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Abstract: Generating Boolean Functions (BFs) with high nonlinearity is a complex task that is usually
addresses through algebraic constructions. Metaheuristics have also been applied extensively to this task.
However, metaheuristics have not been able to attain so good results as the algebraic techniques.
This paper proposes a novel diversity-aware metaheuristic that is able to excel. This proposal includes
the design of a novel cost function that combines several information from the Walsh Hadamard
Transform (WHT) and a replacement strategy that promotes a gradual change from exploration to
exploitation as well as the formation of clusters of solutions with the aim of allowing intensification steps
at each iteration. The combination of a high entropy in the population and a lower entropy inside clusters
allows a proper balance between exploration and exploitation. This is the first memetic algorithm that is
able to generate 10-variable BFs of similar quality than algebraic methods. Experimental results and
comparisons provide evidence of the high performance of the proposed optimization mechanism for the
generation of high quality BFs.
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1. Introduction

In several cryptographic systems and in the use of noisy channels, Boolean Functions (BFs) play an
important role. Specifically, BFs are used in the internal operation of many cryptographic algorithms,
and it is known that in order to avoid the success of cryptanalysis on such systems, increasing the
degree of nonlinearity of BFs is utterly important. The research in Cryptographic Boolean Functions
(CBFs) has increased significantly in the last few decades. Particularly, the cryptographic community
has been widely working in the problem of generating BFs with good cryptographic properties.
One of the first authors to study such topic showed the important implication of the feature known
as correlation immunity using algebraic procedures [1]. CBFs are currently used in symmetric-key
cryptography both in block and stream ciphers [2]. In both of these types of ciphers, the only nonlinear
elements are usually the BFs applied in the stream ciphers and the vectorial BFs (better known as
substitution boxes or s-boxes) in the block ciphers. Without the use of BFs in stream ciphers, or s-boxes
in block ciphers, it would be trivial to break the cryptographic systems. As a result, designing proper
BFs is a crucial step.
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Several efforts have been devoted to finding proper CBFs to avoid cryptanalytic attacks [3].
Thus, cryptographers study the desired properties for CBFs. In particular, some desired features are
high nonlinearity, balancedness, algebraic degree and low autocorrelation. Attaining balanced BFs
with high nonlinearity is one of the most challenging tasks [3] and it is particularly important because
they hinder the application of linear and differential cryptanalysis.

Currently, many ways to generate CBFs with proper features have been designed. The three
main approaches that are currently used are [4] algebraic constructions, random generation and
metaheuristic constructions. Algebraic constructions use mathematical procedures based on algebraic
properties to create BFs with good cryptographic properties. Random generation is easy and fast,
but the resulting BFs usually have suboptimal properties. Finally, metaheuristic constructions are
heuristic techniques that have attained quite promising BFs and are easier to design than algebraic
methods. However, up to now, metaheuristic techniques have not been able to attain so good results as
the algebraic techniques. For instance, attending to the nonlinearity for balanced CBFs, metaheuristics
attain CBFs with lower nonlinearity than the best-known CBFs that have been generated with algebraic
constructions. Note that in practice, it is first necessary to have methods that allow obtaining BFs
with high nonlinearity and then, as is the trend in the literature, compromise nonlinearity to increase
resistance to DPA attacks, Side Channel, and so forth [5]. Alternatively, the different features might be
tackled simultaneously with multi-objective optimizers (MO). In fact, in the related literature there
exist different implementations following this principle [6]. However, in our work we focus only on
the nonlinearity so single-objective optimizers are applied.

Regarding the generation of highly nonlinear CBFs, one of the main difficulties is that the search
space Fn is immensely large: |Fn| = 22n

. In fact, for problems with more than five variables, it is not
possible to do an exhaustive search. Furthermore, as n increases, not only the search space grows,
but also the computational cost of calculating the various important properties increases. Specifically
the calculus of the nonlinearity is based on the usage of the Walsh Hadamard Transform (WHT),
so there are more BFs and estimating the quality of each BF is more costly. This article focuses on the
n-variable BF problem, with n = 8, 10. The main efforts are concentrated in further improving the
highest nonlinearity achievable by metaheuristics for these n-variable BF problems. Note that some
researchers consider that balanced BFs for 8 variables with nonlinearity equal to 118 do not exist, so the
best-known BF might already be known [7]. This function has been searched for at least since 30 years
ago but its existence has not been proved [8]. A similar situation appears for the case of 10-variable
BFs with nonlinearity equal to 494 [7]. In any case, the main purpose of this research is to reduce the
gap between algebraic methods and metaheuristic approaches [8]. Notice that some novel general
purpose strategies are designed so the advances put forth in this paper might be applied in additional
fields of optimization.

Diversity-aware population based metaheuristics have provided important benefits in
recent years. Particularly, they have been able to generate new best-known solutions in several
combinatorial optimization problem [9]. This paper studies the hypothesis that the state of the art in
the generation of balanced CBFs with high nonlinearity can be improved further with proper
diversity-aware memetic algorithms. To the best of our knowledge, our proposal is the first
population-based approach that considers the diversity in an explicit way in order to generate
balanced CBFs with high nonlinearity. The main novelty appears in the replacement phase,
where concepts related to clustering and diversity are applied. Additionally, two new cost functions
that guide the search towards proper regions are devised. Regarding the diversity management,
two strategies that involve different ways of controlling the diversity are applied. The first one,
which was successfully devised for the Graph Partitioning Problem [10], enforces a large contribution
to diversity for every member of the population, whereas the second one, which is a novel proposal,
considers the creation of clusters, meaning that some close members are maintained in the population.
The lower entropy induced by the formation of clusters [11] allows the promotion of a larger degree of
intensification, which is a key to success. Finally, a novel population initialization method is also
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proposed which considers some basic algebraic constructions with the aim of speeding up the
attainment of high quality BFs. Concerning the results, we remark that our proposals reduce the gap
between algebraic and heuristic constructions. In fact, with the methods proposed in this work,
the results obtained by algebraic constructions for 8 and 10 variables have been matched.

This work is organized as follows. Section 2 formally defines our problem and introduces the
main required concepts. Section 3 provides a review of metaheuristics applied to the generation of
CBFs as well as other optimizers that guided our design. Trajectory-based and population-based
proposals are described and analyzed is Sections 4 and 5, respectively. Parameterization studies and
comparisons against the best-known solutions are included. Finally, conclusions and some lines of
future work are given in Section 6.

2. Problem Statement: Formal Definitions

The problem addressed in this paper is the generation of balanced CBFs with high nonlinearity.
This section formally defines the concepts and algorithms required to fully understand the problem.

2.1. Boolean Functions and Representations

The set {0, 1} is the most often endowed with the structure of a field (denoted by F2) and the set
Fn

2 of all binary vectors of length n is viewed as an F2 vector space. The null vector of Fn
2 is 0. Fn

2 is
endowed with a field structure to form the well-known Galois Field GF(2n) [12]. Given these basic
definitions, a n-variable BF is a function

f : Fn
2 → F2. (1)

It is usually written as f (x) = f (x1, x2, ..., xn), where x is the shorthand writing of vector
(x1, x2, ..., xn). Note that when considering n variables, there are |Fn| = 22n

different
Boolean functions.

BFs can be represented in several ways. Some of the most typical are the algebraic forms, the binary
truth table and the polarity truth table. The binary truth table is the lexicographically ordered vector of
all outputs of the BF f . The binary truth table has length 2n. The lexicographical order of the binary
vectors x follows a particular order when going through all the possible values in Fn

2 . Let kx denote the
integer representation of x = (x1, x2, ..., xn), that is,

kx = to_int(x) =
n

∑
i=1

xi2n−i. (2)

We can see the function to_int as the function that maps a vector x from Fn
2 to an integer kx ∈

Nn = {0, · · · , 2n − 1}. When the integer kx takes all the values from 0 incrementally to 2n − 1, then the
corresponding binary vector x goes through all the elements in Fn

2 . This order is the lexicographical one.
Linked to this representation is the polarity truth table or polar form. Let f denote a BF, then f̂ is used
to define the polarity truth table. In this case f̂ (x) ∈ {−1, 1} and each element of f̂ is obtained as
f̂ (x) = (−1) f (x).

