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Abstract: Although natural and bioinspired computing has developed significantly, the relationship
between the computational universality and efficiency beyond the Turing machine has not been
studied in detail. Here, we investigate how asynchronous updating can contribute to the universal
and efficient computation in cellular automata (CA). First, we define the computational universality
and efficiency in CA and show that there is a trade-off relation between the universality and efficiency
in CA implemented in synchronous updating. Second, we introduce asynchronous updating in
CA and show that asynchronous updating can break the trade-off found in synchronous updating.
Our finding spells out the significance of asynchronous updating or the timing of computation in
robust and efficient computation.

Keywords: cellular automata; trade-off; computational universality; computational efficiency;
asynchronous updating

1. Introduction

Michael Conrad, who explored biocomputing based on a protein chip, described how molecular
interactions can implement computation by regarding the conformation changes in molecules as the
state changes in the computation [1,2]. If any two molecules with different conformations colliding
with each other rapidly lead to one specific conformation, then the computational efficiency is very
high, although the computational universality is very low. In contrast, if two molecules colliding
entail one molecule whose conformation can be constantly modified, it implies that the various states
of computation can be accessed by these molecules and that the computational universality is very
high. Since some conformations arrive after the long wandering of conformation changes, the time
to access these conformations is so long that the computational efficiency is very low. This thinking
results in the trade-off principle between the computational universality and efficiency in bioinspired
or natural computing [1]. After Conrad, although various biomaterial computing techniques have been
developed while referring to that trade-off, the relation between natural computing and the trade-off is
still unclear since computing is usually based on the Turing machine [3–8].

The trade-off principle is ubiquitously found in biological systems as the dilemma between
generalists and specialists [9–13]. If the environment in which a species lives is constantly changing,
and if the species has not adapted to any specific environment too much, then the species can live in
the various environments to some extent. This species is called a generalist. In contrast, if a species is
adapted only to a specific environment, the species is called a specialist [10,11]. The contrast between
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a specialist and generalist is also found in machine learning. An excessive generalist is compared
to undercomputing in learning, while an excessive specialist is compared to overfitting in machine
learning [14].

While the trade-off and/or the dilemma suggests that the computational universality (generalist)
and efficiency (specialist) can be quantified and compared with each other, they are neither systematically
argued nor quantified in a certain space of the computation. Instead, the contrast between the
universality and efficiency might be compared to the phase transition between chaos and order [15–19].
The chaotic dynamics implementing state wandering can be compared to a universal and low efficiency
computation, and the oscillating dynamics can be compared to non-universal and high efficiency
computation. The specific dynamics implementing state wandering among multiple attractors can
be compared to the critical state or balance of the universal and highly efficient computation and
is sometimes called the edge of chaos or self-organized criticality [20–22]. In the phase transition,
the chaos and order can be quantified with respect to the order parameter corresponding to the
temperature. The phase transition is found not only in the continuous dynamics but also in cellular
automata (CA) [15,23,24] by using the chaos and order in their behaviors [25–27].

Although the edge of chaos in CA suggests balancing the universal and highly efficient computation,
there is little research to bridge the phase transition with the trade-off between the universality and
efficiency. On the one hand, the computational universality has been strictly investigated in terms of
the Turing machine [28–30] and/or logical gates [31,32]. For instance, it has been argued as to how to
implement a universal Turing machine as simply as possible in CA [27,29]. In this framework, the
machine either has universality or not, and there is no notion such as the degree of computational
universality. On the other hand, there is no strict research on the relation between the edge of chaos and
the balance of the universality and efficiency. Although the computation at the edge of chaos might
contribute to balancing the universality and efficiency, it has not been determined how the critical
computations are close to the optimal solution and/or balancing. Thus, self-organized criticality is used
not as the search for optimal solutions but as metaheuristics [33,34]. Because there is no quantification
to bridge the universality and efficiency, no detailed research proceeds on this issue. Therefore, it is
a novel idea to quantify the degree of universality and bridge the computational universality and
computational efficiency.

It is remarkable whether the perspective of the phase transition between chaos and order is
founded under the framework of synchronous updating. Rather, there is no synchronous clock in
natural biological systems or biocomputing, and they work by asynchronous updating. This behavior
implies that asynchronous CA can emulate natural computing in the sense of Conrad’s research.
If the transition rule is asynchronously updated to cells, then behaviors such as the critical state are
ubiquitously found in the rule space of CA and are referred to as the universal criticality [35,36].
Recently, asynchronous updating in CA has been shown to lead to the phase transition coupled with
the critical state expressed by the power law [37–40]. While knowledge regarding the large difference
between synchronous and asynchronous updating has accumulated [41–46], there has been little
research on how asynchronous updating in CA can influence the trade-off between the universality
and efficiency and/or the phase transition of chaos and order.

