
entropy

Article

Detection of Algorithmically Generated Domain
Names Using the Recurrent Convolutional Neural
Network with Spatial Pyramid Pooling

Zhanghui Liu 1,2 , Yudong Zhang 1, Yuzhong Chen 1,2,* , Xinwen Fan 1 and Chen Dong 1,2

1 Fujian Key Laboratory of Network Computing and Intelligent Information Processing,
College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China;
lzh@fzu.edu.cn (Z.L.); 031703135@fzu.edu.cn (Y.Z.); 181700310@fzu.edu.cn (X.F.);
dongchen@fzu.edu.cn (C.D.)

2 Key Laboratory of Spatial Data Mining & Information Sharing, Ministry of Education, Fuzhou 350116, China
* Correspondence: yzchen@fzu.edu.cn

Received: 23 June 2020; Accepted: 17 September 2020; Published: 22 September 2020
����������
�������

Abstract: Domain generation algorithms (DGAs) use specific parameters as random seeds to generate
a large number of random domain names to prevent malicious domain name detection. This greatly
increases the difficulty of detecting and defending against botnets and malware. Traditional models
for detecting algorithmically generated domain names generally rely on manually extracting
statistical characteristics from the domain names or network traffic and then employing classifiers
to distinguish the algorithmically generated domain names. These models always require labor
intensive manual feature engineering. In contrast, most state-of-the-art models based on deep
neural networks are sensitive to imbalance in the sample distribution and cannot fully exploit the
discriminative class features in domain names or network traffic, leading to decreased detection
accuracy. To address these issues, we employ the borderline synthetic minority over-sampling
algorithm (SMOTE) to improve sample balance. We also propose a recurrent convolutional neural
network with spatial pyramid pooling (RCNN-SPP) to extract discriminative and distinctive class
features. The recurrent convolutional neural network combines a convolutional neural network
(CNN) and a bi-directional long short-term memory network (Bi-LSTM) to extract both the semantic
and contextual information from domain names. We then employ the spatial pyramid pooling
strategy to refine the contextual representation by capturing multi-scale contextual information from
domain names. The experimental results from different domain name datasets demonstrate that our
model can achieve 92.36% accuracy, an 89.55% recall rate, a 90.46% F1-score, and 95.39% AUC in
identifying DGA and legitimate domain names, and it can achieve 92.45% accuracy rate, a 90.12%
recall rate, a 90.86% F1-score, and 96.59% AUC in multi-classification problems. It achieves significant
improvement over existing models in terms of accuracy and robustness.

Keywords: domain generation algorithm; algorithmically generated domain name; SMOTE;
recurrent convolutional neural network; spatial pyramid pooling

1. Introduction

Domain generation algorithms (DGA) provide methods for generating large numbers of
pseudo-random domain names using specific parameters such as the date, the time, or text as
seeds for random initialization. DGAs are often associated with malicious network behaviors.
Recent botnets (e.g., Conficker, Kraken, and Torpig) use DGAs to quickly generate candidate remote
command-and-control server domain lists [1,2]. They subsequently redirect normal domain name
service (DNS) requests to the botnet [3] for conducting malicious activities, such as distributed

Entropy 2020, 22, 1058; doi:10.3390/e22091058 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-5913-3647
https://orcid.org/0000-0001-7408-2684
https://orcid.org/0000-0003-4334-1844
https://orcid.org/0000-0001-7546-3403
http://www.mdpi.com/1099-4300/22/9/1058?type=check_update&version=1
http://dx.doi.org/10.3390/e22091058
http://www.mdpi.com/journal/entropy

Entropy 2020, 22, 1058 2 of 20

denial-of-service attacks, spamming, phishing, and click fraud [4–7] by establishing communication
with the infected host through seemingly valid domain names. Therefore, the effective detection of
algorithmically generated domain names is crucial for preventing malicious cyber activities.

In recent years, researchers have proposed several types of models to detect algorithmically
generated domain names. Traditional models require manual reverse engineering of the DGA-based
malwares, which is time consuming and laborious. The malwares can easily escape detection by
changing their DGAs during examination. Therefore, reverse engineering models cannot meet the
accuracy and timeliness requirements. Models based on blacklist filtering have a limited coverage of
algorithmically generated domain names and cannot adapt to the growth of the malicious domain
name set. Models based on traditional statistical machine learning methods have become mainstream
in detecting algorithmically generated domain names. These models are based on the analysis of
domain names or DNS requests. Models based on the analysis of DNS requests detect algorithmically
generated domain names by analyzing the differences in the statistical characteristics of the requested
domains, request interval, number of request failures, etc., when sending DNS requests to legitimate
domain names and algorithmically generated domain names. Models based on the analysis of domain
names detect algorithmically generated domain names by analyzing the differences in the distribution
characteristics of characters, words, word lengths, numbers of words, etc., between legitimate and
algorithmically generated domain names. The main drawback of these models is that they inevitably
require intensive manual feature engineering for building the feature set. When the DGA produces
variants, these models require the feature set to be reconstructed. This makes it difficult for the models
to adapt to large and frequent changes in the DGAs. Furthermore, models based on the analysis of
DNS requests usually rely on third-party credit systems and have very high detection costs.

Neural models have recently achieved remarkable progress in various research fields including
computer vision, natural language processing, and network security. Neural models can automatically
extract the discriminative category features from domain names and effectively detect algorithmically
generated domain names by constructing neural networks with multiple hidden layers. However,
neural models rely on large-scale domain name datasets for training and are more susceptible to an
imbalanced sample distribution than other models.

To address the aforementioned issues, we propose a model to detect algorithmically generated
domain names. Our main contributions are as follows:

• To address the problem of an imbalanced sample distribution, we employ an improved borderline
synthetic minority over-sampling algorithm (Borderline-SMOTE) to optimize sample balance in
the domain name datasets.

• To address the problem of feature extraction, we propose a hybrid neural network that combines a
convolutional neural network, a bi-directional long short-term memory (Bi-LSTM) network, and a
spatial pyramid pooling strategy. We first employ a convolutional neural network and Bi-LSTM to
extract semantic and contextual features from domain names simultaneously and then refine the
contextual representation by utilizing the spatial pyramid pooling strategy to capture multi-scale
contextual information from the domain names. Therefore, the features captured by the proposed
hybrid neural network have more discriminative power and are less sensitive to noise.

• We conduct extensive experiments and analysis to validate the effectiveness of the sample
equalization strategy and the performance of the proposed model RCNN-spatial pyramid pooling
(SPP). The experiment results demonstrate that the sample equalization method can provide a
benefit to performance, and RCNN-SPP can significantly outperform competing models in terms
of accuracy, robustness, and convergence speed.

The remainder of this paper is organized as follows. Section 2 briefly reviews the related works on
detecting algorithmically generated domain names. Section 3 provides an overview of the the model
and introduces its details. Section 4 presents and discusses the impact of the sample equalization
method and the performance of RCNN-SPP and other competing models using several domain name
datasets. Finally, Section 5 presents some brief concluding remarks.