Affine BFs on Fn are those that can be expressed as Lw,c:

Lw,c(x) = w · x⊕ c = w1x1 ⊕ · · · ⊕ wnxn ⊕ c, (3)

where w ∈ Fn
2 and c ∈ F2. If c = 0, then Lw,0 (Lw) is a linear BF. The sets of n-variable affine and linear

BFs are denoted by An and Ln, respectively. They are important because they are involved in the
calculus of the nonlinearity. The number of n-variable affine and linear BFs are

|An| = 2n+1, (4)

|Ln| = 2n. (5)
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Additional important concepts are the Hamming Weight and the Hamming Distance. The Hamming
Weight of a BF f is defined as the numbers of 1′s in its truth table and is denoted by wH( f ):

wH( f ) = ∑
x∈Fn

2

f (x). (6)

This definition is also true for vectors x ∈ Fn
2 .

Let f (x), g(x) be two n-variable BFs, the Hamming distance between f (x) and g(x), denoted by
dH( f , g), is the number of coordinates with different values in their truth tables. It can be written as

dH( f , g) = wH( f ⊕ g) = ∑
x∈Fn

2

f (x)⊕ g(x). (7)

2.2. Walsh Hadamard Transform

The Walsh Hadamard Transform (WHT) can be seen as another kind of n-variable BF representation
that is useful to calculate relevant cryptographic properties of BFs, such as the nonlinearity. Let f be a
n-variable BF, the WHT of f is the function Wn : Fn

2 → Z defined by

Wn( f )(w) = ∑
x∈Fn

2

(−1) f (x)⊕Lw(x), w ∈ Fn
2 . (8)

WHT can also be calculated by using the polarity truth tables of f and Lw

Wn( f̂ )(w) = ∑
x∈Fn

2

f̂ (x)L̂w(x), w ∈ Fn
2 . (9)

The WHT of f measures the correlation between f and each Lw. According to Millan [3],
the correlation with Lw is given by

c( f , Lw) =
|Wn( f )(w)|

2n . (10)

The correlation is a real number 0 ≤ c( f , Lw) ≤ 1, that represents the degree of similarity between
f and Lw. A correlation value equal to zero indicates that f and Lw are completely uncorrelated;
a value equal to 1 means a perfect correlation between f and Lw.

Note that direct calculation of Wn would require about 22n operations. This is because there exists
2n linear functions, and computing the correlation with each linear function requires 2n operations.
Fortunately there is a faster way to obtain Wn, the Fast Walsh Hadamard Transform (FWHT), which is
a discrete version of the so-called Fast Fourier Transform (FFT). Since our optimizer requires the
calculation of the WHT, the FWHT is used.

Parseval’s Equation

The values in the WHT of f are constrained by a square sum relationship which implicitly limits
the magnitude and frequency of those values, this is known as Parseval’s Equation (11) [13]:

∑
w∈Fn

2

(Wn( f )(w))2 = 22n. (11)

This value is constant for all n-variable BFs, that is, the values in the WHT of every BF must satisfy
Parseval’s equation. However, a WHT of a function can satisfy Parseval’s equation and not necessarily
be Boolean. For this reason, even if the WHT is required, optimization methods usually operate with
encoding based on truth tables.
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2.3. Cryptographic Properties of Boolean Functions and Special Functions

Boolean functions used in stream ciphers must have some required properties with the aim of
making ciphers secure against some attacks. Some of the most important cryptographic properties of
BFs are the algebraic degree, the balancedness, the nonlinearity and the auto correlation. In this work
we consider the balancedness and nonlinearity.

The balancedness is one of the most basic of all cryptographic properties desired to be exhibited
by BFs. f is said to be balanced if wH( f ) = 2n−1. In terms of its WHT, a BF f is balanced if and only if

Wn( f )(0) = 0. (12)

The set of n-variable balanced BFs is denoted as Bn and its size is

|Bn| =
(

2n

2n−1

)
. (13)

It is important to remark that we use this search space along this paper, that is, our optimizer does
not generate unbalanced BFs.

The nonlinearity Nn( f ) of f is calculated using the maximum absolute value of the WHT and
represents the minimum Hamming distance between f and the affine BFs set An, that is,

Nn( f ) = min
Aw,c∈An

dH ( f , Aw,c) . (14)

Mathematically, the relationship between the nonlinearity of a n-variable BF f and the WHT of f
is given by the following equation:

Nn( f ) =
1
2

(
2n − max

w∈Fn
2

|Wn( f )(w)|
)

, (15)

where maxw∈Fn
2
|Wn( f )(w)| represents the maximum absolute value in the WHT. By Parseval’s equation,

we can obtain an upper bound of nonlinearity in the general case (when n is even), that is,

Nn( f ) ≤ 2n−1 − 2n/2−1. (16)

Bent BFs are a very special class of BFs. A BF f (x) is bent if and only if

|Wn( f )(w)| = 2n/2, ∀w ∈ Fn
2 . (17)

Bent BFs are not balanced and they are not applied usually in cryptosystems. It can be noticed
that bent BFs only exist when n is even. While they are not applied directly in our proposal, they
inspired one of the methods applied to initialize the population in this paper.

3. Literature Review

This section reviews related papers on the application of metaheuristics to the generation of CBFs
and some recent advances in population-based metaheuristics that guided the design of our proposals.

At least since two decades ago, the firsts researchers started to study the design of CBFs from the
metaheuristics point of view. The first Genetic Algorithm (GA) that tries to maximize the nonlinearity of
BFs was proposed in Reference [14]. The importance of including an intensification stage was shown by
applying a smart version of a hill climbing method [3]. The superiority of memetic algorithms against
pure GAs was shown. Subsequently, a novel crossover operator to find BFs with high nonlinearity was
proposed [15]. This operator combines two balanced CBFs and produces a single balanced CBF.

More recently, it was noted that an important step in the application of metaheuristics for the
generation of CBFs is the design of proper fitness or cost functions [16]. This last study was developed
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by applying Simulated Annealing. Subsequently, the proposal was extended by designing a more
sophisticated search technique of Simulated Annealing called “vanilla” [17] with the aim of obtaining
CBFs with some additional properties such as resilience. Authors note that the huge search space
hinders the attainment of better results. Obviously, this is not a drawback specific to this technique.
In order to partially avoid this drawback, some authors consider some of the advances performed
with algebraic constructions. Particularly, References [18,19] proposed trajectory-based search
methods that operate with bent BFs. They randomly adjust the bent BF to convert it on a balanced BF.
In this way, they decrease the nonlinearity of a bent BF instead of increasing the nonlinearity of a
randomly created BF. First, a bent BF is constructed with the method given in Reference [20].
Then, a trajectory-based heuristic is used to attain a balanced BF. These methods show really good
results although not as good as more complex algebraic approaches. In fact, at the starting point of our
research, these methods were the state-of-the-art in the generation of BFs with high nonlinearity by
applying metaheuristics. Given the promising behavior of this method, one of the optimizers put forth
in this paper applies a simple algebraic techniques in the generation of the initial population.
A different alternative to deal with the so large search space in the case of maximizing the nonlinearity
for balanced BFs, is to take into account the symmetries that appear in the fitness landscape when
using the bit string representation [21].