With this background, first, we define the computational universality and efficiency in the
behaviors of elementary cellular automata (ECA) and quantify the degree of the universality and
efficiency. We show that there is a trade-off between the computational universality and efficiency
in synchronous ECA. This is the first attempt to elucidate the trade-off between the universality and
efficiency in the research field of CA. Second, we show that the asynchronous updating in ECA can
break the trade-off principle and analyze what contributes to the break of the trade-off. This work
provides a novel perspective on how asynchronous updating can play a role in balancing universal
and efficient computing.
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2. The Trade-Off Principle in Synchronous ECA

Since ECA was proposed by Wolfram, some rules have been studied by information processing
and by constructing logical gates [25–27]. Most of them are studied in the form of synchronous
updating. ECAs are defined by a set of the binary sequences of cells, Bn with B = {0, 1} and a transition
rule fr: B3

→ B, where fr is synchronously updated to all cells and r represents the rule number
mentioned below. The transition rule with synchronous updating is expressed as

ai
t+1 = fr(ai−1

t, ai
t, ai+1

t). (1)

If a transition rule fr is adapted to all cells in Bn (i.e., global adaption), then we assign the global
use by G(fr): Bn+2

→ Bn such that

(a1
t+1, a2

t+1, . . . , an
t+1) = G(fr) (a0

t, a1
t, . . . , an+1

t). (2)

The transition rule is coded by the rule number, r, such that for x, y, z ∈ B,

s = 4x + 2y + z (3)

ds = fr (x, y, z) (4)

r = Σ7
s=02sds. (5)

The rule number, r = 18, is represented as R18, where d1 = d4 = 1 and ds = 0 with s , 1, 4. There
are 256 rules in ECA since there are 2 possible outputs for 8 inputs of a triplet.

How can one define the computational universality and efficiency? Given an initial state of Bn

with random boundary conditions, reachable states are determined by a transition rule. For the case of
R0, only one state consists of all 0 for any initial states; this implies that (0, 0, . . . , 0) = G(f 0)(a0, a1, . . . ,
an+1) for any (a0, a1, . . . , an+1) ∈ Bn+2. By contrast, R204, of which d2 = d3 = d6 = d7 = 1 and d0 = d1 =

d4 = d5 = 0, can show that (a1, a2, . . . , an) = G(f 204)(a0, a1, . . . , an+1) for any (a0, a1, . . . , an+1) ∈ Bn+2

and that all possible states can be reached if an adequate initial condition is prepared. It is easy to see
that R204 shows a locally frozen pattern (class 2). For R90 or R150, all possible states can be reached,
although the generated patterns are chaotic (class 3). Thus, the ratio of reachable states for all possible
initial conditions can reveal the computational universality. Given 2n all possible initial states with
random boundary conditions, the computational universality of rule r, U(r), is defined by

SR(r) = {G(fTr )(a0, a1, . . . , an+1) ∈ Bn | (a1, . . . , an) ∈ Bn, (a0, an+1) ∈ R(B2)} (6)

U(r) = #SR(r) (7)

UN(r) = U(r)/2n (8)

where for a set S, #S represents the cardinality of a set S, R(B2) represents one element set randomly
determined from B2, and superscript T represents T numbers iteration of fr. If n = 2, then U(0) = #{(0,
0)} = 1, and U(204) = #{(0, 0), (0, 1), (1, 0), (1, 1)} = 4 UN(r) represents the normalized computational
universality. Here, we call elements of a set, SR(r), reachable states.

Next, we define the computational efficiency of a transition rule r. To separate from the
computational universality, the computational efficiency is expressed by the average time to reach the
reachable states. For each reachable state X ∈ SR(r), the average time to reach X represented by τr(X) is
expressed as

τr(X) =
∑
Y∈B∗

T
(
G
(

f T
r

)
(Y) = X

)
(9)

where B* = Bn
× R(B2), T(G(fTr)(Y) = X) implies time T such that G(fTr)(Y) = X. Since the time T is

computed for any Y ∈ B*, it can lead to G(fTr)(Y) , X. At that case, if G(fTr)(Y) = X is not obtained
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within 2n time steps, then T(G(fTr)(Y) = X) is a constant value, Tθ. For the case of R204 in which any
initial condition is not changed by the transition, G(fr)(Y) = Y with T = 1 and then for any X ∈ SR(r),
τr(X) = (1 + Tθ(#B* − 1)). The computational efficiency is defined by

E(r) =
∑

X∈SR(r)

τr(X)/#SR(r) (10)

Since E(r) is the average time to reach the reachable state, the smaller E(r) is, the more efficient
ECA r is.

Figure 1 shows a graphical explanation for the computational universality U(r) and the
computational efficiency E(r). The pattern generated by R18 is shown in Figure 1 right above,
and the return map a(t + 1) plotted against a(t) is shown in Figure 1 left above, where a(t) is the decimal
expression for a binary sequence. Since a(t + 1) is calculated for any a(t) in [0.0, 1.0], a set of a(t + 1)
represents the computational universality. The computational efficiency is obtained from the average
time to the reachable states, where the time to a reachable state is obtained from the average of time
from all possible initial states to the reachable state, as shown in Figure 1 below.
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Figure 1. The computational universality and computational efficiency. The cardinality of a set of
a(t + 1) in a return map represents the computational universality, U(r). The computational efficiency
E(r) is defined by the average time to reach reachable states.