Entropy 2020, 22, 1058 3 of 20

2. Related Works

Existing models for detecting algorithmically generated domain names are primarily based on
reverse engineering, blacklist filtering, statistical machine learning methods, and neural networks.

As an example of a reverse engineering-based model, Plohmann et al. [8] performed a
comprehensive measurement study of 43 DGA-based malware families and variants. They also
pre-computed all possible domains the DGAs can generate and covered the majority of the known and
active DGAs by re-implementing these DGAs. However, reverse engineering of DGA-based malware
is resource intensive and time consuming and is incapable of dealing with rapidly evolving DGAs
and variants.

Building a blacklist that includes domains and IP addresses involved in malicious operations is
a common and simple way of detecting algorithmically generated domain names. Kührer et al. [9]
conducted a comprehensive analysis of fifteen public malware blacklists and four blacklists operated
by antivirus vendors and found that most blacklists have insufficient coverage of malicious domains
and fail to protect against malwares that utilize DGAs. This is because the blacklists can only be
updated periodically while the attackers can evade blacklist detection easily by continuously generating
different domain names using DGAs.

Other models formulate the detection of algorithmically generated domain names as a
classification problem and apply statistical machine learning methods to solve the classification
problem. Some models distinguish the algorithmically generated domain names by obtaining
discriminative information from DNS requests. Wang et al. [10] proposed a DGA-based botnet
detection model called Dbod. Dbod clusters hosts according to the relationship intensity between
them and identifies the bot-infected hosts based on the differences in query behavior, such as the
query time and count distributions, between compromised and normal hosts. Truong et al. [11]
proposed a model to detect domain-flux botnets and DGA-bot infected hosts. The model first locates
botnets by analyzing the periodicity characteristics of the DNS requests and then extracts relevant
features, such as the length and Shannon entropy of the domain names and the occurrence frequency
of n-grams across the domain names, from the stream of DNS requests to distinguish algorithmically
generated domain names. Schüppen et al. [12] proposed a novel system to detect DGA-related domain
names among arbitrary non-existent domain (NXD) DNS traffic. The system builds a feature set
that includes structural, linguistical, and statistical features extracted from the domain names and
feeds it into a classifier to identify algorithmically generated domain names. Zang et al. [13] adopted
spectral and K-means clustering to cluster the domain names generated by a DGA or its variant
and subsequently build a feature set that includes TTL, the distribution of the resolved IP addresses,
whois, and historical information from each cluster. Finally, they applied an SVM classifier to identify
algorithmically generated domain names. Antonakakis et al. [14] proposed a prototype DGA-bot
detection system called Pleiades. Pleiades groups the non-existent domains into clusters according to
the groups of hosts that query these domains and then employs an alternating decision tree (ADT) and
a hidden Markov model (HMM) to identify algorithmically generated domain names and C&Cservers.
These models usually require background information like DNS requests and protocol parsing and
rely on a third-party credit system to obtain this information. This is expensive and time consuming
in practice.

Considering the remarkable differences between algorithmically generated domain names and
human generated domain names in terms of the distribution of alphanumeric characters, domain name
length, number of characters, and other features, some models rely on the analysis of domain names to
detect algorithmically generated domain names. Yadav et al. [15] analyzed the performance of several
statistical metrics including the Kullback–Leibler divergence [16], Jaccard index [17], and Levenshtein
edit distance [18] and employed a L1-regularized linear regression model designated as LASSO to
identify algorithmically generated domain names. Yang et al. [19] analyzed several types of features
including word frequency, parts-of-speech, inter-word correlation, and inter-domain correlations by
bi-directional maximum matching and then built an ensemble classifier to identify algorithmically

Entropy 2020, 22, 1058 4 of 20

generated domain names. Li et al. [20] proposed a hierarchical model to identify DGA domains.
The hierarchical model first classifies the DGA domains from legitimate domains using the decision tree
and then groups similar DGAs together to determine the DGA algorithm using the DBSCAN clustering
algorithm. Raghuram et al. [21] proposed a generative model by analyzing the probability distribution
of characters, words, word lengths, and number of words in human generated domain names.
These models require the manual construction of feature sets by users with rich feature-engineering
experience. Therefore, they cannot achieve satisfactory results when dealing with new DGAs based on
the original feature sets.

Deep neural networks have achieved significant success in various fields including network
security. Woodbridge et al. [22] employed a long short-term memory (LSTM) network to learn
distinct discriminative features from the character sequences of algorithmically generated and human
generated domain names and then applied a binary or multinomial logistic regression classifier to
detect DGAs and distinguish one DGA from another. Considering that many DGAs use English
wordlists to generate plausibly meaningful domain names, Curtin et al. [23] introduced a novel
measure called the smashword score to estimate how closely an algorithmically generated domain
name resembles English words and proposed a character-level recurrent neural network to deal with
algorithmically generated domain names similar to human generated domain names. Yu et al. [24]
proposed a novel criterion for creating a noise-free DGA/non-DGA dataset from real traffic and a
CNN-based DGA detection model. However, this model still cannot effectively distinguish between
word-based algorithmically generated domain names and legitimate ones. They also studied the
problem of how to supply sufficient labeled training data for deep learning-based DGA classifiers [25].
Zeng et al. [26] employed several deep learning models popular in computer vision including
Alex, VGG, Squeeze Net, Inception, and ResNet to classify DGA domains and non-DGA domains.
These neural models can extract the class features from domain names in an automatic and efficient
way. However, they usually rely on large-scale domain name datasets for model training and are
sensitive to an imbalanced sample distribution in the training datasets. In addition, considering the
diversity and complexity of various DGAs, it is difficult to extract abundant and discriminative class
features from domain names using a single type of neural network.

3. Proposed Model

3.1. Overall Model

The model for detecting algorithmically generated domain names is shown in Figure 1 and
consists of four modules. The domain name encoding module encodes the character sequence of
the input domain name to a sequence of character embedding. To improve the detection accuracy,
the sample equalization module then employs the improved Borderline-SMOTE oversampling method
to optimize the sample balance between different categories in the dataset. The domain name
representation module next employs a hybrid neural network denoted as RCNN-SPP to exploit
the semantic information and multi-scale contextual information from domain names and generate
the discriminative feature representation for classification. Finally, the feature representation is fed
into a softmax layer in the classification module to output the probability distribution over the
DGA categories.

Entropy 2020, 22, 1058 5 of 20

Figure 1. Model framework: The character sequence of the input domain name is processed by the
domain name encoding module, the sample equalization module, the domain name representation
module, and the classification module.

3.2. Domain Name Encoding

The domain name encoding module encodes the character sequence of an input domain name.
First, we create a character dictionary by taking into account the occurrence frequency of each character
in the domain name dataset and assign a unique number to each character according to its occurrence
frequency. A domain name is then denoted as a character sequence, and its initial vector representation
is v′ ∈ Rl where l is the upper bounded length of the domain name and the ith element of v′ is the
unique real number assigned to the ith character in the character sequence according to the character
dictionary. Then, the final fixed-length vector representation v ∈ Rl×d of a domain name is obtained
by mapping each element of v′ to a vector of Rd using a randomly initialized matrix.

