pooled scale ranges: short MSE (1-4), middle MSE (5-12), and large MSE (13-20) in healthy
subjects, Control, heart failure patients with atrial fibrillation, HFAF, with sinus rhythm, HFSin, and
sinus thythm and ventricular extrasystoles, HFVES.

Table 4. Significance of LSD post-hoc multiple comparisons between the groups of multiscale entropy
measures for cardiac thythm, MSE (RR), respiratory rhythm, MSE (Resp), and cross-sample entropy
between cardiac and respiratory rhythm (CMSE) over pooled scale ranges from multiscale sample
entropy patterns.

MSE (RR) MSE (RR) MSE (RR) MSE (Resp) MSE (Resp) MSE (Resp) CMSE CMSE CMSE

(1-4) (5-12) (13-20) (1-4) (5-12) (13-20) (1-4) (5-12)  (13-20)

Con. vs.

HEAF 0.040 0.083 <0.001 0.339 0.295 0.167 0.086 0.621 0.188
Con. vs. <0.001 0218 0.541 0.873 <0.001 <0.001 <0001  0.001  <0.001

HFSin

Con. vs.

HEVES <0.001 <0.001 <0.001 0.701 <0.001 <0.001 <0001  0.001  <0.001
HFAF vs. <0.001 0571 <0.001 0.268 0.004 <0.001 <0.001  0.008 0.004

HFSin
HFAF vs.

HEVES <0.001 <0.001 0.219 0.535 0.013 <0.001 <0.001 0.005 0.011
HESin vs. <0.001 <0.001 <0.001 0.583 0.581 0.142 0.995 0.881 0.588
HFVES - - - : : : : : :

Statistically significant values are in bold.
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We found that irregularity of heart rhythm in atrial fibrillation was significantly higher than
irregularity of heart rhythm in control group only over short scales MSE (1-4), and it gradually
decreased over larger scales (Figure 3A). Furthermore, the regularity of HFSin patients cardiac rhythm
was significantly higher than in the control group only over short pooled scales MSE (1-4), while in
HFVES patients, regularity of heart rhythm was the highest, compared to other groups (Figure 3A,
Table 4).

Findings from multiscale entropy analysis of respiratory rhythm showed that the main group
effect was significant in the ranges of middle MSE (5-12) and larger MSE (13-20) scales (F = 8.370,
p < 0.001 and F = 20,652, p < 0.001, respectively). This effect is the result of following: there is no
significant difference between regularity of respiratory rhythm in control subjects and patients with
HFAF and between regularity of respiratory rhythm in HFSin and HFVES patients, on both scale
ranges; respiratory rhythm in HFSin and HFVES patients showed more irregular behavior on larger
scales than respiratory rhythm in control subjects and HFAF patients.

The main group effect on multiscale cross sample entropy values was statistically significant over
all three scale ranges: CMSE (1-4), CMSE (5-12), CMSE (13-20), (F = 43.018, p < 0.001; F = 6.924,
p < 0.001; F =9.506, p < 0.001, respectively). Asynchrony between cardiac and respiratory rhythm
was higher in the control and the HFAF group than in HFSin and HFVES patients (Figure 3, Table 2).
Synchrony in the last two groups was greater in the short scale ranges CMSE (1-4), than on larger
scales (Table 4).

4. Discussion

In this work, we used a multiscale entropy analysis of cardiac and respiratory rhythm in several
groups of heart failure patients. We quantify the differences between their MSE mean curve profiles
and mean MSE values over three pooled scale ranges. In addition to different complexities of these
rhythms between, as well as in the analyzed groups, and the findings of cross MSE profiles, we noticed
that synchrony of the cardio-respiratory coupling was also scale dependent and determined by specific
cardiac pathology.