Figure 2 shows E(r) plotted against UN(r) for all rules in ECA. Since E(r) reveals the average time
to reachable states, the smaller E(r) is, the more efficient E(r) is. Thus, the minimal point of E(r) for
each computational universality reveals the maximal efficiency for each computational universality.
This maximal efficiency is why the solid line representing the lower margin of a cloud of (UN(r),
E(r)) shows the relationship between the computational universality and efficiency. The greater the
universality is, the less the efficiency is. It is clear that the solid line shows the trade-off between the
computational universality and efficiency.

As mentioned before, the trade-off shown in Figure 2 is obtained by ECA implemented by
synchronous updating. If the transition is updated in asynchronous fashion, then what happens with
respect to the trade-off between the computational universality and efficiency is discussed below.
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Figure 2. E(r) plotted against UN(r) for all rules in ECA. Each circle represents a coordinate (UN(r), E(r))
for each transition rule r. The solid curve shows the trade-off between the computational universality
and computational efficiency. The parameter is set by the following: n = 8, T = 7, and Tθ = 70.

3. The Trade-Off Breaking by Asynchronous Updating

Asynchronous updating in CA can be implemented using various approaches. One approach is
to define the order of updating as defined in the form of bijection from a set of cell sites to the order
of updating [35,36,42]. Here, we implement asynchronous updating by introducing the probability
variable p ∈ [0.0, 1.0] [37–40]. The transition rule is adapted to each cell with the probability, such that

ai
t+1 = fr(ai−1

t, ai
t, ai+1

t) with 1 − p;
= ai

t with p.
(11)

Figure 3 shows the time development of the ECA with the probability, where the transition rule is
R22. Since the probability p implies the probability of which the transition rule is not applied to a cell,
the time development with a small p mimics the time development of synchronous ECA.
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Figure 3. Time development of asynchronous ECA with the probability. The horizontal and vertical
lines represent space and time, respectively. The dot and blank represent a state of a cell, 1 and 0,
respectively. The transition rule of ECA is R22.

We estimate E(r) and UN(r) for asynchronous ECA with the probability, compared to the
trade-off between E(r) and UN(r) in synchronous ECA. For the sake of comparison, the lower margin
of the distribution of (UN(r), E(r)) obtained for synchronous ECA is expressed as a monotonous



Entropy 2020, 22, 1049 6 of 15

increasing step function. The interval [0.0, 1.0] is divided into m subintervals. The kth subinterval, Intk,
is [(k − 1)∗1.0/m, k∗1.0/m]. In each subinterval,

ESUB-MIN(k) = min{E(r) | UN(r) ∈ Intk}, if there is an element UN(r) exists;
= max{E(r) | r = 0, . . . , 255}, otherwise.

(12)

and the monotonous increasing step function, EMIN(k) is defined by

EMIN(k) = min{ESUB-MIN(s) | k ≤ s ≤ m} (13)

Figure 4 shows the breaking trade-off between the computational universality and efficiency by
asynchronous ECA with the probability p, where the lower margin of the distribution of (UN(r), E(r)) is
expressed as Equation (13), and m = 52. In each graph, the horizontal and vertical lines are the same as
those in Figure 2. In Figure 4, all pairs of (UN(r), E(r)) obtained by synchronous updating are hidden
by bars above the increasing step function. The pairs of (UA

N(r), EA(r)) obtained by asynchronous
updating with the probability p are represented by circles below the increasing step function. It is easy
to see that asynchronous updating with a wide region of p entails breaking the trade-off.
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Figure 4. Breaking the trade-off between the computational universality and efficiency by asynchronous
ECA with the probability, p. Pairs, (UA

N(r), EA(r)) breaking the trade-off is represented by circles.
In each diagram, the horizontal and vertical lines represent the computational universality and
efficiency, respectively.

Figure 5 shows the breaking degree of the trade-off plotted against the probability, p. As shown in
Figure 4, one can count the number of (UA

N(r), EA(r)) breaking the trade-off obtained by synchronous
ECA, which is represented by circles below the lower margin of the distribution of (UN(r), E(r))
with synchronous updating. The breaking degree, DB(p) for ECA asynchronously updated with the
probability, p, is defined by

DB(p) = #{EA(r) | EA(r) < EMIN(k), k = 1, . . . , m}/256, (14)

where the number 256 represents the number of all ECAs. Figure 5 shows that approximately 50%
of transition rules break the trade-off. This result implies that asynchronous updating can reach the
reachable states more quickly than synchronous updating so far as the computational universality of
asynchronous updating is the same as that of synchronous updating.
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The next question arises regarding how asynchronous updating can break the trade-off between
the computational universality and efficiency. It is strongly relevant for the universal criticality resulting
from asynchronous updating. As mentioned before, the perspective of the phase transition and/or the
edge of chaos is obtained in the framework of synchronous updating. We previously proposed the
asynchronously updated automata implemented by a bijective map from the address of the cell to the
order of updating (order-oriented asynchronous updating) [35,36]. Even if a transition rule shows
either order (class 1, 2) or chaos (class 3) in synchronous updating, the same transition rule operated by
the order-oriented asynchronous updating shows cluster-like patterns that mix the order with chaos
(class 4). Since the cluster-like patterns are characterized by the power law in time development, it can
be considered that asynchronous updating entails universality that is independent of the structure of
a transition rule.