3.3. Domain Name Sample Equalization

The human generated domain name samples constitute the main part of the dataset. In contrast,
the domain names generated by a certain DGA usually constitute only a small proportion of the
whole dataset because there is a large number of DGAs. Considering that the neural model requires
a large-scale dataset for parameter tuning and is sensitive to sample distribution imbalance [27],
the sample equalization module employs the borderline synthetic minority over-sampling algorithm
(Borderline-SMOTE) to optimize the sample balance in the dataset.

The SMOTE algorithm is a random oversampling algorithm. The key idea of SMOTE is to select
samples from the minority class randomly and synthesize new samples from the minority class by
interpolating between nearest samples, thereby increasing the sample size of the minority class and
relieving the imbalance in the sample distribution. The Borderline-SMOTE algorithm [28] further
addresses the boundary-blur problem of the original SMOTE algorithm by selecting samples located
on the class boundary for interpolation instead of selecting them randomly. The details of the domain
name sample equalization are described in the following sub-sections.

3.3.1. Identification of Minority Classes

In order to balance the distribution of class samples in the training set of domain name character
sequences with class labels, we define the majority class and the minority class. We regard the human

Entropy 2020, 22, 1058 6 of 20

generated domain names as belonging to a majority class in the domain name dataset. If the number
of samples generated by the malicious domain name algorithm is less than the specified threshold,
the corresponding training samples are regarded as a minority class. For the domain names generated
by a certain DGA, we use the harmonic mean to determine whether it belongs to a minority or majority
class. The harmonic mean equalizes the weights of each class so that it can better reflect the average
sample sizes of various DGAs in the dataset.

Suppose that there are n different DGAs so that the classes in the dataset can be denoted as
D = {d0, d1, d2, ..., dn}, where d0 refers to the class of human generated domain names and di refers to
the class of the domain names generated by the ith DGA. The harmonic mean is defined as follows:

Hn =
n

1
|d0|

+ 1
|d1|

+ 1
|d2|

+ ... + 1
|dn |

(1)

where |di| |ni=0 is the sample size of class di. If |di| is larger than Hn, di is regarded as a majority class.
Otherwise, di is regarded as a minority class and requires data enhancement.

3.3.2. Sample Synthesis

After identifying the minority classes in the domain name dataset, the synthesized domain name
samples are generated as follows:

Step 1: For each minority class di identified above and each domain name sample pi,k|
|di |
k=1 in ci,

calculate the distance between the vector of pi,k and the other samples in the dataset, and then, build a
nearest neighbor set NB(i, k) that consists of the first K nearest neighbor samples of pi,k.

Step 2: For each domain name sample pi,k, if there are less than K/2 samples belonging to di in
NB(i, k), pi,k is regarded as a sample close to the class boundary of di and is selected as the seed for
sample synthesis. Otherwise, if none of the samples in NB(i, k) or more than K/2 samples in NB(i, k)
belong to di, pi,k is regarded as a noise sample or a sample far away from the class boundary of di and
will not be selected as a seed for sample synthesis.

Step 3: For each pi,k selected as a seed for sample synthesis, generate a random integer number
s in the range [1, K], and select the first s nearest samples from NB(i, k). Then, synthesize s domain
name samples for class di by linear interpolation between pi,k and the nearest sample in NB(i, k) via
the following formula:

syntheticj,i,k = pi,k + rj ∗ di f f j,i,k j = 1, 2, ..., s (2)

where syntheticj,i,k is a synthesized domain name sample of di, di f f j,i,k is the difference between pi,k
and the jth nearest sample in NB(i, k), and rj is a random number in the range (0,1) that adjusts the
influence of pi,k and the jth nearest sample.

Step 4: Finally, add all the synthesized samples to the original domain name dataset to improve
the sample balance.

With the aforementioned analyses, the procedure of sample synthesis for minority classes is
summarized in Algorithm 1.

Entropy 2020, 22, 1058 7 of 20

Algorithm 1 Sample synthesis for minority classes.

Input: class set {d0, d1, d2, ..., dn}, the original domain name dataset T
Output: T

1: Hn = n/(1
a1
+ 1

a2
+ ... + 1

an
) //calculate the harmonic mean of sample size

2: S← {}//initialize the synthesized sample set S as an empty set
3: for i← 1 to n do

4: if |di| < Hn then

5: /*synthesize domain name samples for class di */
6: for K ← 1 to |di| do

7: NB(i, k)← choose the first K nearest neighbors of pi,k
8: m← calculate the number of samples in NB(i, k) that belong to di
9: if 0 ≤ m ≤ K/2 then

10: s← choose a random integer number in the range [1, K]
11: for j← 1 to s do

12: syntheticj,i,k = pi,k + rj ∗ di f f j,i,k
13: /* add the synthesized domain name sample syntheticj to S */
14: S← syntheticj,i,k
15: end for
16: end if
17: end for
18: end if
19: end for
20: T ← T ∪ S // add all the synthesized domain name samples to T

3.4. Domain Name Feature Extraction

3.4.1. RCNN-SPP Overview

The most essential task in our model is to learn a distinctive, robust, and discriminative feature
representation that can distinguish the differences between human generated and algorithmically
generated domain names. Convolutional neural networks (CNNs) and recurrent neural networks
(RNNs) are two of the most widely-adopted neural networks for learning discriminative features in
many research fields [29]. Both CNNs and RNNs have their own disadvantages. CNNs perform well
in capturing the latent semantic information in a domain name. However, they cannot adequately
model the semantic correlation and contextual dependency in the character sequence of a domain
name, which is critical for learning the differences between human generated and algorithmically
generated domain names. In contrast, RNNs perform well in capturing contextual information in
the character sequence of a domain name. However, RNNs pay more attention to later characters in
the character sequence of a domain name, meaning that later characters have more influence on the
feature representation of a domain name than earlier characters, which reduces the effectiveness of
RNNs in capturing the semantic information of a domain name.

To address the above issues, we propose a hybrid neural network that combines a convolutional
neural network, a bi-directional long short-term memory network, and spatial pyramid pooling
(RCNN-SPP). The RCNN-SPP adopts the recurrent convolution neural network (RCNN) proposed
by Lai [30] as the backbone neural network. RCNN can effectively learn the semantic and
contextual information from domain names while retaining their structure information. Furthermore,
we introduce spatial pyramid pooling to acquire multi-scale semantic and contextual information from
domain names, which can further improve the feature representations of domain names.

