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Abstract: We propose a new measure (Γ) to quantify the degree of self-similarity of a shape using
branch length similarity (BLS) entropy which is defined on a simple network consisting of a single
node and its branches. To investigate the properties of this measure, we computed the Γ values for
70 object groups (20 shapes in each group) in the MPEG-7 shape database and performed grouping on
the values. With relatively high Γ values, identical groups had visually similar shapes. On the other
hand, the identical groups with low Γ values had visually different shapes. However, the aspect of
topological similarity of the shapes also warrants consideration. The shapes of statistically different
groups exhibited significant visual difference from each other. Also, in order to show that the Γ
can have a wide variety of applicability when properly used with other variables, we showed that
the finger gestures in the (Γ, Z) space are successfully classified. Here, the Z means a correlation
coefficient value between entropy profiles for gesture shapes. As shown in the applications, Γ has
a strong advantage over conventional geometric measures in that it captures the geometrical and
topological properties of a shape together. If we could define the BLS entropy for color, Γ could be
used to characterize images expressed in RGB. We briefly discussed the problems to be solved before
the applicability of Γ can be expanded to various fields.

Keywords: branch length similarity (BLS) entropy; the degree of self-similarity; shape characterization;
image analysis

1. Introduction

Image processing refers to the process of converting an actual physical image into a digital image
and applying a variety of algorithms to distinguish between the target object we are interested in
and other parts (background). Over the last few decades, the development of these algorithms has
been cost-effective and rapid, and image processing has now become a technology used throughout
the modern information society, consisting of multimedia systems. Most of these algorithms regard
the target object as a shape (silhouette) [1,2] for the ease of extraction and analysis of the geometric
properties of the object. This process of extraction and analysis is usually referred to as shape analysis.

This investigation can be generally divided into three types according to the approach used:
skeleton-based, region-based and contour-based methods [3].

The skeleton-based method uses the area center axis of a shape to extract its features, which has
the advantage of robustness in the case of occlusions and joints [4,5]. This method has been widely
applied to characterize the dynamics of a target object in motion and to quickly determine a promising
candidate in the image database in which the query is given. Region-based techniques, on the other
hand, focus on a global analysis of images to extract their features [6,7]. This method has been
used extensively; however, its performance is limited when the images to be distinguished are very
similar in shape (e.g., leaves). Finally, the contour-based methodology considered in this study

Entropy 2020, 22, 1061; doi:10.3390/e22091061 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0003-2708-071X
http://www.mdpi.com/1099-4300/22/9/1061?type=check_update&version=1
http://dx.doi.org/10.3390/e22091061
http://www.mdpi.com/journal/entropy


Entropy 2020, 22, 1061 2 of 11

extracts the characteristics of a shape using only its contour information [8–10]. Some examples of
this category include Fourier descriptors [11–13], curvature scale space [14], and multiscale fractal
dimensions [15–17]. Most of the methods used in these cases are intuitive ways of dealing with the
coordinate values of a series of points that form the boundary of a shape.

Lee et al. (2010) [18] first defined branch length similarity (BLS) entropy in networks with one
node and multiple edges. Subsequently, Lee (2010) [19] showed that BLS entropy has a robust property
when classifying shapes with noise at the shape boundary. These two studies showed with the battle
tank shape that a small deformation in the shape causes a large change in the BLS entropy profile,
and that it is invariant with respect to rotation, enlargement, and reduction of the shape. Based on
the properties, Kang et al. [20] showed that when a network is constructed by connecting each pixel
forming a shape boundary with all other pixels on the shape boundary, the set of BLS entropy values
(the entropy profile) for the network created by each pixel is highly useful for characterizing the
shape. The authors successfully classified the butterfly species by calculating the entropy profiles
for the butterfly wing shape of various species and comparing the degree of correlation between the
profiles. Lee et al. (2011) [21] constructed the facial networks on images of 70 male and 56 female
faces displaying four different expressions (neutral, happy, angry, and screaming) by joining 17 facial
landmark points such as the centers of the eyes, the corners of the mouth, and the underside tip.
They calculated BLS entropy values for the networks and showed that the values were well grouped by
emotion. Lee and Kang (2015) [22] used BLS entropy to quantify the behavior of Canorhabditis elegans
in response to very low toxic substances. The authors set 10 equal coordinate points on the body of
the worm and calculated the BLS entropy values for the angle and distance between the coordinate
points. This study showed that the two entropy values could be very good indices for describing the
movement of worms with elongated bodies such as C. elegans. Jeong et al. (2019) [23] recorded the
movement of C. elegans and quantified the worm shape in each frame with the BLS entropy profile.
The profiles were classified into 7 shape patterns through self-organizing maps combined with k-means
clustering algorithm. By learning the classified patterns with two hidden Markov models, the authors
developed a bio-monitoring system that determines water quality based on a series of shape patterns
during a specific observation time.