Some other recent works [22] include comparisons among different metaheuristics such as GAs,
Evolution Strategies (ESs) and Cartesian Genetic Programming (CGP). Among the tested approaches,
CGP was the best one to generate 8-variable CBFs with high nonlinearity. In fact, it is the EA with
best performance among those that do not apply the concept of bent BFs. Another contribution of this
paper is to compare three different fitness functions with the aim of increasing the nonlinearity.

Finally, some notions on the difficulty of generating balanced BFs with high nonlinearity are
discussed in Reference [23]. This last study is developed using Estimation of Distribution Algorithms
(EDAs). They note some undesired properties of using the nonlinearity as fitness function.

Regarding the use of multi-objective optimization algorithms, there are important works
including several metaheuristics. For example in Reference [6] the authors propose the use of a MO
Genetic Programming algorithm. They used three objective functions that must be maximized: the
nonlinearity, algebraic degree, and correlation immunity. In the same context, Non-dominated sorting
genetic algorithm II (NSGA-II) was also implemented to construct cryptographically strong Boolean
functions [24] by optimizing nonlinearity, resiliency and autocorrelation. Authors remark that the use
of MO increased the computational cost.

Recent advances in metaheuristics have shown that in many combinatorial optimization
problems, results are advanced further with diversity-aware memetic algorithms [25]. Particularly,
relating the diversity maintained in the population to the stopping criterion and elapsed period with
the aim of balancing the search from exploration to exploitation as the evolution progresses seems very
promising [26]. This principle has not been used in current state-of-the-art metaheuristics for CBFs.
Taking into account the difference among the best-known BFs and the ones attained by state-of-the-art
metaheuristics the main aim of this paper is to advance further the development of metaheuristic
construction techniques. Particularly, the paper focuses on the development of novel memetic
algorithms incorporating explicit control of diversity that follow the aforementioned design principle.

4. Trajectory-Based Proposals

Since memetic algorithms attain BFs with higher nonlinearity than pure GAs [3], our diversity-aware
population-based proposals are memetic approaches, meaning that a trajectory-based strategy is applied
to promote intensification. One of our first steps in this research was designing and analyzing different
trajectory-based proposals. This section is devoted to fully detail our trajectory-based proposal. In order
to fully define our strategy, the representation of solutions, the applied cost function and the details
regarding the neighborhood and selection approaches are given.
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4.1. Representation of Solutions

In this paper each solution S is encoded using a binary representation composed of a vector with
2n Boolean decision variables S [k], where n is the number of variables of the BF f and k ∈ Nn. In order
to introduce the relationship between the solution S and f , let us introduce the analogous function
that maps an integer k to a binary vector x ∈ Fn

2 , thus, to_bin : N→ Fn
2 , such that

x = (x1, . . . , xn) = to_bin(k) =
(⌊

k
2n−1

⌋
%2, . . . ,

⌊
k

2n−n

⌋
%2
)

. (18)

Now, we are ready to introduce the relationship between the solution S and f . Each decision
variable S [k] is set equal to the corresponding truth table value f (x), where k = to_int(x), x ∈ Fn

2 (or
x = to_bin(k), k ∈ Nn)

f (x) = S [k]. (19)

Note that both our trajectory-based and population-based proposals operate with balanced BFs,
so 2n−1 decision variables are set to 0 and 2n−1 decision variables are set to 1. In order to facilitate
some descriptions, let us define the positions sets P0 and P1 as the set of positions whose values are 0
and 1, respectively. The sets P0 and P1 have the following properties:

|P0| = |P1| = 2n−1, P0 ∩ P1 = ∅, P0 ∪ P1 = Nn.

Each solution has associated its P0, P1 sets and an integer vectorW of length 2n which denotes
the WHT of the BF f . Analogously to the equality (19) we have that the following holds for a vectorW
denoting the WHT of the BF f

Wn( f )(w) =W [k] s.t k ∈ Nn, w = to_bin(k), (20)

whereW [k] denotes an integer value and Wn( f )(w) the WHT value associated to the linear function Lw,
which is also an integer.

4.2. Neighborhood

In order to define the neighborhood employed in this paper it is necessary to define an operator
that transforms a solution S into another one S ′. We call this operator Bit Swapping (BS). BS receives
a solution S and two positions p0 and p1 as inputs and returns another solution S ′, such that the
decision variables S [p0] and S [p1] are exchanged (or complemented) and dH(S ,S ′) = 2, that is,

S ′[k] =
{

1⊕ S [k] if k ∈ {p0, p1}
S [k] if k ∈ Nn \ {p0, p1}.

(21)

The Bit Swapping operator is defined as follows

BS(S , p0, p1) := swap(S [p0],S [p1]). (22)

Employing BS we can construct the full neighborhood for a single solution S as

N(S) = {BS(S , p0, p1) : p0 ∈ S .P0 ∧ p1 ∈ S .P1}. (23)

The total amount of bit-swapping that can be performed is the neighborhood size

|N(S)| = |S .P0| × |S .P1| = 2n−1 × 2n−1 = 22n−2. (24)
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4.3. Cost Functions

In order to properly measure the performance of the algorithms developed in this paper, it is
important to remark that our aim is to generate balanced BFs with high nonlinearity, that is,
our objective function is the nonlinearity

F1(S) =
1
2

(
2n −max

k∈Nn
|S .W [k]|

)
. (25)

We can analyze some properties of this function by taking into account that the values in the
WHT S .W are constrained by the Parseval’s equation. We know that for a balanced BF all the values
in its WHT are multiples of 4. This has as a consequence that the amount of different values that could
take maxk∈Nn |S .W [k]| is really small so the different values of F1 are also small. This relationship
between maxk∈Nn |S .W [k]| and F1 is clearer if we transform the original objective function (maximize
the nonlinearity) into another one (minimize the maximum value in the WHT):

F2(S) = max
k∈Nn

|S .W [k]|. (26)

Similarly to other researchers [27], we realized that using the objective function as the fitness
function is not suitable to guide the search in EAs and it is necessary to define a new fitness function
(in our case a cost function). One of the drawbacks seen easily from the objective function F1 or F2 is
that it just takes a small amount of different values, so a lot of BFs are considered to be of equal value.
However, even if they share the same nonlinearity, some of them could be used to easily improve the
nonlinearity by just making some modifications, while another ones could be far from better solutions.

The most popular cost function—since it is a cost function it must be minimized—used with
metaheuristics is the objective function F2 , that will be denoted as C1 in the following:

C1(S) = F2(S) = max
k∈Nn

|S .W [k]|. (27)

Also, the cost function designed by Clark [27] is widely used,

C2(S) =
2n−1

∑
k=0
||S .W [k]| − X |R. (28)

When using C2 every value in the WHT influences the cost function of S, rather than just the
maximum one as in the cost function C1 . The authors note “the parameters X and R provide freedom
to experiment”. Similarly to the authors, we use R = 3 and for the X , the expected maximum value
for the WHT when it achieves the nonlinearity upper bound.

One of the contributions of this paper is the definition of new cost functions. We propose two
new cost functions in order to address the problem properly. In order to explain our cost function,
lets denote the absolute values appearing in the WHT as X1, X2, · · · , Xα, such that

X1 = 0 < X2 < · · · < Xα = max
k∈Nn

|S .W [k]|.