Entropy 2020, 22, 1058 8 of 20

3.4.2. Recurrent Convolutional Neural Network

RCNN-SPP employs a bi-directional recurrent structure to capture forward and backward context
for a domain name denoted as v ∈ Rl×d. The forward and backward context of each character is
defined as:

Cl(vi) = f1(WlCl(vi−1) + Wsle(vi−1)) (3)

Cr(vi) = f1(WrCr(vi+1) + Wsre(vi+1)) (4)

where Cl(vi) and Cr(vi) are the left and right contexts of the character vi, respectively, e(vi−1)

and e(vi+1) are the character embedding of the former character vi−1 and the latter character vi+1,
respectively, Wl , Wr, Wsl , and Wsr are weight matrices, and f1 is a nonlinear activation function.
Obviously, the left context of vi is derived from the character embedding and the left context of vi−1,
while the right context of vi is derived from the character embedding and the right context of vi+1
recursively. After obtaining the left and right contexts of each character, the output feature vector of vi
is built by cascading the left context of vi, the initial character embedding of vi, and the right context
of vi together, as shown in Equation (5). The output feature vector xi is hence able to represent the
contextual information of the entire domain name around vi abundantly.

xi = [Cl(vi); e(vi); Cr(vi)] (5)

After obtaining the latent feature vector of each character in a domain name, the feature
representation of a domain name can be represented as xd = [x1, x2, ..., xl].

Then, xd is fed into the convolutional layer, and a convolutional filter of size h ∗ d is employed to
perform the convolution operation on xd as shown in the following:

oi = F(w1.xd[i : i + h− 1]) (6)

ci = f2(oi + b1) i = 1, 2, ..., s− h + 1 (7)

c = [c1, c2, ...cs−h+1] (8)

where F represents the convolutional filter of size h× d, w1 is the weight matrix of the convolutional
kernel, oi is the output of the convolution operation, b1 is the bias term, f2 is the ReLU activation
function, and ci|s−h+1

i=1 is the local feature extracted by the convolutional kernel, which constitutes the
feature map c of an input domain name.

The structure of the recurrent convolutional neural network is shown in Figure 2.

Figure 2. The structure of the recurrent convolutional neural network: The domain vector is first
processed by Bi-LSTM and then enters the convolutional layer.

3.4.3. Spatial Pyramid Pooling

A typical CNN always uses a pooling layer to compress the feature map while retaining the
discriminative feature information in the feature map. There are generally two types of pooling
operations: average pooling and max pooling. However, average pooling and max pooling cannot
capture multi-scale feature information from the domain names that is critical for identifying

Entropy 2020, 22, 1058 9 of 20

algorithmically generated domain names. Therefore, we employ the spatial pyramid pooling as
the pooling layer to capture multi-scale contextual information in the domain names. As shown in
Figure 3, pooling is performed on the feature map using n filters with different sizes and strides to
obtain feature representations at different scales. These feature vectors obtained by the different scales
of pooling blocks are then cascaded to generate the final feature vector for classification.

Figure 3. The structure of the spatial pyramid pooling layer: the final feature vector for classification is
generated by cascading the feature vectors of different scales of pooling blocks.

3.5. Output Layer and Parameter Training

The feature vector output by the spatial pyramid pooling layer serves as the final representation.
We adopt a softmax layer [31] as the output layer for predicting the DGA class of the input
domain name:

x = Wjoj + bj (9)

y = so f tmax(x) =
exp(x)

∑
|D|
j=1 exp(x)

(10)

where Wj and bj are learnable parameters, D is the DGA class set, |D| denotes the number of DGA
classes, and y ∈ R|D| is the predicted DGA class probability distribution. The DGA class with the
highest probability is selected as the DGA class to which the input domain name belongs.

For model training, we employ the cross entropy [32] with the L2 regularization term as the
loss function:

L =
|D|

∑
i=1

ŷilog(yi) + λ ∑
θ∈Θ

θ2 (11)

where ŷi ∈ R|D| is a vector that denotes the ground truth, yi ∈ R|D| is the predicted DGA class
probability distribution, λ is the coefficient of the L2 regularization term, and Θ is the collection of all
training parameters. We also adopt the dropout strategy to avoid overfitting.

4. Experiments

4.1. Dataset and Settings

We selected 800,000 DGA domain names from the 360 Netlab OpenData project [33], 750,000 DGA
domain names from the Bambenek Consulting feeds [34], and the top 1,000,000 domain names from
Alexa [35]. These datasets are widely used for evaluation.

• Dataset from Netlab OpenData: This dataset is provided by 360 Network Security Research Lab
and includes 800,000 DGA domain names generated by 50 different types of DGAs collected from
botnet and normal Internet traffic data inspected by the mirai scanner. Note that because of the
variety of DGAs and very short lifespan of some DGA domain names, some DGAs have only less
than 100 domain name samples in this dataset.

Entropy 2020, 22, 1058 10 of 20

• Dataset from Bambenek Consulting: This dataset contains 750,000 DGA domain names generated
from time-dependent random seeds by reverse engineering 30 different malware families.

• Dataset from Alexa: Alexa provides a ranking list of popular websites on the Internet. The ranking
is calculated by estimating a site’s average number of daily unique visitors and the number of
pageviews over the past 3 months. We acquired the top 1 million domain names in the ranking
list for 16th May 2018. It is reasonable to assume that these domain names are legitimate domain
names (i.e., human generated domain names) because they are related to real sites that have many
human visitors and pageviews.

In this study, each experiment was carried out on a large number of domain names randomly
selected from the three datasets described above. We selected the DGA domain names (i.e., the negative
samples) from Netlab OpenData and Bambenek Consulting, while the legitimate domain names
(i.e., the positive samples) were selected from Alexa. In each experiment, we used 80% of the domain
name samples for training, 10% for validation, and 10% for testing. It is necessary to note that we
adjusted the ratio of legitimate domain names to DGA domain names in accordance with the different
purposes of the respective experiments.

In the experiments, we validated our model’s ability to distinguish DGA domain names
from legitimate domain names and its ability to determine the DGA classes accurately. Therefore,
the detection of DGA domain names is essentially a binary classification or multi-classification
task. The ROC curve refers to the receiver operating characteristic curve. AUC is the area under
the ROC curve, which is used to measure the performance of algorithms for binary classification
problems. For classification tasks, precision, recall, F1-score, and ROC are commonly used as evaluation
metrics. Therefore, we used these four metrics to compare the performance of our model with other
compared models.

The GPU used in our experiments was an NVIDIA GeForce GTX 1050Ti. The sample equalization
method and the RCNN-SPP model were implemented using Keras [36]. The character embedding
dimension was 128; the number of feature maps in the convolutional layer was set to 64 and 128.
To ensure the accuracy of the experimental results, we ran each experiment 100 times and took the
average result.

4.2. Results

4.2.1. Performance Analysis of RCNN-SPP

In this section, we conduct several experiments to analyze the binary classification and
multi-classification performance of RCNN-SPP. We also study the impact of sample imbalance on the
performance of RCNN-SPP and the compared models CNN and LSTM by selecting different domain
name samples from the three datasets.

In the first scenario, we studied the performance of RCNN-SPP and the compared models under
the condition of a balanced sample class distribution. Therefore, we selected DGA domain name
samples from Bambenek Consulting because each DGA class in this dataset has enough samples for
model training, whereas some DAG classes in Netlab OpenData have only very few samples.

The total number of domain name samples for the first experiment was 20,000, comprising 20%
DGA domain names in 10 DGA classes from Bambenek Consulting with 400 samples for each DGA
class and 80% legitimate domain names from Alexa.