Asynchronous updating can mix with various transition rules. Even if a transition (0, 0, 1)→ 1
is defined, if the transition rule is not applied to a cell, then the state of a middle cell in a triplet is
not changed, which implies (0, 0, 1)→ 0. This results in an apparent change in the transition rule
from R18 to R16 since d1 = 1 is replaced by d1 = 0. Here, the transition rule approximated for a pair
of binary sequences, (a1

t, a2
t, . . . , an

t) and (a1
t+1, a2

t+1, . . . , an
t+1) is called an apparent rule. For R18,

one can see various apparent changes in the transition rule, as shown in Table 1. If p = 0.0, then the
apparent rule is the same as the transition rule, R18. The larger p is, the more apparent the change in ds

is. The lowest row shows the case of p = 1.0, which leads to the apparent rule being R204. In 0 < p < 1,
time development can be interpreted to be generated by various apparent rules showing classes 1, 2
and 3 in time and space. That is why a cluster-like pattern is generated by mixing with up class 1, 2
and 3 transitions.

Mixing with classes 1, 2 and 3 results from asynchronous updating; thus, it can ubiquitously
generate cluster-like patterns and/or critical behavior. Since such behaviors correspond to the edge
of chaos or the critical state in the phase transition, they can reveal the balance of the computational
universality and efficiency. Additionally, these behaviors can entail breaking the trade-off between the
universality and efficiency.

To manifest how asynchronous updating breaks the trade-off between the computational
universality and efficiency, we approximate the transition of configurations by the asynchronous
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updating of a single rule by the synchronous updating of multiple rules. Then, we estimate how the
number of multiple rules and segmentations can contribute to breaking the trade-off.

Table 1. The apparent change in a transition rule originated from R18. If a transition rule R18 is not
adapted to cells with some probability, then some dss are changed, and the apparent rule number is
changed. The columns ds represent the apparent transition due to the asynchronous updating with the
probability. The column AR represents the apparent rule number and their corresponding classes.

d0 d1 d2 d3 d4 d5 d6 d7 AR Class

000 001 010 011 100 101 110 111

0 1 0 0 1 0 0 0 R18 3

0 0 0 0 0 0 0 0 R0 1

0 1 0 1 1 0 1 0 R90 3

0 1 0 0 1 0 0 1 R146 3

0 0 0 0 0 0 0 1 R128 1

0 0 1 1 0 0 1 0 R76 2

0 0 1 1 0 0 1 1 R204 2

Given a binary sequence, the asynchronous updating of a single transition rule defined by d*
s

with s = 0, 1 . . . , 7, is adapted to the binary sequence. It results in a pair of binary sequence such as

(a1
t, a2

t, . . . , an
t); (a1

t+1, a2
t+1, . . . , an

t+1). (15)

For this pair, a binary sequence (a1
t, a2

t, . . . , an
t) is divided into multiple segments,

{(1, a1
t), (2, a2

t), . . . , (m, am
t)}, {(m+1, am+1

t), (m+2, am+2
t), . . . , (h, ah

t)}, . . . , { . . . , (n, an
t)}, (16)

where in a segment {(u, au
t), (u+1, au+1

t), . . . , (w, aw
t)}, for any s ∈ {0, . . . , 7}, if there exists

(ak−1
t, ak

t, ak+1
t) ∈ B3 such that s = 4ak−1

t + 2ak
t + ak+1

t, k ∈ {u, u + 1, . . . , w},

ds = ak
t+1 (17)

and otherwise,
ds = d*

s. (18)

This implies that for each segment, one can uniquely determine the corresponding rule defined
by ds with s = 0, 1 . . . , 7 and that a sequence, (au

t, au+1
t, . . . , aw

t); (au
t+1, au+1

t+1, . . . , aw
t+1) can

be interpreted as a transition generated by the synchronous updating of a single transition rule.
Thus, segmentation (10) implies the approximation of which each segment can be generated by a single
transition rule and a whole sequence can be synchronously generated by multiple transition rules.

Figure 6 shows an example of the approximation by the synchronous updating of multiple
rules. The top pair of binary sequences with “Syn” is a transition generated by the synchronous
updating of the rule, R18. The top second pair with “Asyn” is a transition generated by asynchronous
updating with a certain probability. Please note that due to the probability, there are some cells where
ak

t+1 = ak
t. In Figure 6, a transition generated by asynchronous updating is divided into three segments.