In our previous work we showed that heart rhythm in heart failure patients with sinus rhythm
can be grouped in four clusters, depending on the behavior over short and long scale ranges [26]. Here,
we analyzed general types of cardiac rhythm alterations, and extended analysis on their relationship
with respiratory rhythm. We found that there is a significant difference between mean MSE (RR) profiles
of the HFAF and the control group, but cardiac rhythm in the HFAF group had similar irregularity as
in healthy control subjects in the range of middle scales MSE (5-12). Moreover, it is interesting that in
the HFAF group mean MSE (RR) in the three ranges of pooled scales gradually decreased, while mean
MSE (RR) in control subjects was almost constant over all three scale ranges. In general, these results
are in line with the findings of Costa et al. [15]. They found that MSE pattern is flat with scale factor 7
for the 1/f noise and it progressively decreased with the scale factor 7 in the case of the white noise.
As is known, the absence of functionality of sinoatrial node in AF results in irregular cardiac rhythm
with properties of uncorrelated white noise, while regular rhythm in healthy subjects behaved as
correlated 1/f noise [16]. Furthermore, HFVES patients had mean MSE (RR) profile significantly lower
than MSE (RR) profile in control subjects. It is characterized by higher regularity, and with detailed
analysis, we showed that HFVES patients had the lowest mean sample entropies of cardiac rhythm
over all three scale ranges. We supposed that the highest regularity of heart rhythm in HFVES patients
resulted from superposition of altered cardiac autonomic regulation (parasympathetic withdrawal
followed by increased sympathetic activity) and involvement of the additional regularity mechanism,
which originated from appearances of ventricular arrhythmias. Indeed, one of the pathophysiological
characteristics of heart failure is reduced heart rate variability, the beat to beat variation of the duration
of the R-R interval [26]. Additionally, it is known that, in heart failure patients, premature ventricular
ectopic beats do not provoke biphasic reaction of an initial acceleration and late deceleration of heart
rate, as in healthy subjects [27,28]. This phenomenon, which is known as heart rate turbulence,
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is reduced in these patients as a result of impaired baroreflex response due to abnormal autonomic
tone. It is not yet clear which compensatory mechanisms exist in ventricular arrhythmias, particularly
in patients with heart failure, but it is assumed that they are partly responsible for preserved synchrony
between respiratory and cardiac rhythm and for regularity of heart rate, and its significant impact
on respiration in these patients. All this leads to highest heart rate regularity in HFVES patients.
On the other hand, tendency of similar multiscale regularity of heart rate in healthy controls and
HFSin patients where their MSE (RR) curves have in common similar values of entropies at longer
scales (after fifth), can be easy explained by the existence of the autonomic nervous system imbalance,
and thus heart rate variability reduction. Namely, they are significantly different over smaller scales
where lower values of entropies in HFSin group indicate reduced variability resulting from the altered
fast regulatory mechanism, compared to the control.

Considering the results of MSE analysis of respiratory signal MSE (Resp) in the analyzed groups
with cardiovascular pathologies we found that mean MSE (Resp) profiles were statistically different
between the HFAF group and the other two analyzed groups (HFSin and HFVES). Furthermore,
by detailed analysis, we revealed that mean MSE (Resp) over pooled scales ranges are not different
in control subjects and HFAF patients, and in HFSin and HFVES patients. According to the findings
of Valencia et al. [20], we supposed that there are two types of respiratory pattern properties: one as
uncorrelated white noise (as we found in HFAF and control group), and the other as correlated 1/f
noise (as we found in HFSin and HFVES patients). Compared with the respiratory pattern in control
subjects, this finding indicates unchanged regularity of the respiration pattern in AF, and altered
respiratory control in HFVES and HFSin patients influenced by cardiac pathology. The presence of
changes in the complexity of the respiratory rhythm in these patients is somewhat expected, due to
breathing disorders, primarily Cheyne-Stokes respiration and obstructive sleep apnea, that are more
often present in them, as well as higher influence of cardiac thythm on respiratory signal in these
patients, and of course, some compensatory mechanisms that are developed, but still insufficiently
explored and understood [3,29,30].

Comparing MSE curve profiles of two different rhythms from coupled systems, we found a few
real combinations of interactions between different types of noise in physiology and pathophysiology.
In healthy subjects, we had interplay of cardiac 1/f noise and respiratory white noise. This finding
implies that the combination of these types of noises represents some kind of rule for the optimal
mechanism of interactions of complex physiological systems in healthy organism. In atrial fibrillation,
we found a combination of two white noises, where the cardiac rhythm is statistically more irregular than
respiratory. Since AF does not affect the regulation of the pattern of respiratory rhythm, we supposed
that, besides altered autonomic control, neuroplasticity changes in the dynamics of the brainstem
cardiorespiratory integrator were involved [6]. Additionally, high irregularity of cardiac rhythm
in patients with atrial fibrillation is a consequence of the pathophysiological basis of the disease.
It should be noted that in a previous study, we found that, in patients with atrial fibrillation, regularity
of respiratory rhythm was not significantly different compared to healthy subjects [6]. In HFSin
and HFVES groups both rhythms, cardiac and respiratory, were altered by pathology. We found
that both rhythms in the HFSin group had properties of correlated noise (1/f noise) with similar
complexity, and that there was a strong synchrony between them. Since the pathophysiology of heart
failure is characterized by an imbalance of the autonomic nervous system, and cardio-respiratory
synchronization is the result of central coupling between cardiovascular and respiratory neuronal
activities, its existence should not be disturbed [31]. However, in HFVES patients, we had different
changes in regulation of cardiac rhythm but similar changes in regularity of respiratory rhythm,
compared to HFSin patients. Our results revealed a combination of cardiac and respiratory correlated
noise (1/f noise), where the complexity of respiratory rhythm is higher than complexity of cardiac
rhythm. This combination of two rhythms complexity should be particularly examined in further
studies. It seems that the regulation of respiration pattern in HFVES has developed such a mechanism
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that is able to adapt to sudden changes in cardiac rhythm. This fact is supported by the highest
synchrony between respiratory and cardiac rhythm in this group.