The first experiment was conducted to validate the performance of RCNN-SPP and the two
compared models in binary classification, i.e., in distinguishing DGA domain names from legitimate
domain names. The performance result is shown Table 1 and Figure 4. It is obvious that RCNN-SPP
achieved superior performance in all evaluation metrics. Compared to LSTM, the precision, recall,
F1-score, and AUC of RCNN-SPP are greater by 3.21%, 1.30%, 1.41%, and 2.60%, respectively,
representing relative increases of 3.60%, 1.47%, 1.58%, and 2.80%, respectively. The performance
improvement can be attributed to the better reflection of the distinctive multi-scale contextual and

Entropy 2020, 22, 1058 11 of 20

semantic features between legitimate and DGA domain names in RCNN-SPP due to feeding the
output feature representation of the recurrent convolutional neural network to the spatial pyramid
pooling layer.

Figure 4. ROC curves of the compared models for binary classification. The area under the ROC curve
of RCNN-SPP is the largest, which indicates the best prediction performance.

Table 1. Performance of the three models in identifying domain generation algorithms (DGAs) and
legitimate domain names. SPP, spatial pyramid pooling.

Model Precision Recall F1-Score AUC

LSTM 89.15 88.25 89.05 92.79
CNN 90.24 88.35 87.25 91.24

RCNN-SPP 92.36 89.55 90.46 95.39

The second experiment was conducted to validate the performance of RCNN-SPP and the
two compared models in multi-classification, i.e., accurately determining the DGA class to which a
domain name belongs. Figure 5 and Table 2 show the average performance of the three models over
11 domain classes. It can be seen that RCNN-SPP significantly outperformed the other models in all
evaluation metrics. Figure 6 and Table 3 shows the detailed performance of the three models in the
11 domain classes. Although the performance gaps between RCNN-SPP and the compared models
differ between different classes, RCNN-SPP achieved the best performance in all 11 domain classes,
especially in the DGA classes of dircrypt and pykspa. Compared to the LSTM model, the precision,
recall, and F1-score of RCNN-SPP in identifying pykspa are greater by 39.96%, 12.58%, and 11.93%,
respectively, representing relative increases of 116.68%, 174.00%, and 90.44%, respectively. Compared
to the CNN model, the precision, recall, and F1-score of RCNN-SPP in identifying dircrypt are greater
by 16.03%, 7.83%, and 3.34%, respectively, representing relative increases of 54.25%, 40.63%, and 12.31%,
respectively. It is also worth noting that RCNN-SPP achieved a much greater improvement over the
other models in making an accurate decision about the DGA category than it achieved in distinguishing
between DGA and legitimate domain names. This is because the combination of a convolutional
layer and bi-directional LSTM with a spatial pyramid pooling layer makes RCNN-SPP more capable
of extracting distinctive multi-scale contextual dependencies and semantic information in different
DGA families.

Entropy 2020, 22, 1058 12 of 20

Figure 5. Average performance of the three models in identifying 11 domain classes. RCNN-SPP
significantly outperformed the other models in the four evaluation metrics.

Table 2. Average performance of the three models in identifying 11 domain classes.

Model Accuracy Precision Recall F1-Score

LSTM 81.66 78.00 71.33 73.62
CNN 81.15 81.84 70.43 72.86

RCNN-SPP 86.58 86.76 76.75 77.27

Table 3. Performance of the three models in identifying 11 domain classes.

Domain Type Precision Recall F1-Score
LSTM CNN RCNN-SPP LSTM CNN RCNN-SPP LSTM CNN RCNN-SPP

Alexa 99.55 99.35 99.85 99.16 99.05 99.25 99.12 99.24 99.64
Banjori 99.09 98.42 99.35 98.24 97.56 98.35 98.52 98.24 98.73
Corebot 99.35 98.26 100 98.25 97.32 99.28 98.65 98.75 99.08

Cryptolocker 97.08 95.36 98.89 99.42 99.31 99.65 98.39 97.31 99.38
Dircrypt 41.28 29.55 45.58 24.11 19.27 27.10 28.30 27.14 30.48
Kraken 71.36 72.88 78.41 48.47 47.68 77.81 57.63 57.62 77.98
Locky 76.36 76.74 79.90 87.20 89.98 95.11 83.41 82.79 84.68

Pykspa 34.21 55.52 74.17 7.21 6.25 19.79 13.15 11.25 25.08
Qakbot 40.75 75.31 79.05 22.82 18.51 28.08 33.21 29.72 35.45
Ramdo 99.32 99.34 99.48 99.91 99.92 99.95 99.61 99.64 99.71
Simda 99.69 99.58 99.78 99.91 99.95 99.98 99.84 99.77 99.85

Entropy 2020, 22, 1058 13 of 20

Figure 6. Performance of the three models in identifying 11 domain classes. RCNN-SPP achieved the
best performance in all 11 domain classes, especially in the DGA classes of dircrypt and pykspa.

In the second scenario, we studied the performance of RCNN-SPP and the two compared models
under the condition of an imbalanced class sample distribution. Therefore, we selected 10 DGA
classes from Bambenek Consulting with 1000 samples for each DGA class and nine DGA classes from
Netlab OpenData with 100 samples for each DGA class. We also selected 9100 legitimate domain
name samples from Alexa. The total number of domain name samples was 20,000, the same as the
first scenario.

Table 4 and Figure 7 show the binary classification performance results of the three models
in this scenario. It is obvious that RCNN-SPP achieved superior performance in all the evaluation
metrics. Note that all three models achieved better performance than in the first scenario. We attribute
the performance improvement to the increase in DGA samples in the training set compared to the
first scenario.

Entropy 2020, 22, 1058 14 of 20

Table 4. Performance in identifying DGA and legitimate domain names across the 20 domain classes.

Model Precision Recall F1-Score AUC

LSTM 89.32 88.64 89.35 95.74
CNN 90.46 88.67 87.43 93.10

RCNN-SPP 92.45 90.12 90.86 96.59

Figure 7. ROC curves of the 20 domain classes for binary classification. The area under the ROC curve
of RCNN-SPP is the largest, which indicates the best prediction performance.

Table 5 shows the detailed performance of the three models in 20 domain categories. We can
see that RCNN-SPP still achieved superior performance in all classes, especially in identifying the
DGA classes locky and virut, as shown in Figure 8. RCNN-SPP also showed more stable performance
than the compared models in most DGA classes, which further proves RCNN-SPP’s capability in
extracting distinctive class features from different DGA classes. We also found the performance of all
three models in the DGA classes from Netlab OpenData to be relatively lower than that on the DGA
classes from Bambenek Consulting. This is because the DGA classes from Netlab OpenData suffered
from more serious sample imbalance than the DGA classes from Bambenek Consulting.

Table 5. Performance of the compared models in identifying 20 domain classes.