Algorithmically, the segmentation is implemented from left to right. From the first cell, one can
determine d1 = a1

t+1 = 1, and then d2 = a2
t+1 = 0, d4 = a3

t+1 = 1. At the fourth cell at t+1, one obtains
d1 = a4

t+1 = 0 and that conflicts with d1 = (a1
t+1) = 1. That is why the first segment is terminated by

the third cell at t+1, which is expressed as {(0, a0
t), (1, a1

t), (2, a2
t), (3, a3

t)}. For a transition rule, only
d1, d2 and d4 are determined, and d0, d3, d5, d6 and d7 are not determined in that segment, {(0, a0

t),
(1, a1

t), (2, a2
t), (3, a3

t)}. The undetermined value ds for a transition rule is represented by the blue
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cell in Figure 6. By definition (18), the undetermined ds is substituted by d*
s, which is defined by R18

in Figure 6. Thus, for the first segment in Figure 6, one can obtain R18. Similarly, it results in three
segments, and the second and third segments are approximated by R16 and R6, respectively.
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Figure 6. Schematic diagram of the approximation for a pair of binary sequences generated by the
asynchronous updating of a single rule (R18) approximated by the synchronous updating of multiple
rules (R18 + R16 + R6). States 1 and 0 in a cell are represented by filled and blank squares, respectively.
The symbols “Syn” and “Asyn” represent synchronous and asynchronous updating, respectively.
See text for the detailed discussion.

Figure 7 shows some examples of a pair of time developments by the asynchronous updating
of a single rule and the corresponding time development emulated by the synchronous updating
of multiple rules. In a pair of time developments, left above, the left diagram represents the time
development of the asynchronous updating of R18 with a probability of 0.2. For this asynchronous CA,
given 104 cells whose values are randomly set, the segmentation procedure is run. This process results
in N1 segments and N2 transition rules. By using N1 segments and N2 transition rules, the approximated
time development is emulated. First, at each cell, it is probably determined whether the segment is cut
or not, with the probability of N1/104 (segmentation process). Second, a transition rule randomly chosen
from N2 transition rules is applied to each segment, and the state of cells is updated (update process).
Both segmentation and update processes are performed for each time step, which leads to time
development, as shown in the right diagram of each pair. Clearly, the synchronous updating of
multiple rules can emulate the time development of asynchronous updating of a single rule. In other
words, the behavior of asynchronous CA can be estimated by synchronous CA with multiple rules.

Given p, a transition rule, and 104 cells whose states are randomly determined, the asynchronous
updating of the transition rule with probability p is applied to 104 cells. For a pair of binary sequences
of the initial configuration and results of application of the transition rule, the segmentation process is
applied. This process results in a pair of the number of rules and the number of segments. Figure 8
shows the normalized number of segments (N1/104) against p for some of the asynchronous updating
of the transition rules, R110, R50, R90 and R18. The data for each transition rule are approximated by a
polynomial function: for R110, y = 0.1081x4

− 0.1643x3
− 0.5596x2 + 0.6087 x + 0.0048, R2 = 0.99594;

for R50, y = −2.7514x4 + 5.9832x3
− 4.492x2 + 1.2555x + 0.0143, R2 = 0.98422; for R90, y = −1.1571x4 +

2.6079x3
− 2.2464x2 + 0.7964 x + 0.0051, R2 = 0.99293; and for R18, y = −2.0516x4 + 4.4103x3

− 3.3139x2

+ 0.9666x + 0.0016, R2 = 0.98778.
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rule number and the probability defined by Equation (6) are shown at the bottom middle of each pair.
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Figure 8. Normalized number of segments (N1/104) against the probability p in the approximation of
asynchronous updating by the synchronous updating of multiple rules. Each curve represents a single
transition rule, R110 (yellow), R50 (gray), R90 (orange) and R18 (blue).

For the same approximation, Figure 9 shows the normalized number of rules (N2/256) against p
for each transition rule. The data for each transition rule are approximated by a polynomial function:
for R110, y = −0.3159x4 + 0.706x3

− 0.5401x2 + 0.1619; for R50, y = −2.7529x4 + 4.7656x3
− 3.7832x2

+ 1.9264x + 0.0054, R2 = 0.98541; for R90, y = −0.6852x4 + 1.5296x3
− 1.1948x2 + 0.3817x + 0.0208,

R2 = 0.90307; and for R18, y = −2.0516x4 + 4.4103x3
− 3.3139x2 + 0.9666x + 0.0016, R2 = 0.98778.
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Figure 9. Normalized number of transition rules (N2/256) against the probability p in the approximation
of asynchronous updating by the synchronous updating of multiple rules. Each curve represents a
single transition rule, R110 (yellow), R50 (gray), R90 (orange) and R18 (blue).