In addition, ηi is used to denote the amount of times that the Xi or −Xi value appears in the WHT.
Note that X1 = 0, since S .W [0] = 0 and η1 > 0. Based on this, we propose two new cost functions.
In both we form a tuple of values

C3(S) = (F2(S), ξ1(S)), (29)

C4(S) = (F2(S), ξ2(S)), (30)
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where the first component is the objective function F2 and the second components ξ1, ξ2—which are the
novelty—help us to discern between solutions with the same nonlinearity. The second members ξ1, ξ2
of such cost functions are the following:

1. In the second value of C3 we try to minimize the maximum absolute value Xα and the second
maximum absolute value Xα−1 in the WHT. In order to attain this aim, it takes also into account
the number of appearances of these values (ηα and ηα−1) in the WHT. This is implemented
as follows:

ξ1(S) = (ηα × Xα)
3 + (ηα−1 × Xα−1). (31)

2. Let Xk be a value such that Xk−1 ≤ X < Xk, with X defined as in Reference [12]. In the second
value of the cost function, we try to minimize the appearance of entries with absolute values
greater than X assigning larger penalties to larger values:

ξ2(S) =
α

∑
i=k

(2× ηi × Xi)
i−k+1. (32)

In order to employ the cost functions previously defined, we define the new operators ≺ and �
to identify if a solution S ′ is better than a solution S (S ′ ≺ S) or if a solution S ′ is better or equal than
a solution S (S ′ � S). It used the lexicographic comparison. For example, for C3 , we have

S ′ ≺ S : F2(S ′) < F2(S) ∨
(
F2(S ′) = F2(S) ∧ ξ1(S ′) < ξ1(S)

)
, (33)

S ′ � S : F2(S ′) < F2(S) ∨
(
F2(S ′) = F2(S) ∧ ξ1(S ′) ≤ ξ1(S)

)
. (34)

4.4. Full Hill Climbing

The most straightforward trajectory-based approach is full hill climbing (FHC) [28]. In hill
climbing the neighborhood is completely explored and only improvement movements are accepted.
There are several strategies to select among the neighbors that improve the current solution.
In stochastic hill climbing, which is the variant that we applied, it is selected randomly. Algorithm 1
illustrates the working operation of FHC. This algorithm makes use of the neighborhood (23).
FHC ensures that all the neighbors of a solution S are visited just once. First one decision variable set
equal to 0 is selected at random (line 5) and it is swapped with all the decision variables set equal to
1 (line 6). Then if any of the neighbors generated is better than the current solution, this is selected to
replace the current solution S (line 9) and both for cycles are restarted. If no better neighbor is found
and the neighborhood is fully visited, the solution is a local optimum and the algorithm stops (line 16).
Another stopping criterion that might be used is the elapsed time (line 12) returning the best solution
found so far.

In order to perform a comparison among the four cost functions previously detailed, they were
integrated in FHC and tested for n = 8, 10 and it was executed 50 times with different seeds. FHC was
executed until a local optimum was reached. Table 1 summarizes the results obtained for 50
independent runs. Specifically, for each cost function the minimum, maximum, mean, median and
standard deviation of the attained nonlinearity is reported. Additionally, the mean execution time
is shown. The best results obtained for each n are shown in boldface. We can see that the cost function
C3 attains the best mean nonlinearity in both cases. If we look at the time column, we see that the cost
function C3 employs less execution time to achieve a local optimum than the cost function C2.
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Algorithm 1: Full Hill Climbing (FHC).
Input : Initial solution S , Tend

1 Telapsed = 0 ;
2 LOF= False ; /* Local Optimum Found */
3 while LOF= False do

/* Check all the neighbors S ′ by fixing p0 at random and swap with the
whole set P1 randomly */

4 BSF= False ; /* Best Solution Found */
5 foreach p0 ∈ S .P0 ∧ BSF= False do
6 foreach p1 ∈ S .P1 ∧ BSF= False do
7 S ′ = BS(S , p0, p1) ; /* Select the current S ′ ∈ N(S) */
8 if S ′ ≺ S then
9 S = S ′ ;

10 BSF= True;

11 Update(Telapsed) ;
12 if Telapsed > Tend then
13 BSF= True ;
14 LOF= True ;

/* If all the neighbor solutions S ′ are visited and BSF = False the
solution S is a local optimum */

15 if BSF= False then
16 LOF= True ;

Output : Local Optimum S

Table 1. Summary of the results attained by FHC applying various cost functions.

n CF Min Max Mean Median σNn t̄(s)

8

C1 108 112 110.16 110 1.503 3.4× 10−2

C2 112 116 114.12 114 0.627 1.6× 100

C3 114 116 115.92 116 0.396 2.4× 10−1

C4 108 112 111.84 112 0.792 3.1× 10−2

10

C1 464 472 469.4 470 1.863 7.9× 10−1

C2 482 484 482.72 482 0.97 1.8× 102

C3 480 484 483.16 484 1.621 1.6× 101

C4 468 480 475.44 476 1.809 1.9× 100

4.5. First Improvement Quasi-Tabu Search

FHC with the defined neighborhood is computationally too expensive to be included in a
memetic algorithm. Thus, we decided to design an alternative trajectory-based strategy. Tabu Search is
a very popular trajectory-based strategy. Two of its main keys are to move to the best neighbor at each
iteration and to use a tabu list to avoid cycles. In our case, iterating to get the best neighbor is
computationally expensive but applying a tabu list with the aim of reducing the neighborhood
seems promising. As a result, a novel method that applies some of the principles of Tabu Search
was devised. The strategy is called First Improvement Quasi-Tabu Search (FIQTS) and differently to
Tabu Search it moves to the first neighbor that improves the current solution.
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Algorithm 2 illustrates the working operation of FIQTS. First, the tabu bit-swapping positionsR0

andR1 are initialized at random (line 2),R0 andR1 contain positions that are not allowed to bit-swap.
Then the non-tabu bit-swapping positions Q0 and Q1 are initialized (line 3), such that

Qi ∪Ri = S .Pi Qi ∩Ri = ∅ i ∈ {0, 1}.

Algorithm 2: First Improvement Quasi-Tabu Search (FIQTS).
Input : Initial solution S , Tend

1 Telapsed = 0 ;
/* Tabu bit-swapping positions initialized randomly */

2 Set Ri = {pk : pk ∈ S .Pi, k = 1, · · · , 2n−4}, i ∈ {0, 1} ;
/* Non-tabu bit-swapping positions */

3 Qi = S .Pi \ Ri, i ∈ {0, 1} ;
/* Construct the reduced neighborhood. It is automatically updated when S,
Q0 or Q1 changes */

4 Nr(S) = {BS(S, q0, q1) : q0 ∈ Q0, q1 ∈ Q1} ;
5 Set Nv(S) = ∅ ; /* Neighbors already visited */
6 Set Repeats = 0 ; /* Repetitions of neighbors */
7 LOF= False ; /* Local Optimum Found */
8 while LOF= False do

/* Select a random neighbor S ′ ∈ Nr(S) */
9 S ′ = BS(S , q0, q1), q0 ∈ Q0, q1 ∈ Q1 ;

/* Exchange the oldest element riold ∈ Ri with qi ∈ Qi */
10 swap(qi ∈ Qi, riold ∈ Ri), i ∈ {0, 1} ;

/* Check if the neighbor has not been visited */
11 if Nv(S) ∩ {S ′} = ∅ then
12 Nv(S) = Nv(S) ∪ {S ′};
13 if S ′ ≺ S then
14 S = S ′ ;
15 Nv(S) = ∅;
16 Repeats = 0;

17 else
18 Repeats ++;

/* Stopping criterion */
19 if Nv(S) = N(S) or Repeats ≥ 2|Nr(S)| then
20 LOF = True ;

21 Update(Telapsed) ;
22 if Telapsed > Tend then
23 LOF =True ;

Output : Best solution found S

The sets Q0 and Q1 contain positions such that the decision variables S [q0], S [q1] are set equal to
0, 1 respectively, and that might be bit-swapped. In base of these sets the reduced neighborhood Nr(S)
is constructed (line 4). Each time that a neighbor is created by bit-swapping the decision variables in
the positions q0 and q1, such elements are moved toR0 andR1, respectively (lines 9, 10). Additionally,
the elements that have been for a longer time in R0 and R1 are inserted in Q0 and Q1. The main
principle is to promote the selection of different decision variables at each step when performing the
bit-swapping. The stopping criterion is set in such a way that the iterative process ends when all the
neighborhood has been visited and no better solution was found or when the random sampling process
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generates too many neighbors that have already been visited previously (line 19). Another stopping
criterion that can be used is time (line 22).