Studies on the mathematical properties of this entropy were also conducted. Jeon and Lee
(2012) [24] investigated the BLS entropy profile of a shape with infinite resolution and numerically
investigated the variation in the pattern of the entropy profile caused by changes in the resolution in
the case of finite resolution. Kwon and Lee (2014) [25] extended the theorem to the network created
by linking infinitely many nodes distributed on the bounded or unbounded domain in Rk for k ≥ 1.
However, the study of the mathematical properties of the entropy profile is still poor. Until now,
most studies using BLS entropy have taken an approach to extracting features from the entropy profile.
In fact, we do not know what the features reflects in the shape. On the other hand, there was no
research on whether the shape characteristic information could be inferred from the entropy profile.
This is the opposite approach to the approach taken so far by studies using BLS entropy. This inverse
problem can be said to be one example of problems that need to be further understood mathematically
for the BLS entropy. This inverse problem may seem like a problem that is directly linked to algorithms
such as compression or transformation of 2D images. In this respect, it can be said that solving the
inverse problem is to broaden the scope of applicability of the BLS entropy profile.

The goal of this study is to present a new measure (Γ) based on the BLS entropy profile that
characterizes the self-similarity of a two-dimensional shape, and to understand the property of the
Γ through its applications. Achieving this goal means that we are taking one step further towards
solving the inverse problem. To understand a property of the Γ, we calculated the Γ values for 70
groups of objects in the MPEG-7 shape database (each group contains 20 shapes), performed statistical
tests, and interpreted the results in terms of the self-similarity. In addition, we applied Γ to the finger
gesture classification problem and showed that when Γ is used with other variables, its applicability
can be wider. In the discussion section, we briefly discuss the problems that need to be solved before
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Γ can be applied in various fields that require image analysis technology, such as the industrial and
medical sectors.

2. Materials and Methods

2.1. BLS Entropy and Its Profile

BLS entropy [18,19] was defined as the probability of branch length in a simple network consisting
of a single node and several branches (Figure 1). This probability was defined as p j = L j/

∑n
k = 1 Lk,

where n is the number of branches in the network and Lk represents the length of the kth branch
(k = 1, 2, 3, . . . , n).
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Thus, the BLS entropy can be mathematically written as

S = −
n∑

j = 1

p j log(p j)/ log(n), (1)

This entropy (S) has the property that the closer the branch lengths of the network are, the closer
its value is to 1.0, and the lower the similarity, the closer the value is to 0.0 [18]. To demonstrate this
property, we have provided an example where two branch lengths increased by the same length,
and another example where only one of the three branches increased. In the former case, the S value
increased, while in the latter case, the S value decreased.