Both curves, the normalized number of segments and the normalized number of transition
rules against p show convex functions for each transition rule (Figures 8 and 9). Figure 10 shows
the normalized number of segments against p and normalized number of transition rules against p
averaged over all 256 transition rules. The former and latter graphs are approximated by y = −0.9837x4

+ 1.9304x3
− 1.4477x2 + 0.5047x + 0.0047, R2 = 0.99594, and y = −0.6488x4 + 1.333x3

− 1.0644x2 + 0.4345x
+ 0.0125, R2 = 0.98811, respectively. The normalized number of rules and segments in the approximation
might contribute to an increase in the computational efficiency since it can increase the diversity of the
configurations. However, it is not necessary that the diversity of configurations is implemented by the
diversity of rules. R90 and R150 can compute any configurations if the corresponding initial condition
is prepared.
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averaged over all 256 transition rules. These parameters are obtained from the approximation of the
asynchronous updating of a single rule approximated by the synchronous updating of multiple rules.

Therefore, if the asynchronous updating of R90 (R150) is applied to an initial configuration,
then one can obtain not multiple rules but multiple segments in the approximation of synchronous
updating. This procedure implies that all segments can be synchronously updated by a single rule,
R90 (R150). It is the case that the diversity of configurations can be achieved by a single rule. There are
some similar cases with R90 and R150. Those transition rules show chaotic and/or spatially propagating
wave patterns referred to as class 3 or 4. These classes are shown by the high value of the number of
segmentations divided by the number of rules (represented by #Segments/#Rules) in the approximation.
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In contrast, if the approximated rules cannot contribute to the diversity, then one obtains many various
rules contributing to the diversity. These transition rules show locally stable behavior called class 1 or
class 2. In this case, one can see a high value of #Rules/#Segments.

We estimate whether #Segments/#Rules or #Rules/#Segments can influence the break of the
trade-off between the computational universality and computational efficiency. Figure 11 shows
#Segments/#Rules plotted against p. The range 0.5 < p < 5.5 surrounded by broken lines represents
the range in which the trade-off is broken. In that range, the coefficient of determination between
#Segments/#Rules and the degree of break of the trade-off, DB(p), is very high (R2 = 0.82076), whereas
the correlation between #Rules/#Segments and DB(p) is very low (R2 = 0.56706). This finding suggests
that the diversity resulting from a smaller number of transition rules (i.e., class 3 or 4-like behavior)
contributes to breaking the trade-off compared with the diversity resulting from a large number of
transition rules (i.e., class 1 or 2-like behavior). In other words, although there are both effects of
generalists with high #Segments/#Rules and specialists with high #Rules/#Segment in asynchronous
updating, only effect from generalists can contribute to break of the trade-off.
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4. Conclusions

While natural and bioinspired computing seems to be different from computations based on
the Turing machine, there was no plan to extend the notion of the computational universality and
efficiency beyond the Turing machine. On the other hand, although it is known that the critical state or
computation at the edge of chaos can be used for an adequate solution but not for optimal solution,
there have been few studies that bridge the critical state with the balancing of the universality and
efficiency in computation. To connect these two issues, one should quantify the universality and
efficiency in a certain computational system that can emulate natural and bioinspired computing.

To solve this problem, we quantify computational universality and efficiency in cellular automata
and show the trade-off between universality and efficiency in synchronous cellular automata.
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Since asynchronous updating is much more adequate in natural and biocomputing, we estimate how
the relationship between the computational universality and efficiency is influenced by replacing
synchronous updating with asynchronous updating. We define ECA asynchronously updated by
introducing the probability of relaxation and compare the relation between the universality and
efficiency in synchronous ECA with the relation in asynchronous ECA. This comparison leads to
the finding that asynchronous ECA breaks the trade-off found in synchronous ECA. Via the same
universality, the efficiency in asynchronous ECA is much more than that in synchronous ECA.

What is the main cause to break the trade-off by asynchronous updating? To answer this question,
we emulate patterns that are generated by the asynchronous updating of a single transition by the
synchronous updating of multiple transition rules. Through this emulation, one can estimate the
potential diversity of asynchronous updating with respect to the number of segments and the number
rules. Our analysis suggests that asynchronous updating contributes to increasing the segmentation
rather than the transition rule, which has the potential to generate various configurations, which can
play an essential role in breaking the trade-off between the universality and efficiency.

Author Contributions: Conceptualization, Y.-P.G. and D.U.; writing—original draft preparation, Y.-P.G.;
writing—review and editing, Y.-P.G. and D.U. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by JSPS, KAKENHI-18K18478.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Conrad, M. Adaptability; Plenum Publishing Corp.: New York, NY, USA, 1983.
2. Conrad, M. On design principles for a molecular computer. Commun. ACM 1985, 28, 464–480. [CrossRef]
3. Paun, G.; Rozenberg, G.; Salomaa, A. DNA Computing: New Computing Paradigms; Springer: Berlin/Heidelberg,

Germany, 2005.
4. Paun, G. Membrane Computing; Springer: Berlin/Heidelberg, Germany, 2010.
5. Brabazon, A.; O’Neil, M.; McGarraghy, S. Natural Computing Algorithm; Springer: Berlin/Heidelberg,

Germany, 2015.
6. Tsuda, S.; Aono, M.; Gunji, Y.P. Robust and emergent Physarum logical-computing. Biosystems 2004, 73, 45–55.