As in the FHC method, FIQTS method was executed with the four cost functions. Table 2 shows
the results obtained with FIQTS for n = 8, 10. As in the previous case, the cost function C3 attains
a better performance. The FIQTS method requires less iterations than the FHC method to reach
high-quality solutions, so it is faster to locate local optima.

Table 2. Summary of the results attained by FIQTS applying various cost functions.

n CF Min Max Mean Median σNn t̄(s)

8

C1 108 112 110.16 110 1.448 3.8× 10−2

C2 112 116 114 114 0.7 1.1× 100

C3 114 116 115.96 116 0.283 1.4× 10−1

C4 108 116 112.6 112 1.629 3.7× 10−2

10

C1 466 472 470.16 470 1.888 6.8× 10−1

C2 482 484 482.68 482 0.957 9.4× 101

C3 480 484 483.64 484 1.12 1.0× 101

C4 472 480 478.48 480 2.27 3.4× 10−1

According to the results in Tables 1 and 2, the cost function C3 is the most adequate cost function
for our optimizers. Thus, the cost function C3 is chosen to be used from now on. Moreover, it is
noticeable that not only the FIQTS method is slightly better in terms of quality, but it also needs
less time. In order to select the method to be integrated in our population-based strategy, it is
important to select an inexpensive one with the aim of evolving more generations. In order to decide
which method is the most suitable to use in the rest of experiments, we compare the performance
of the FHC and FIQTS methods with the cost function C3, employing a fixed time of 0.5 and 5.0 s
for n equal to 8 and 10, respectively. Table 3 shows the results obtained for 50 independent runs for
each method. Additionally, Figure 1 shows the evolution of the nonlinearity for the FHC and FIQTS
methods with the cost function C3. The FIQTS method quickly achieves high nonlinearity, so it is
preferable for short-term executions, meaning that this is the method selected to be integrated in our
population-based approach.

We would like to note that we also designed trajectory-based strategies based on simulated
annealing and iterated local search. However, they were not superior to FIQTS.

Table 3. Comparison between FIQTS and FHC with the cost function C3 in executions at fixed time.

n Method Min Max Mean Median σNn

8 FIQTS 114 116 115.96 116 0.283
FHC 114 116 115.92 116 0.396

10 FIQTS 480 484 481.52 482 1.182
FHC 480 482 480.08 480 0.396
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Figure 1. Evolution of the Mean Nonlinearity for FIQTS and FHC. (a) 8-variables, (b) 10-variables.
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5. Population-Based Proposals

A very successful way to improve the performance of Evolutionary Algorithms (EAs) is to
hybridize with local search or other trajectory-based techniques. In fact, Memetic Algorithms (MAs) [29]
that combine genetic algorithms with an individual improvement technique, have been applied
successfully to many combinatorial optimization problems. Taking into account the integration
between the population-based strategy and the refinement scheme we can classify the MAs in two
groups [30]:

• Lamarckian Memetic Algorithm (LMA): modifications performed in the individual improvement
procedure are written back in every individual representation.

• Baldwin Memetic Algorithm (BMA): modifications change the fitness of the individuals without
altering its representation.

In our case, we apply a LMA (see Algorithm 3). In order to fully define the LMA the following
components have to be defined: initialization, fitness or cost function for the evaluation step, mating selection,
crossover and mutation for the reproduction step, survivor selection and individual improvement. In the following,
we describe each of the different components for our first basic variant. Then, some components that extend
them to generate a more effective strategy are presented.

Algorithm 3: Lamarckian Memetic Algorithm (LMA).

1 Initialize(P0)
2 Evaluate(P0)
3 Improvement(P0)
4 t = 0
5 while not stopping criterion do
6 P′t = Mating Selection(Pt)
7 P′t = Reproduction(P′t )
8 Evaluate(P′t )
9 P′t = Improvement(P′t )

10 Pt+1 = Replacement (Pt, P′t )
11 t = t + 1

5.1. A Lamarckian Memetic Algorithm with a Generational Replacement with Elitism (LMA-GRE)

Our first variant (LMA-GRE) does not consider an explicit control of diversity. In the following
the details of its different components are given.

In this first variant, the initial population P0 is generated at random. Particularly, N balanced BFs
are generated following a uniform distribution, that is, each balanced BF is equiprobable. Regarding
the evaluation, for each individual the WHT is calculated and then the cost function C3 is used to
compare individuals. The mating selection is performed with the well-known binary tournament [28].
After the mating selection, the offspring population is built. Two different variation operators that
maintain the balance of BFs are applied: crossover and mutation.

Algorithm 4 describes the working operation of the crossover operator. It is a novel—although
quite straightforward—operator. It takes as input two individuals (Ij, Ik) and generates two new
individuals (Cj, Ck). First, it calculates the positions where both individuals contain a one in the truth
table (line 3–4). These positions are preserved in the offspring, that is, they are set to one (lines 17–18).
Additionally, we calculate the positions that are set to one in only one of the individuals (line 5–6).
They are saved in the R1j and R1k sets. Then, until these sets are empty (line 7–16), we select one
value randomly for each of the sets. Then, these positions are inherited by the corresponding children
(lines 10–11) or exchanged with probability pc (lines 13–14). Note that at each step, the selected
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positions are removed from the corresponding sets (lines 15–16), and that the remaining positions are
set to zero (lines 1–2), meaning that balancedness is maintained.

Algorithm 4: Crossover strategy applied in all our optimizers.
Input : Parents Ij, Ik, cross probability pc

1 Set Cj[i] = 0 ∀i ∈ Nn;
2 Set Ck[i] = 0 ∀i ∈ Nn;
/* With Ij, Ik generate the offspring Cj, Ck */
/* First take the intersection of their P1 sets */

3 Q1j = Ij.P1 ∩ Ik.P1 ;

4 Q1k = Ij.P1 ∩ Ik.P1;
/* Take the differences */

5 R1j = Ij.P1 \ Q1j ;

6 R1k = Ik.P1 \ Q1k ;
/* Cross the elements from R1j with R1k */

7 whileR1k 6= ∅ do
8 Select randomly rj ∈ R1j and rk ∈ R1k ;

9 if U (0, 1) < pc then
10 Q1j = Q1j ∪ {rj};
11 Q1k = Q1k ∪ {rk};
12 else
13 Q1j = Q1j ∪ {rk};
14 Q1k = Q1k ∪ {rj};
15 R1j = R1j \ {rj};
16 R1k = R1k \ {rk} ;

/* With Q1j and Q1k build the offspring Cj, Ck */

17 Set Cj[i] = 1 ∀i ∈ Q1j ;

18 Set Ck[i] = 1 ∀i ∈ Q1k ;
Output : Offsprings Cj, Ck

It is important to note that when parents are close to each other, that is, their differences are
not large, then the crossover is not very destructive. In particular, if both parents are the same
individual no changes are performed. This automatic adaptive behavior is usually appropriate in the
design of crossover operators [28].

Regarding the mutation, the applied operator is described in Algorithm 5. The process iterates
over all positions set to one and with a given probability (pm) it applies the BS operator to exchange
this position with a position that contains a zero value. This second position is selected at random.

Algorithm 5: Mutation strategy applied in all our optimizers.
Input : Individual I , mutation probability pm

1 foreach p1 ∈ I .P1 do
2 if U (0, 1) < pm then

/* Select p0 ∈ I .P0 at random to perform a bit-swapping */
3 BS(I , p0, p1) ;

Output : Individual mutated I
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The way in which the mutation and crossover operators are applied is quite standard. Algorithm 6
illustrates the creation of the offspring population by employing the crossover and mutation operators.
Note that at each generation N offspring are created.