Domain Type Precision Recall F1-Score
LSTM CNN RCNN-SPP LSTM CNN RCNN-SPP LSTM CNN RCNN-SPP

Alexa 92.68 89.43 94.08 92.96 86.02 93.76 93.21 87.69 93.51
Banjori 99.65 100 100 98.26 98.81 99.65 98.95 99.40 99.83
Corebot 96.52 97.41 99.16 99.66 99.85 99.92 98.07 98.61 99.54

Cryptolocker 53.96 24.49 57.11 23.29 19.25 23.53 24.00 28.84 32.54
Dircrypt 71.12 73.86 79.17 50.26 49.91 83.52 58.89 59.57 81.28
Kraken 75.19 75.95 79.40 84.67 89.91 91.11 81.95 82.38 82.39
Locky 26.15 45.95 80.00 7.09 6.03 17.71 13.03 10.66 21.12
Pykspa 48.48 75.00 77.42 24.41 26.44 29.91 37.11 36.99 39.10
Qakbot 99.45 99.18 99.55 100 99.88 100 99.73 99.53 99.78
Ramdo 99.39 79.93 99.34 99.63 100 100 99.51 88.84 99.67
Simda 99.54 98.35 99.69 99.69 99.56 99.99 99.77 98.95 99.83

Bamital 21.08 28.69 48.31 72.33 77.85 100 34.82 38.47 46.46
Chinad 25.13 19.33 53.40 91.44 82.28 100 38.14 34.05 40.17

Conficker 73.49 71.77 76.19 92.86 93.14 95.35 85.09 84.02 88.96
Dyre 77.57 74.14 78.54 91.25 92.24 96.57 84.95 82.05 86.91

Emotet 61.94 57.16 64.53 100 99.43 100 76.49 76.61 78.44
Fobber 85.86 83.90 87.55 94.74 89.46 96.51 72.94 71.83 74.53
Gspy 24.75 26.96 29.15 62.57 51.91 62.43 56.82 54.98 58.18

Vawtrak 85.61 83.69 87.34 85.04 84.38 87.24 77.00 72.59 78.21
Virut 19.41 16.22 55.81 6.52 8.05 49.16 9.21 9.16 14.08

Entropy 2020, 22, 1058 15 of 20

Figure 8. Performance of the compared models in identifying 20 domain classes. RCNN-SPP achieved
superior performance in all classes, especially in identifying the DGA classes locky and virut.

4.2.2. Analysis of Model Convergence

In this section, we discuss the convergence speed of RCNN-SPP and the two compared models
based on the second experiment of the first scenario in Section 4.2.1. To illustrate the convergence speed
advantage of RCNN-SPP, the classification performance and loss in each epoch for model training are
presented in Figure 9. As shown in Figure 9, RCNN-SPP achieved optimal performance faster than
CNN and LSTM in the iterative training process. RCNN-SPP achieved the best performance in the
110th epoch, whereas LSTM and CNN achieved their best performance in the 225th and 400th epochs,
respectively. We can also observe that the loss of RCNN-SPP became smaller than that of LSTM after
the 45th epoch and that RCNN-SPP entered the convergence stage more quickly and steeply. This is
because RCNN-SPP uses a recurrent convolutional neural network as the backbone network so that it
can extract more distinctive features than CNN and LSTM by combining the advantages of CNN and
Bi-LSTM in feature extraction. Furthermore, the spatial pyramid pooling layer also helps RCNN-SPP
extract more robust and discriminative multi-scale features. Therefore, the classification performance
of RCNN-SPP improves rapidly with a concomitant drop in loss. In summary, RCNN-SPP improves
its classification ability rapidly and achieves faster convergence than the compared models.

Entropy 2020, 22, 1058 16 of 20

Figure 9. Model performance and loss at each epoch. RCNN-SPP achieves faster convergence speed
and smaller loss.

4.2.3. Analysis of Sample Size

In this section, we discuss the impact of sample size on the performance of RCNN-SPP.
We followed the same strategy as the first scenario. The proportions of the samples from the DGA
domain names in the 10 DGA classes from Bambenek Consulting and the legitimate domain names
from Alexa were fixed at 20% and 80%, respectively, while the total number of domain name samples
varied from 1000 to 1,000,000. The binary classification and multi-classification results are shown in
Figure 10 and Table 6. From the experiment results, we can see that the sample size has a greater
impact on the multi-classification performance than on the binary classification performance. As the
sample size increased from 1000 to 1,000,000, the precision, recall, and F1-score of binary classification
increased from 88.04%, 86.12%, and 91.75% to 94.35%, 94.45%, and 99.98%, respectively. On the other
hand, the average precision, recall, and F1-score of multi-classification increased from 52.24%, 52.86%,
and 41.25% to 97.35%, 86.95%, and 87.55%, respectively. This is because the differences between the
class feature of DGA domain names and legitimate domain names are significant and RCNN-SPP
can learn them from a relatively small sample. In contrast, some DGA classes have similar character
distributions, and the differences between their class features are not so obvious. Therefore, RCNN-SPP
requires more DGA samples to learn the distinctive features of different DGA classes.

Table 6. Impact of sample size on model performance.

Sample Size Binary Classification 11 Classification
Precision Recall F1-Score Average Precision Average Recall Average F1-Score

1 K 87.62 88.04 86.12 52.24 52.86 41.25
5 K 88.23 88.85 88.75 61.89 57.65 58.88

15 K 90.53 89.02 90.02 77.56 71.23 72.45
20 K 92.36 89.55 90.46 86.76 76.75 77.27
50 K 92.52 90.65 91.54 89.82 78.43 79.14
100 K 94.05 90.88 91.62 93.25 80.24 80.86
200 K 94.65 91.15 92.04 94.88 84.55 84.98
500 K 94.97 93.54 93.52 97.08 85.87 86.02
1 M 95.56 94.35 94.45 97.35 86.95 87.55

Entropy 2020, 22, 1058 17 of 20

Figure 10. Impact of sample size on model performance. The increase of the sample size can improve
the performance of RCNN-SPP and has a greater impact on the performance of multi-classification.

4.2.4. Analysis of Sample Equalization

In this subsection, we analyze the impact of sample equalization on the performance of RCNN-SPP
under the condition of an imbalanced class sample distribution. We selected nine DGA classes from
360 Netlab OpenData with a total number of 900 domain name samples and 10,000 legitimate domain
name samples from Alexa. The classification results are shown in Figure 11 and Table 7. It is obvious
that sample equalization can improve the classification performance in both multi-classification and
binary classification. Moreover, the performance improvement in multi-classification is greater than
that in binary classification. The reason is the same as what we discussed in the previous experiment.
RCNN-SPP relies on more DGA samples for learning distinctive features between some DGA categories
that have similar patterns.

Figure 11. Impact of sample equalization on model performance. The sample equalization can improve
the classification performance in both multi-classification and binary classification.

Table 7. Impact of sample equalization on model performance.