[CrossRef] [PubMed]
7. Adamatzky, A. Physarum Machines: Computers from Slime Mould; World Scientific: Singapore, 2010.
8. Schumann, A.; Adamatzky, A. Physarum spatial logic. New Math. Nat. Comput. 2011, 7, 483–498. [CrossRef]
9. Gravel, D.; Bell, T.; Barbera, C.; Bouvier, T.; Pommier, T.; Venail, P.; Mouquet, N. Experimental niche evolution

alters the strength of the diversity-productivity relationship. Nature 2011, 469, 89–94. [CrossRef] [PubMed]
10. Sexton, J.P.; Montiel, J.; Shay, J.E.; Stephens, M.R.; Slatyer, R.A. Evolution of ecological niche breadth.

Annu. Rev. Ecol. Evol. Syst. 2017, 48, 183–206. [CrossRef]
11. Rebound, X.; Bell, G. Experimental evolution in Chlamidonas. III Evolution of specialist and generalist types

in environments that vary space and time. Heredity 1997, 78, 507–514. [CrossRef]
12. Kassen, R. The experimental evolution of specialists, generalist, and the maintenance of diversity.

J. Evol. Biol. 2002, 15, 173–190. [CrossRef]
13. Ma, J.; Levin, S.A. The evolution of resource adaptation: How generalist and specialist consumers evolve.

Bull. Math. Biol. 2006, 68, 1111–1123. [CrossRef]
14. Dietterich, T. Overfitting and undercomputing in machine learning. ACM Comput. Surv. 1995, 37, 326–327.

[CrossRef]
15. Langton, C.G. Computation at the edge of chaos: Phase transition and emergent computation. Physica D

1990, 42, 12–37. [CrossRef]
16. Kauffman, S.A.; Johnsen, S. Coevolution to the edge of chaos: Coupled fitness landscapes, poised states,

and coevolutionary avalanches. J. Theor. Biol. 1991, 149, 467–505. [CrossRef]

http://dx.doi.org/10.1145/3532.3533
http://dx.doi.org/10.1016/j.biosystems.2003.08.001
http://www.ncbi.nlm.nih.gov/pubmed/14729281
http://dx.doi.org/10.1142/S1793005711002037
http://dx.doi.org/10.1038/nature09592
http://www.ncbi.nlm.nih.gov/pubmed/21131946
http://dx.doi.org/10.1146/annurev-ecolsys-110316-023003
http://dx.doi.org/10.1038/hdy.1997.79
http://dx.doi.org/10.1046/j.1420-9101.2002.00377.x
http://dx.doi.org/10.1007/s11538-006-9096-6
http://dx.doi.org/10.1145/212094.212114
http://dx.doi.org/10.1016/0167-2789(90)90064-V
http://dx.doi.org/10.1016/S0022-5193(05)80094-3


Entropy 2020, 22, 1049 14 of 15

17. Chua, L.; Sbitnev, V.; Kim, H. Neurons are poised near the edge of chaos. Int. J. Bifur. Chaos 2012, 22, 1250098.
[CrossRef]

18. Bertschinger, N.; Natschläger, T. Real-time computation at the edge of chaos in recurrent neural networks.
Neural. Comput. 2004, 16, 1413–1436. [CrossRef] [PubMed]

19. Prokopenko, M.; Harre, M.; Lizier, J.; Boschetti, F.; Peppas, P.; Lauffman, S. Self-referential basis of undecidable
dynamics; from the liar paradox and halting problem to the edge of chaos. Phys. Life Rev. 2019, 31, 134–156.
[CrossRef] [PubMed]

20. Bak, P.; Tang, C.; Wiesnfeld, K. Self-organized criticality: An explanation of 1/f noise. Phys. Rev. Lett. 1987,
59, 381–384. [CrossRef] [PubMed]

21. Bak, P.; Tang, C. Earthquakes as a self-organized critical phenomenon. J. Geol. Res. 1989, 94, 15635–15637.
[CrossRef]

22. Bak, P.; Sneppen, K. Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett.
1993, 71, 4083–4086. [CrossRef]

23. Estevez-Rams, E.; Estavez-Moya, D.; Garcia-Medina, K.; Lora-Serrano, R. Computational capabilities at
the edge of chaos for one dimensional systems undergoing continuous transitions. Chaos 2019, 29, 043105.
[CrossRef]

24. Barbu, V. Self-organized criticality of cellular automata model; absorbtion in finite-time of supercritical
region into the critical one. Math. Method Appl. Sci. 2013, 36, 1726–1733. [CrossRef]

25. Wolfram, S. Statistical mechanics of cellular automata. Rev. Mod. Phys. 1983, 55, 601–644. [CrossRef]
26. Wolfram, S. Universality and complexity in cellular automata. Physica D 1984, 10, 1–35. [CrossRef]
27. Wolfram, S.A. New Kind of Science; Wolfram Media: Champaign, IL, USA, 2002; ISBN 1-57955-008-8.
28. Morita, K. Reversible simulation of one-dimensional irreversible cellular automata. Comp. Sci. 1995, 148,

157–163. [CrossRef]
29. Cook, M. Universality in elementary cellular automata. Complex Syst. 2004, 2015, 1–40.
30. Kutrib, M. Efficient universal pushdown cellular automata and their application to complexity. IFIG Res. Rep.