Algorithm 6: Reproduction strategy applied in all our optimizers.
Input : Parents P, cross probability pc, mutation probability pm

/* Generate two individuals at each iteration */
1 for i = 0; i < N; i+ = 2 do
2 Select orderly Ii, Ii+1 ;

/* Perform crossover */
3 I ′i , I ′i+1 = Crossover(Ii, Ii+1, pc);

/* Perform mutation to each offspring */
4 I ′i = Mutation(I ′i , pm) ;
5 I ′i+1 = Mutation(I ′i+1, pm) ;

Output : Offspring population P′

In pure generational schemes, the offspring are the survivors [31]. Since elitism usually contributes
to the attainment of high-quality solution some Generational Replacement with Elitism (GRE) variants
exist [31]. In our proposal (see Algorithm 7) when the best solution of the previous generation
is better than the best offspring, the best solution of the previous generation replaces a randomly
selected offspring.

Algorithm 7: Generational Replacement with Elitism (GRE) Technique.

Input : Population P, offspring P′

1 Set I = individual with best cost in P;
2 Set I ′ = individual with best cost in P′;
3 if I ≺ I ′ then

/* Replace at random any individual I ′r from P′ with I */
4 Select I ′r ∈ P′ ;
5 Set I ′r = I ;

6 Set P = P′;
Output : New population P

Finally, the intensification procedure must be specified. In LMA-GRE, FIQTS (Algorithm 2) is
applied to each offspring. There is just a subtle difference which is the stopping criterion. In this case,
FIQTS stops after a certain period of time. The reason for this is that with the aim of evolving a high
number of generations, a strict control on the time invested by the intensification procedure is required.
Note that LMA-GRE does not incorporate explicit control of diversity, so it is used precisely to validate
the advantages of other proposals that incorporate strategies to control the diversity.

5.2. LMA with a Replacement Considering Elitism and Dynamic Diversity Control (LMA-REDDC)

The second variant of our optimizer includes a replacement phase that takes diversity into account.
Particularly, the replacement phase is similar to the one devised for the Graph Partitioning Problem [10].
This replacement operator (Algorithm 8) operates as follows. It takes as input the population, offspring and
a threshold D to perform penalties and it selects the members of the next population. First, it selects the
individual with the lowest cost (lines 1–6). Then, iteratively it selects the remaining survivors (lines 7–17).
Particularly, at each iteration among the non-selected individuals that are not too close to already selected
survivors (line 10–11) it selects the one with the lowest cost (lines 12–13). Note that it might happen that all
individuals are too close to each other (line 14). In this case, the farthest individual is selected (lines 14–15).
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Algorithm 8: REDDC Survivor Selection Technique.

Input : Population P, offspring P′, distance D
1 Set Pc = P ∪ P′ ; /* Current Population */
2 foreach I ∈ Pc do
3 I .cost = C3(I) ; /* Cost of individual I */

4 sort(Pc) ;
/* I0 is the individual with lowest cost in Pc */

5 P = {I0} ; /* New population starts with the best */
6 Pc = Pc \ {I0} ; /* Update current population */
7 for i = 1; i < N; i ++ do

/* Calculate the distance to the closest neighbor (DCN) */
8 foreach I ∈ Pc do
9 I .DCN = min{dH(I , I ′) : I ′ ∈ P}; /* Hamming distance 7 */

10 if I .DCN < D then
11 I .cost = ∞ ; /* Penalize the closest */

12 sort(Pc) ;
13 S = I0 ; /* Select the best (I0) */

/* If all are penalized choose the farthest */
14 if S .cost = ∞ then
15 S = Ik s.t. I .DCN ≤ Ik.DCN , ∀I ∈ Pc ;

16 P = P ∪ {S};
17 Pc = Pc \ {S};

Output : New population P

The threshold D is quite important. When using a large D value, exploration is promoted,
whereas small values promote intensification. In order to balance from exploration to exploitation,
this threshold is set dynamically following the next equation: D = D0− (D0)× Telapsed/Tend, where D0

is a parameter of the optimizer, Telapsed is the elapsed time of the optimization (in seconds), and Tend
is the stopping criterion (in seconds). This means that at the first generation D is set to D0 and it
decreases linearly so that at the end of the optimization it is set to zero.

5.3. A Memetic Algorithm Based on Clusters

Our last variant (MAC-REDDCC) includes two modifications to improve the performance of
LMA-REDDC. One of the drawbacks of LMA-REDDC is that in most generations no individual with a
distance lower than D is accepted (line 10). Usually, when crossover is applied to distant individuals,
an exploration step is performed. While maintaining distant individuals to explore different regions
is important, using close individuals to better intensify is also important. For this reason, a novel
algorithm that tries to explore and intensify during the whole search is proposed.

In order to incorporate this design principle two modifications are incorporated. The most
important one is the incorporation of a newly design replacement strategy. The REDDC with Clustering
(REDDCC) strategy is explained in Algorithm 9.

REDDCC alters the replacement strategy by applying a clustering technique that takes into
account the stopping criterion. The main difference between the REDDC and the REDDCC strategies is
that for each individual the REDDCC strategy allows a certain number of individuals (cluster size Csize)
to be closer than D, but farther than DC < D (see lines 12–15), while in the REDDC strategy this is
not allowed.



Entropy 2020, 22, 1052 17 of 25

Algorithm 9: REDDCC Survivor Selection Technique.

Input : Population P, offspring P′, distances D and DC, cluster size Csize
1 Set Pc = P ∪ P′ ; /* Current Population */
2 foreach I ∈ Pc do
3 I .cost = C3(I) ; /* Cost of individual I */

4 sort(Pc) ;
/* I0 is the individual with lowest cost in Pc */

5 P = {I0} ; /* New population starts with the best */
6 Pc = Pc \ {I0} ; /* Update current population */
/* The first cluster with one element is formed */

7 C0 = {I0} ; /* Cluster centered in I0 */
8 C = {C0} ; /* Clusters set */
9 for i = 1; i < N; i ++ do

/* Calculate the distance to the closest neighbor (DCN) */
10 foreach I ∈ Pc do

/* Distance given by the Hamming distance */
11 I .DCN = min{dH(I , I ′k) : I ′k ∈ P} ;
12 if I .DCN < D ∧ |Ck| ≥ Csize then
13 I .cost = ∞ ; /* Penalize but allowing some close individuals */

14 if I .DCN < DC then
15 I .cost = ∞ ; /* Penalize too close individuals */

16 sort(Pc) ;
17 S = I0 ; /* Select the best (I0) */

/* If all are penalized choose the farthest */
18 if S .cost = ∞ then
19 S = Ik s.t. I .DCN ≤ Ik.DCN , ∀I ∈ Pc ;

20 Ci = {S} ; /* Cluster centered in S */
21 C = C ∪ Ci ;
22 for j = 0; j < i; j ++ do
23 S .DCN = dH(S , Ij) Ij ∈ P;
24 if S .DCN < D then
25 Cj = Cj ∪ {S} ; /* Update the clusters previously added */
26 Ci = Ci ∪ {Ij} ; /* Update the current cluster */

27 P = P ∪ {S} ; /* Update the new population */
28 Pc = Pc \ {S} ; /* Update the current population */

Output : New population P, clusters C

Note that in comparison to previous variants, the general procedure (see Algorithm 10) was also
changed. First, since the REDDCC strategy requires Dc and D as inputs, both values are calculated
at each generation (lines 12–15). Some preliminary experiments showed that a larger degree of
diversification was only required at initial stages, meaning that D and DC could be set to small values
after a proportion of the granted execution time (Tend). Taking this into account, a new parameter,
KE is added. This parameter refers to the proportion of time where exploration is promoted (line 6).
The updating strategies were designed so that D is decreased from D0 to DC0 and DC is decreased
from DC0 to 0 after this period of time (lines 13-14). Then, in subsequent generations the values of D
and DC are not changed (line 15).
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Algorithm 10: MAC-REDDCC Method.
Input : DC0 , D0, Csize, N, Tls, Kls, pcc, pm, pc, KE, Tend