Some authors have shown that several types of cardio-respiratory interactions can coexist; besides
respiratory sinus arrhythmia (modulation of heart rate by respiratory rhythm), synchronization is very
often type of interaction [5,31-34]. In this work, we showed results of CMSE analysis, which was used
to examine the asynchrony of coupling between cardiovascular and respiratory system, independently
of influence direction. We analyzed the asynchrony between cardiac and respiratory rhythm in cardiac
pathologies compared to healthy subjects, and found that CMSE curve profiles were not statistically
different between control subjects and HFAF patients, and between HFSin and HFVES patients.

The lowest influence of cardiac on respiratory rhythm i.e., the highest asynchrony was revealed
in healthy subjects and HFAF patients. This finding is the result of changes in RR intervals in
one respiratory cycle—from the activity of RSA mechanism. By the coarse-graining technique,
we eliminated the fluctuations of RR intervals on shorter scales induced by RSA, and the asynchrony
was almost constant over larger scales. Contrary, the high asynchrony found in AF patients over all
scale factors is an expected result, because previous findings have shown that the RSA mechanism in
AF does not exist [6,34], and there is no data in the literature on the specificity of cardio-respiratory
coupling in AF.

We found that in cardiac pathologies the influence of cardiac rhythm on respiration becomes
significant. Compared with healthy subjects, in the HFSin and HFVES groups the highest synchrony
between RR to Resp is revealed. These results imply that the influence of cardiac rhythm on respiration
increased and it is related to some kind mechanisms of synchronization.

Comparing with AF, in healthy subjects the asynchrony between cardiac and respiratory rhythm is
slightly higher on shorter and longer scales. This could be explained by the assumption that both types
of cardio-respiratory interactions were involved, RSA over shorter and some type of synchronization on
larger scales. Although we did not find a significant difference in the influence of cardiac on respiratory
rhythm between healthy subjects and HFVES patients, on the short scales, the highest synchrony was
detected in the HFSin and the HFVES group. This confirms altered RSA mechanism via reduced vagal
control in these patients. In both groups of HF patients, with sinus rhythm or with VES, there is higher
synchrony between cardiac and respiratory rhythm than in control subjects and the HFAF group over
all scale factors, indicating that synchrony is the dominant mechanism of respiratory-cardio interaction
in these patients. These results suggest that the influence of the altered cardiac rhythm on respiratory
rhythm, measured by synchrony, depends on the scale length.

In AF, cardio-respiratory interaction is accomplished by some unknown compensatory mechanism
that is not related to RSA nor synchronization, and is based on the interaction between two white
noise signals. Contrary, in healthy subjects, cardio-respiratory interaction is based on the interaction of
1/f noise and white noise time series resulting in similar asynchrony as in AF patients. In the HFSin
and HFVES group, the interaction of cardiac 1/f noise and respiratory 1/f noise resulted in stronger
synchrony between rhythms, depending on the scale range, and it is highest on the short scale factors.
Compared with controls, alteration of cardiac rhythm in these patients induced structural changes in
the respiratory time series, especially in HFVES patients.

5. Conclusions

We applied particular and cross MSE analysis to RR interval and respiratory signal time series of
healthy subjects and heart failure patients with three specific types of cardiac thythm. Our findings
indicate alterations in the multiscale properties of respiratory signals and their synchrony with
RR interval series caused by specific cardiac rhythms in heart failure patients. Quantification of
these changes in heart failure patients may have applications in monitoring alterations in regulatory
mechanisms, which are usually complementary to basic clinical parameters.
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