Figure 2 illustrates the formation of a BLS entropy profile using a square shape. Considering that
the border of the square is composed of pixels, we can select one of the pixels, form a network that
connects the selected pixel to all the other pixels on the border, and calculate the entropy value for the
network (Figure 2A). Similarly, the entropy value of neighboring pixels connected to the selected pixel
can also be easily calculated. Finally, we can obtain the entropy values for all connected pixels in a
counterclockwise order, which is the entropy profile (Figure 2B). In the figure, the entropy values were
normalized to fall in the range of [0, 1].
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2.2. The Degree of Self-Similarity for a Shape

Figure 3 schematically shows the procedure for calculating the self-similarity for a shape using
a pentagonal shape as an example. First, as mentioned in Figure 2, we obtain the entropy profile
for the shape. Subsequently, we position a series of rectangular windows (see the red squares in
Figure 3A) of appropriately small size (=20) on the entropy profile. In the preliminary study, we tested
cases where the window size was less than 15 or greater than 30 when lag = 5, 10, 15, and 20. If the
number of entropy values were too small (window size < 15), overfitting occurred, and if there were
too many (window size > 30) values, the linearity for the distribution of entropy values was broken.
All four lag values gave the same result. Considering this fact, we set the window size to 20 and the lag
value to 20. These windows are cyclically shifted in the right direction by a certain length (lag = ϕ)
(Figure 3A). Subsequently, we compute the linear regression coefficients (e.g., slope w) for the different
entropy values of each window. Although the total entropy profile is strongly curved, the 20 entropy
values belonging to each window appear to be almost linear. The linear slope for the distribution
can be obtained using gradient descent method. In the consecutive windows obtained when ϕ = 20,
the number of windows similar to the first window can be determined by comparing the w value of
the first window with those of all other windows. Here, we define that two windows are similar to
each other when the values w1 and w2 of the two windows meet the following condition:

when w1 ×w2 > 0,

c =

 w1
w2
≥ 0.8 f or w1 < w2

w2
w1
≥ 0.8 f or w1 > w2
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Here, we denote the number of similar windows as M1
0. Likewise, by comparing the w value of

the second window and those of the other windows, the number of windows similar to the second
window is determined and written as M2

0. Thus, we can obtain M1
0, M2

0, . . . , MK
0 (Figure 3B) where K is

the number of windows. In the preliminary study, when we took c ≥ 0.95, the number of windows
with the same slope was too small to calculate the self-similarity. On the other hand, when the c value
was set too low (≤0.65), the number was too high, and it was difficult to trust the value. For this
reason, we chose a c value of 0.8. Similarly, for ϕ values, we tested for 5, 10, 15, and 20, and all four
cases showed statistically the same results. The ϕ value may need to be changed depending on the
complexity of the shape, but it was sufficient to take lag = 20 for the shapes used in this study. After
obtaining the set of {M1

0, M2
0, . . . , MK

0 }, we also consider the cyclic shift of window by ϕ. Similarly,
we define the number of windows similar to the i-th window as Mi

ϕ for i = 1, . . . , K. The set of {M1
0, M2

0,
. . . , MK

0 } can then be extended to the following matrix:
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M1
0 M2

0 M3
0 . . . MK

0
M1
ϕ M2

ϕ M3
ϕ . . . MK

ϕ

M1
2ϕ M2

2ϕ M3
2ϕ . . . MK

2ϕ
...

...
...

M1
θ M2

θ M3
θ
. . . MK

θ


(3)

where θ = [LCM (window size, ϕ)/ϕ] −1. When calculating the number of similar windows, we exclude
the case of comparison to itself, i.e., in the j-th row, the number of similar windows (hj) can be written
as follows:

h j =
K∑

k = 1

(
Mk

jϕ − 1
)
/2 (4)

Therefore, the ratio of the number of similar windows in the K(K − 1)/2 pairs of windows (γ j)
can be defined as

γ j =
2h j

K(K − 1)
× 100 (%) (5)

Here, k= 1, 2, . . . , K and j = 0, 1, 2, . . . θ. The highest γ value best reflects the self-similarity of
the entropy profile obtained for the pentagonal shape. Thus, the self-similarity can be finally written
as follows:

Γ = max
(
γ j

)
, j = 1, 2, . . . , K. (6)