1 Initialize(P0) ;
2 Evaluate(P0);
/* Each individual makes up a different cluster */

3 C = {Ck : Ck = {Ik}, Ik ∈ P0 } ;
4 Improvement(P0, Tls, Kls) ;
5 t = 0, Telapsed = 0 ;
6 Texploration = KE × Tend ;
7 while Telapsed < Tend do
8 P′t = Mating Selection with Clusters(Pt, C, pcc) ;
9 P′t = Reproduction(P′t , pc, pm);

10 Evaluate(P′t );
11 P′t = Improvement(P′t , Tls, Kls) ;
12 if Telapsed ≤ Texploration then
13 D = D0 − (D0 − DC0)× Telapsed/Texploration ;
14 DC = DC0 − DC0 × Telapsed/Texploration ;

15 else D = DC0 , DC = 0 ;
16 Pt+1, C = REDDCC (Pt, P′t , D, DC, Csize) ;
17 t = t + 1 ;

Output : Best solution(s) found

Additionally, a new parameter (pcc) is added to facilitate attaining a proper balance between
exploration and exploitation. This parameter refers to the probability that two individuals from
different clusters are crossed in order to create a pair of offspring. In other cases, individuals that
belong to the same cluster are crossed. The new selection process is given in Algorithm 11.

Algorithm 11: Mating Selection for MAC-REDDCC.
Input : Population P, clusters C, pcc

/* Perform two binary tournament at each iteration */
1 for i = 0; i < N; i+ = 2 do

/* Choose two parents from different clusters */
2 if U (0, 1) < pcc then
3 Select randomly Ij1 , Ij2 ∈ Cj and Ik1 , Ik2 ∈ Ck, k 6= j ;
4 I ′i = best(Ij1 , Ij2) ;
5 I ′i+1 = best(Ik1 , Ik2) ;

/* Choose two parents in the same cluster */
6 else
7 Select randomly Ik1 , Ik2 , Ik3 , Ik4 ∈ Ck ;
8 I ′i = best(Ik1 , Ik2) ;
9 I ′i+1 = best(Ik3 , Ik4) ;

Output : Parents P′

In the case of the improvement phase, the only difference is that we grant more time for local
search when the offspring is generated by crossing parents from different clusters. The reason is
that in such a case the crossover operator is more disruptive, so it is expected that more time is
required to attain a new high-quality solution. Algorithm 12 illustrates the new improvement phase.
A new parameter, Kls, is added. This parameter is used for setting the time granted to those individuals
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generated with parents belonging to different clusters (line 3). If the parents of the offspring belong to
the same cluster the local search time granted is Tls (line 5).

Algorithm 12: Improvement Phase for MAC-REDDCC.
Input : Population P, Tls, Kls
/* Perform the improvement to the population */

1 for i = 0; i < N; i ++ do
2 if Ii was generated with parents belonging to different clusters then
3 Ii = FIQTS(Ii, Kls × Tls) ;

4 else
5 Ii = FIQTS(Ii, Tls) ;

Output : Population improved P

5.4. Parameterization Study

One of the inconveniences of the last proposal (MAC-REDDCC) is that several parameters must
be set. Particularly these are the following parameters:

1. DC0 : initial distance threshold used to maintain a proper diversity in each cluster (see
Algorithm 10 line 14).

2. D0: it is responsible for controlling the degree of diversity maintained in the whole population
(see Algorithm 10 line 13).

3. Csize: indicates the maximum size allowed for each cluster (see Algorithm 9 line 12). Note that
since the acceptance of individuals only depends on the information of the closest already
selected survivor, some clusters might eventually contain more that Csize individuals.

4. N: number of individuals in the population and number of offspring generated at each generation
(see Algorithm 6 line 1).

5. Tls: stopping criterion of the local search procedure for offspring with parents belonging to the
same cluster (see Algorithm 12 line 5).

6. Kls: if the offspring is generated with parents belonging to different clusters, the local search time
applied to this kind of individuals is Tls × Kls (see Algorithm 12 line 3).

7. pcc: indicates the probability to cross individuals belonging to different cluster (see Algorithm 11 line 2).
8. pm: probability of performing swaps to mutate the individual (see Algorithm 5 line 2).
9. pc: probability of interchanging each gene (see Algorithm 4 line 9).

10. KE: indicates the proportion of time with additional promoted exploration (see Algorithm 10 line 6).

In order to properly adjust the parameters, for each parameter 5 different values were tested
and since stochastic algorithms are considered, each tested configuration was run 50 times. For each
independent run, the stopping criterion was set to 72 h of execution. Due to the limitations of time it
is not possible to do an exhaustive search in the parameters space by considering the dependencies
between all of them. Particularly, the optimization of each parameter was performed independently
from each other. This was done as follows. First, since the problem for 8 variables can be solved easily
up to the best-known results for nonlinearity, we focus on the parameters setting for the 10 variable
problem. Taking into account some preliminary results, the zero or initial parameter setting was set
according to Table 4. With the initial parameter setting we carried out 50 independent runs with the
stopping criterion set equal to 72 h. Table 5 shows the results obtained for this experiment. We can see
from the results showed in Table 5, that using the initial parameters setting, the algorithm achieves
the best results attained by metaheuristics in the 10-variable problem. The mean nonlinearity is high
(its mean is 486.96), which indicates that in several of the independent executions it was able to find
solutions with nonlinearity equal to 488. The mean nonlinearity will be our main indicator to consider
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the quality of each parameterization. The seventh column shows the proportion of independent
executions that reach this nonlinearity value, which is called the success ratio (Sr). The initial parameter
setting has a success ratio Sr = 50%, which means that 25 of the 50 independent runs achieve solutions
with nonlinearity equal to 488. Since 488 is the maximum nonlinearity that had been obtained ever in
a single execution of a metaheuristic, our aim was to find a parameterization with a success ratio close
to 100%.

Table 4. Initial Parameterization used in the Adjustment Phase.

DC0 D0 Csize N Tls Kls pcc pm pc KE

20 100 10 200 0.01 1.0 0.2 0.002 0.5 1.0

Table 5. Results attained with the initial parameterization.

n Min Max Mean Median σNn Sr

10 484 488 486.96 487 1.087 50%

In order to improve the parameterization, each parameter was modified independently maintaining
the remaining parameter values as in the best configuration found so far. Parameters were optimized
following the order in which they were previously presented. After this parameterization stage we
obtained the parameterization shown in Table 6. In this last case the success ratio increased to 100%,
meaning that our proposal could generate in every execution the best solution attained up to now
by metaheuristics.

Table 6. Parameter setting attained after the adjustment procedure.

DC0 D0 Csize N Tls Kls pcc pm pc KE Mean Sr

14 60 20 350 0.08 2.0 0.2 0 0.2 0.2 488 100%

5.5. Comparison Among Population-Based Metaheuristics

In order to show the benefits of the components included in MAC-REDDCC, it is interesting to
compare it against LMA-GRE and LMA-REDDC. All these algorithms were executed using the set
of parameters obtained after the parameterization steps. Specifically, each of the three methods were
executed 50 independent times with the parameters shown in Table 7.

Table 7. Parameters involved in MAC-REDDCC, LMA-REDDC and LMA-GRE.