Model
Binary Classification 10-Classification

Precision Recall F1-Score Average Precision Average Recall Average F1-Score

RCNN-SPP 85.86 86.54 86.43 80.55 80.42 79.85
RCNN-SPP +

Borderline-SMOTE 88.61 88.41 88.52 84.42 83.76 83.45

4.2.5. Analysis of the Spatial Pyramid Pooling

In this section, we discuss the impact of different pooling strategies on the performance of
RCNN-SPP based on the dataset used in the first scenario. The experiment results are shown in
Figure 12 and Table 8. It is obvious that the average pooling strategy was unable to preserve the

Entropy 2020, 22, 1058 18 of 20

category feature details, resulting in the worst classification performance. In comparison with average
pooling, max pooling preserved more distinctive feature information implied in the different DGA
categories, resulting in a better classification performance than average pooling. Spatial pyramid
pooling achieved the best classification performance among the three pooling strategies. Unlike average
pooling and max pooling, spatial pyramid pooling can take features at different scales as its input and
preserves more discriminative category information in the fusion process. We also found that spatial
pyramid pooling achieves more significant performance improvement in multi-classification than in
binary classification. The reason is the same as what we discussed in the previous subsection.

Table 8. Impact of different pooling strategies on detection performance.

Pooling Strategies Binary Classification 10-Classification
Precision Recall F1-Score Average Precision Average Recall Average F1-Score

Average pooling 91.65 89.03 88.87 83.52 73.55 74.56
Max Pooling 91.85 89.34 89.92 84.45 74.23 75.48

SPP 92.36 89.55 90.46 86.76 76.75 77.27

Figure 12. Impact of different pooling strategies on detection performance. Spatial pyramid pooling
achieved the best classification performance among the three pooling strategies.

5. Conclusions

In this paper, we propose a novel model for detecting algorithmically generated domain names.
We employ the borderline synthetic minority over-sampling algorithm (SMOTE) to improve sample
balance. We also propose a recurrent convolutional neural network to fully exploit the contextual and
semantic information in different DGA categories. Furthermore, we adopt the spatial pyramid pooling
strategy to refine the category feature representation, which further improves the ability of our model
to identify different DGA categories. We also conduct extensive experiments and analysis on several
datasets. The experiments demonstrate that our model achieves perfect performance. Future work will
consider the optimization of its performance and compare it with the recent work [37–39] to evaluate
the strength of the model.

Author Contributions: Conceptualization, Z.L. and Y.Z.; methodology, Z.L.; software, Y.C.; validation, Z.L.,
Y.Z. and X.F.; performance analysis, Y.Z. and X.F.; formal analysis, C.D.; investigation, Y.C.; resources, C.D.;
data curation, Y.C.; writing, original draft preparation, Z.L.; writing, review and editing, X.F.; visualization,
Y.Z.; supervision, Y.C.; project administration, C.D.; funding acquisition, Y.C. All authors read and agreed to the
published version of the manuscript.

Funding: This research was funded in part by the National Natural Science Foundation of China under Grants
61672158, 61672159, 61502104, and 61502105, in part by the Industry-Academy Cooperation Project of Fujian
Province under Grant 2018H6010, in part by the Technology Guidance Project of Fujian Province under Grant
2017H0015, in part by the Fujian Collaborative Innovation Center for Big Data Application in Governments,
in part by the Foundation of the Education Department of Fujian Province, China under Grant JAT190025, in part
by Fujian Province High-level Talents and the Young Talents Visiting and Training Subsidy Program, and in part
by the Natural Science Foundation of Fujian Province, China under Grant 2018J01795, and 2020J01130167.

Entropy 2020, 22, 1058 19 of 20

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bilge, L.; Sen, S.; Balzarotti, D.; Kirda, E.; Kruegel, C. Exposure: A Passive DNS Analysis Service to Detect
and Report Malicious Domains. ACM Trans. Inf. Syst. Secur. 2014, 16, 14. [CrossRef]

2. Schiavoni, S.; Maggi, F.; Cavallaro, L.; Zanero, S. Phoenix: DGA-Based Botnet Tracking and Intelligence.
In Proceedings of the 11th International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, Egham, UK, 10–11 July 2014; pp. 192–211.

3. Choi, H.; Lee, H.; Lee, H.; Kim, H. Botnet Detection by Monitoring Group Activities in DNS Traffic.
In Proceedings of the 7th IEEE International Conference on Computer and Information Technology (CIT 2007),
Aizu-Wakamatsu, Japan, 16–19 October 2007; pp. 715–720.

4. Jiang, J.; Zhuge, J.W.; Duan, H.X.; Wu, J.P. Research on Botnet Mechanisms and Defenses. J. Softw. 2012,
23, 82–96. [CrossRef]

5. Qu, Y.; Lu, Q. Effectively Mining Network Traffic Intelligence to Detect Malicious Stealthy Port Scanning to
Cloud Servers. J. Internet Technol. 2014, 15, 841–852.

6. Zhou, H.; Guo, W.; Feng, Y. An Automatic Extraction Approach of Worm Signatures Based on Behavioral
Footprint Analysis. J. Internet Technol. 2014, 15, 405–412.

7. Shibahara, T.; Yagi, T.; Akiyama, M.; Chiba, D.; Yada, T. Efficient Dynamic Malware Analysis Based on
Network Behavior Using Deep Learning. In Proceedings of the IEEE Global Communications Conference,
Washington, DC, USA, 4–8 December 2016; pp. 1–7.

8. Ahmad, W.M.A.W.; Aleng, N.A.; Halim, N.A.; Mamat, M.; Hamzah, M.P.; Baharum, A.; Ali, Z. A Comparative
and Comprehensive Analysis of Perinatal and Neonatal Death Using Repeated Measurement: A Malaysia Case
Study. Appl. Math. Sci. 2014, 8, 2269–2288. [CrossRef]

9. Kuhrer, M.; Rossow, C.; Holz, T. Paint It Black: Evaluating the Effectiveness of Malware Blacklists. In Research
in Attacks, Intrusions, and Defenses; Springer: Cham, Switzerland, 2014; pp. 1–21.

10. Wang, T.S.; Lin, H.T.; Cheng, W.T.; Chen, C.Y. DBod: Clustering and detecting DGA-based botnets using
DNS traffic analysis. Comput. Secur. 2017, 64, 1–15. [CrossRef]

11. Truong, D.; Cheng, G.; Jakalan, A.; Guo, X.; Zhou, A. Detecting DGA-Based Botnet with DNS Traffic Analysis
in Monitored Network. J. Internet Technol. 2016, 17, 217–230.

12. Schuppen, S.; Teubert, D.; Herrmann, P.; Meyer, U. FANCI: Feature-based Automated NXDomain Classification
and Intelligence. In Proceedings of the 27th USENIX Security Symposium (USENIX Security 18), Baltimore,
MD, USA, 15–17 August 2018; pp. 1165–1181.

13. Zang, X.; Gong, J.; Hu, X. Detecting malicious domain names based on AGD. J. Commun. 2018, 39, 15–25.
14. Antonakakis, M.; Perdisci, R.; Nadji, Y.; Vasiloglou, N.; Dagon, D. From Throw-Away Traffic to Bots:

Detecting the Rise of DGA-Based Malware. In Proceedings of the 21st USENIX Security Symposium,
Bellevue, WA, USA, 8–10 August 2012; pp. 491–506.