2000, 4, 1–16.
31. Magolous, N. Physics-like models of computation. Physica D 1984, 10, 81–95.
32. Adamatzy, A. Collision-Based Computing; Springer: Berlin/Heidelberg, Germany, 2012.
33. Cordero, C.G. Parameter adaptation and criticality in particle swarm optimization. arXiv 2017,

arXiv:1705.06966.
34. Erskine, A.; Hermann, J.M. CriPS: Critical particle swarm optimization. In Proceedings of the European

Conference on Artificial Life, York, UK, 20–24 July 2015; pp. 207–214.
35. Gunji, Y.P. Self-organized criticality in asynchronously tuned elementary cellular automata. Complex Syst.

2014, 23, 55–69. [CrossRef]
36. Gunji, Y.P. Extended self-organized criticality in asynchronously tuned cellular automata. In Chaos, Information

Processing and Paradoxical Games; Vasileios, B., Ed.; World Scientific: Singapore, 2014.
37. Fatès, N.; Morvan, M. An experimental study of robustness to asynchronism for elementary cellular automata.

Complex Syst. 2005, 16, 1–27.
38. Fatès, N.; Thierry, É.; Morvan, M.; Schabanel, N. Fully asynchronous behavior of double-quiescent elementary

cellular automata. Theor. Comp. Phys. 2006, 362, 1–16. [CrossRef]
39. Fatès, N. A guided tour of asynchronous cellular automata. J. Cell. Autom. 2014, 9, 387–416.
40. Fatès, N. Asynchronous cellular automata. In Encyclopedia of Complexity and Systems Science; Meyers, R., Ed.;

Springer: Berlin/Heidelberg, Germany, 2018; p. 21. ISBN 978-3-642-27737-5.
41. Sethi, B.; Roy, S.; Das, S. Asynchronous cellular automata and pattern classification. Complexity 2016, 21,

370–386. [CrossRef]
42. Gunji, Y. Pigment color patterns of molluscs as autonomy, generated by asynchronous automata. Biosystem

1990, 23, 317–334. [CrossRef]
43. Schrönfisch, B.; de Roos, A. Synchronous and asynchronous updating in cellular automata. Biosystems 1999,

51, 123–143. [CrossRef]

http://dx.doi.org/10.1142/S0218127412500988
http://dx.doi.org/10.1162/089976604323057443
http://www.ncbi.nlm.nih.gov/pubmed/15165396
http://dx.doi.org/10.1016/j.plrev.2018.12.003
http://www.ncbi.nlm.nih.gov/pubmed/30655222
http://dx.doi.org/10.1103/PhysRevLett.59.381
http://www.ncbi.nlm.nih.gov/pubmed/10035754
http://dx.doi.org/10.1029/JB094iB11p15635
http://dx.doi.org/10.1103/PhysRevLett.71.4083
http://dx.doi.org/10.1063/1.5062364
http://dx.doi.org/10.1002/mma.2718
http://dx.doi.org/10.1103/RevModPhys.55.601
http://dx.doi.org/10.1016/0167-2789(84)90245-8
http://dx.doi.org/10.1016/0304-3975(95)00038-X
http://dx.doi.org/10.25088/ComplexSystems.23.1.55
http://dx.doi.org/10.1016/j.tcs.2006.05.036
http://dx.doi.org/10.1002/cplx.21749
http://dx.doi.org/10.1016/0303-2647(90)90014-R
http://dx.doi.org/10.1016/S0303-2647(99)00025-8


Entropy 2020, 22, 1049 15 of 15

44. Blok, H.J.; Bergerson, B. Synchrnous versus asynchronous updating in the “game of Life”. Phys. Rev. E 1999,
59, 3876–3879. [CrossRef]

45. Radicchi, F.; Vilone, D.; Meyer-Ortmanns, H. Phase transition between synchronous and asynchronous
updating algorithms. J. Stat. Phys. 2007, 129, 593–603. [CrossRef]

46. Fan, Y.; Huang, X.; Wang, Z.; Li, Y. Global dissipativity and quasi-synchronization of asynchronous updating
fractional-order memristor-based neural networks via interval matrix method. J. Frankl. Inst. 2018, 355,
5998–6025. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevE.59.3876
http://dx.doi.org/10.1007/s10955-007-9416-8
http://dx.doi.org/10.1016/j.jfranklin.2018.05.058
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Trade-Off Principle in Synchronous ECA 
	The Trade-Off Breaking by Asynchronous Updating 
	Conclusions 
	References