Method DC0 D0 Csize N Tls Kls pcc pm pc KE

MAC-REDDCC 14 60 20 350 0.08 2.0 0.2 0 0.2 0.2

LMA-REDDC × 60 × 350 0.08 × × 0 0.2 0.2

LMA-GRE × × × 350 0.08 × × 0 0.2 ×

Table 8 summarizes the attained results. Results obtained by LMA-GRE in the 10-variable case
are poor in comparison with the ones obtained with LMA-REDDC and MAC-REDDCC. Thus,
the importance of using a scheme based on diversity in order to find proper solutions for the problem
of generating BFs with high nonlinearity is clear. When compared to LMA-REDDC, MAC-REDDCC
attains slightly better results, so the additional changes performed were useful to increase the
robustness and attain a 100% success ratio.
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Table 8. Comparison between the results attained by the population-based optimizers.

n Method Min Max Mean Median σNn

8
MAC-REDDCC 116 116 116 116 0
LMA-REDDC 116 116 116 116 0

LMA-GRE 116 116 116 116 0

10
MAC-REDDCC 488 488 488 488 0

LMA-REDDC 486 488 487.44 488 0.907
LMA-GRE 482 484 483.92 484 0.396

Figure 2 shows the population entropy for the different evolutionary methods. We can see that
the LMA-GRE never converges. LMA-REDDC is the method with the fastest decrease in diversity.
The clustering technique attains a larger global entropy with a smaller entropy inside clusters, which is
key to the success of MAC-REDDCC.
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Figure 2. Population entropy for MAC-REDDCC, LMA-REDDC and LMA-GRE.

5.6. Hybridization with an Algebraic Technique

Motivated by the related work from Burnett [18] and Izbenko [19], we considered the application
of an algebraic procedure to improve our results. Contrary to their work, we decided not to use bent
functions, instead we employ the work from Tang [32] to build an initial population of individuals
with high nonlinearity. Thus, the only change appears in the initialization procedure of the population.

Tang [32] proposes a method capable of constructing balanced BFs of even number of variables with
relatively high nonlinearity. Their construction is based on a modification of the Maiorana-McFarland [20]
method to construct bent BFs. As a result Tang et al. were able to obtain a large amount of balanced BFs
with nonlinearity

Nn ≥ 2n−1 − 2n/2−1 − 2dn/4e. (35)

Since in the case of the 8-variable BF problem, we had already obtained the best-known solution,
we decided to make experiments with the hybrid method only for the 10-variable BF problem.
The initialization strategy allows to generate up to 1310400 BFs with nonlinearity equal to 488.
In order to make 50 independent runs and each one with a population size equal to 350, we built
17,500 (50 × 350 = 17, 500) individuals with nonlinearity equal to 488 with the initialization
algorithm [32]. Each population was employed with the three evolutionary methods: MAC-REDDCC,
LMA-REDDC and LMA-GRE. The parameter values are the indicated in Table 7. The attained results
are shown in Table 9. We can see that the information in Table 9 does not help us to discern which
hybrid method is better in comparison with the others because all the methods achieve in all the
executions BFs with nonlinearity equal to 492. Note that this is currently the best-known solution and
that no meteheuristic had ever reached this value. In order to discern which method is preferable we
count the amount of different individuals in the final population that achieve a nonlinearity equal
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to 492. This comparative is shown in Table 10. From the information in the Table 10, we can see that in
MAC-REDDCC and LMA-REDDC every individual in the final population is different and has
nonlinearity equal to 492. However, the LMA-GRE is able to maintain only one solution with
such nonlinearity. We consider that using the MAC-REDDCC and LMA-REDDC is preferable,
because maintaining a diverse population with high quality means that several regions are explored
and there is a larger probability to finding better solutions (if they exist). However, when coupling
algebraic strategies we are not able to discern between MAC-REDDCC and LMA-REDDC.

Table 9. Comparison among the results attained by the hybrid methods.

n Method Min Max Mean Median σNn

10
MAC-REDDCC 492 492 492 492 0
LMA-REDDC 492 492 492 492 0

LMA-GRE 492 492 492 492 0

Table 10. Comparison between hybrid methods for the amount of individuals found with nonlinearity
equal to 492.

Method Min Max Mean Median

MAC-REDDCC 350 350 350 350
LMA-REDDC 350 350 350 350

LMA-GRE 1 1 1 1

Figure 3 shows the entropy of the population along the execution time for the three methods tested.
As we can see in Figure 3, MAC-REDDCC never decrease its entropy but is able to reach very high
quality solutions, so in this sense its behavior seems more adequate to try to reach a solution with a
higher nonlinearity.
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Figure 3. Population entropy for MAC-REDDCC, LMA-REDDC and LMA-GRE when coupled with an
algebraic-based initialization

6. Conclusions and Future Work

The problem of generating Cryptographic Boolean Functions (CBFs) with high nonlinearity is
an extremely complicated problem. This problem has been addressed with many strategies in the
last 30 years. Many heuristic methods have been proposed to generate CBFs with high nonlinearity
and the results obtained have been improving over the years. However, the results obtained so far
were not as extraordinary as those obtained with algebraic techniques. According to our knowledge,
heuristic methods had never been able to generate 10-variable CBFs with nonlinearity equal to 492,
but the algebraic constructions do.
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In this paper, we work with the hypothesis that a diversity-based metaheuristic can provide a better
way of generating CBFs with high nonlinearity, improving further the best current results obtained by
other metaheuristic methods and reducing the gap between algebraic and metaheuristic approaches.
Based on this, a set of trajectory-based and population-based metaheuristic methods are proposed.
Among the proposals, the most novel is a population-based metaheuristic that incorporates explicit
diversity management with a clustering technique that allows intensifying and exploring throughout
the optimization process, since it forces some members of the population to be distant but some are
allowed to be close. This method is called MAC-REDDCC and according to our knowledge, this is the
first diversity-aware scheme applied to the generation of CBFs with high nonlinearity.

MAC-REDDCC operates with a set of novel components proposed in this paper. The most important
component is the REDDCC strategy, which is responsible for the explicit diversity management. The cost
function employed to guide the search is another important component. It takes into account several
information from the Walsh Hadamard Transform (WHT), what makes it more suitable to guide the search.
The intensification procedure employed to improve the members of the population is another important
component. This novel trajectory-based search method is inspired by the Tabu Search algorithm and is
called First Improvement Quasi-Tabu Search (FIQTS).

The results obtained with the MAC-REDDCC method improve the best current results reported in
the literature by other pure metaheuristic methods, and match the results reported by hybrid
metaheuristics with algebraic techniques. As other researchers, we propose a hybridization between the
MAC-REDDCC method and a simple algebraic technique. The results obtained with the hybridization
match the best results known for 10-variable CBFs, since CBFs with nonlinearity equal to 492 are
generated. Thus, MAC-REDDCC is the first metaheuristic method that is able to generate CBFs with that
nonlinearity. Our proposal is a single objective mechanism that efficiently solves the problem of creating
CBFs for general purposes. This means that it is not difficult to apply it with different fitness or cost
functions for different purposes, which opens new lines for future research.

As a future work, the scalability of our proposals should be improved. After performing some
initial experiments with 12 variables, we concluded that we need to do some changes—probably in the
cost functions and in the local improvement techniques—to be able to deal with 12 or more variables.
Particularly, in order to develop a better intensification procedure, it would be interesting to use a
neighborhood coupled with the Walsh Hadamard transform. In this way, the improvement process
could be faster. In other words, extending the smart hill climbing algorithm to operate with other
cost functions seems promising. Additionally, it seems interesting to employ other properties such
as the autocorrelation or the algebraic degree inside the cost function. Some authors have obtained
improvements with these kinds of transformations, so integrating them with the advances developed
in this paper seems promising. Particularly, applying multi-objective optimizers with alternative
functions considering more information from the WHT as well as designing ad-hoc operators seems
encouraging. Additionally, the applicability of the CBFs generated with our proposals should be
further explored. Finally, note that some authors have used specific hardware to speeding up the
attainment of high-quality CBFs [33,34]. In order to scale our algorithms, these kinds of hardware as
well as supercomputing might be applied.
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