15. Yadav, S.; Reddy, A.K.K.; Reddy, A.N.; Ranjan, S. Detecting Algorithmically Generated Malicious Domain
Names. In Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, Melbourne,
Australia, 1–3 November 2010; Association for Computing Machinery: New York, NY, USA, 2010; pp. 48–61.

16. Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]
17. Jaccard, P. The Distribution of the Flora in The Alpine Zone.1. New Phytol. 1912, 11, 37–50. [CrossRef]
18. Levenshtein, V. Binary codes capable of correcting spurious insertions and deletions of ones. Probl. Inf. Transm.

1965, 1, 8–17.
19. Yang, L.; Zhai, J.; Liu, W.; Ji, X.; Bai, H.; Liu, G.; Dai, Y. Detecting Word-Based Algorithmically Generated

Domains Using Semantic Analysis. Symmetry 2019, 11, 176. [CrossRef]
20. Li, Y.; Xiong, K.; Chin, T.; Hu, C. A Machine Learning Framework for Domain Generation Algorithm

(DGA)-Based Malware Detection. IEEE Access 2019, 7, 32765–32782. [CrossRef]
21. Raghuram, J.; Miller, D.J.; Kesidis, G. Unsupervised, low latency anomaly detection of algorithmically

generated domain names by generative probabilistic modeling. J. Adv. Res. 2014, 5, 423–433. [CrossRef]
22. Woodbridge, J.; Anderson, H.S.; Ahuja, A.; Grant, D. Predicting Domain Generation Algorithms with Long

Short-Term Memory Networks. Cryptogr. Secur. 2016. Available online: https://arxiv.org/abs/1611.00791
(accessed on 25 June 2020).

http://dx.doi.org/10.1145/2584679
http://dx.doi.org/10.3724/SP.J.1001.2012.04101
http://dx.doi.org/10.12988/ams.2014.42144
http://dx.doi.org/10.1016/j.cose.2016.10.001
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1111/j.1469-8137.1912.tb05611.x
http://dx.doi.org/10.3390/sym11020176
http://dx.doi.org/10.1109/ACCESS.2019.2891588
http://dx.doi.org/10.1016/j.jare.2014.01.001
https://arxiv.org/abs/1611.00791

Entropy 2020, 22, 1058 20 of 20

23. Curtin, R.; Gardner, A.; Grzonkowski, S.; Kleymenov, A.; Mosquera, A. Detecting DGA domains with
recurrent neural networks and side information. In Proceedings of the 14th International Conference on
Availability, Reliability and Security, Canterbury, UK, 26–29 August 2019; pp. 1–10.

24. Yu, B.; Gray, D.L.; Jie, P.; Cock, M.D.; Nascimento, A.C.A. Inline DGA Detection with Deep Networks.
In Proceedings of the IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans,
LA, USA, 18–21 November 2017.

25. Yu, B.; Pan, J.; Gray, D.L.; Hu, J.; Choudhary, C.; Nascimento, A.; De Cock, M. Weakly Supervised Deep
Learning for the Detection of Domain Generation Algorithms. IEEE Access 2019, 7, 51542–51556. [CrossRef]

26. Zeng, F.; Chang, S.; Wan, X. Classification for DGA-Based Malicious Domain Names with Deep Learning
Architectures. Int. J. Intell. Inf. Syst. 2017, 6, 67–71.

27. Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional
neural networks. Neural Netw. 2018, 106, 249–259. [CrossRef]

28. Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data
Sets Learning. In Proceedings of the International Conference on Intelligent Computing, Hefei, China,
23–26 August 2005.

29. Socher, R.; Huang, E.H.; Pennington, J.; Ng, A.Y.; Manning, C.D. Dynamic Pooling and Unfolding Recursive
Autoencoders for Paraphrase Detection. Adv. Neural Inf. Process. Syst. 2011, 24, 801–809.

30. Lai, S.; Xu, L.; Liu, K.; Zhao, J. Recurrent convolutional neural networks for text classification. In Proceedings
of the 29th AAAI Conference on Artificial Intelligence and the 27th Innovative Applications of Artificial
Intelligence Conference, Austin, TX, USA, 25–30 January 2015; pp. 2267–2273.

31. Zhou, Z. Machine Learning; Tsinghua University Press: Beijing, China, 2016.
32. De Boer, P.; Kroese, D.P.; Mannor, S.; Rubinstein, R.Y. A Tutorial on the Cross-Entropy Method. Ann. Oper. Res.

2005, 134, 19–67. [CrossRef]
33. 360DGA Page. Available online: https://data.netlab.360.com/dga (accessed on 27 August 2020).
34. Bambenek-Consulting-Master-Feeds. Available online: http://osint.bambenekconsultin.com/feeds/

(accessed on 6 April 2016).
35. Does Alexa Have a List of Its Top-Ranked Websites? Available online: https://support.alexa.com/hc/enus/

articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites (accessed on 17 August 2020).
36. Chollet, F. Keras. 2016. Available online: https://github.com/fchollet/keras (accessed on 25 June 2020).
37. Ren, F.; Jiang, Z.; Wang, X.; Liu, J. A DGA domain names detection modeling method based on integrating

an attention mechanism and deep neural network. Cybersecurity 2020, 3, 4. [CrossRef]
38. Zhou, S.; Lin, L.; Yuan, J.; Wang, F.; Ling, Z.; Cui, J. CNN-based DGA Detection with High Coverage.

In Proceedings of the 2019 IEEE International Conference on Intelligence and Security Informatics (ISI),
Shenzhen, China, 1–3 July 2019; pp. 62–67. [CrossRef]

39. Highnam, K.; Puzio, D.; Luo, S.; Jennings, N.R. Real-Time Detection of Dictionary DGA Network Traffic
using Deep Learning. Comput. Sci. 2020. Available online: https://arxiv.org/abs/2003.12805 (accessed on
25 June 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2019.2911522
http://dx.doi.org/10.1016/j.neunet.2018.07.011
http://dx.doi.org/10.1007/s10479-005-5724-z
https://data.netlab.360.com/dga
http://osint.bambenekconsultin.com/feeds/
https://support.alexa.com/hc/enus/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites
https://support.alexa.com/hc/enus/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites
https://github.com/fchollet/keras
http://dx.doi.org/10.1186/s42400-020-00046-6
http://dx.doi.org/10.1109/ISI.2019.8823200
https://arxiv.org/abs/2003.12805
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Proposed Model
	Overall Model
	Domain Name Encoding
	Domain Name Sample Equalization
	Identification of Minority Classes
	Sample Synthesis

	Domain Name Feature Extraction
	RCNN-SPP Overview
	Recurrent Convolutional Neural Network
	Spatial Pyramid Pooling

	Output Layer and Parameter Training

	Experiments
	Dataset and Settings
	Results
	Performance Analysis of RCNN-SPP
	Analysis of Model Convergence
	Analysis of Sample Size
	Analysis of Sample Equalization
	Analysis of the Spatial Pyramid Pooling

	Conclusions
	References