3. Results

3.1. Effect of Node Density of a Shape Boundary on the BLS Entropy Profile

When we draw an equilateral triangle on a computer, the number of nodes (pixels) on each side
may be slightly different. The border of a horizontal or vertical side has a higher pixel density than
oblique lines. This is due to the limitations of shape resolution. Therefore, it is necessary to understand
the variation of Γ value with the node density. To this end, we constructed a single straight line by
connecting two straight lines of the same length with different node densities to intuitively understand
the density effect (Figure 4A). The number of nodes of the front straight line was N1, and the number
of nodes of the rear straight line was N2.
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When N1 = N2, the entropy profile was exactly symmetric. However, in the case of N1:N2 = 120:100,
the entropy profile was relatively high in the region of low node density. For the case of N1:N2 = 140:100,
the entropy profile tended to rise further in regions with lower node density. This can be illustrated
through the example shown in Figure 1. When a node on a straight line with a low node density is
connected to nodes on a straight line with a high density, the dispersion of its length distribution is
reduced compared to the opposite case. To see if this density effect is also apparent in shape, we draw
a triangle with three straight lines of the same length and different node densities (Figure 4B). The red
circle represents the starting point of the entropy profile. The line formed by the two points a and b had
100 nodes, and the line consisting of points b and c and a and c had 120 nodes, respectively. The entropy
profile was clearly higher in straight lines a–b with lower node density.

3.2. Application I: Statistical Analysis of Self-Similarity (Γ) in the MPEG-7 Image Database

To assess the visual similarity of two shapes with similar Γ values from a geometric point of
view, we computed the Γ values for 1400 shapes in the shape database (MPEG-7) [26]. The computer
hardware used for the computation had an Eight-core processor (3.6GHz) and RAM (32GB), and the
software was MATLAB R2019a. The time taken to obtain the final result was approximately 4 h.
The MPEG-7 database consists of 70 different object groups (20 shapes in each group). Subsequently,
we performed one-way ANOVA and post hoc (Duncan) tests (Table 1). In Table 1, N, M, and G denote
object groups, the average value of Γ, and statistical similarity indication, respectively. Considering
the values of M and G, there were groups that belong to the same set with high M values, while there
were also sets that are bound with low M values and sets that are loosely bound (e.g., N = 24, 47, 52,
65). The loosely bound groups appeared at levels where the M value was not too high or too low.
This indirectly means that the shape classification from the Γ point of view is somewhat different from
the existing method of simply classifying from the geometric point of view. Groups 19, 56 and 70 were
statistically identical to each other with relatively high Γ values. The shapes belonging to these groups
had the characteristic of being long in one direction and were visually similar (Figure 5). Conversely,
groups 14, 27, and 28 had relatively low Γ values and were statistically equal to each other. The shapes
belonging to groups 27 and 28 were visually similar to each other, and the shapes in group 14 were
significantly different visually from those in the two groups.

Table 1. One-way ANOVA and post hoc (Duncan) test results for the Γ values of 70 groups of objects
(20 shapes in each group) included in the MPEG-70 shape database. Here, N, M, and G indicate the
group number, the average Γ value of the group, and the presence or absence of significant differences
between the groups, respectively.

N M G N M G N M G N M G N M G

70 0.1019 a 12 0.0895 fg 49 0.082 no 21 0.0761 tuv 45 0.0703 CD
56 0.1019 a 16 0.0891 fgh 67 0.0818 no 11 0.0757 tuvw 48 0.0703 CD
19 0.1009 a 47 0.0888 fghi 40 0.0815 o 53 0.0754 uvwx 43 0.0693 D
1 0.0987 b 24 0.0886 fghi 63 0.0807 op 58 0.0746 vwxy 14 0.067 E

39 0.0963 c 65 0.0879 fghij 26 0.0804 opq 6 0.0739 vwxyz 55 0.0669 E
62 0.0949 cd 52 0.0877 fghijk 4 0.0802 opq 38 0.0736 wxyzA 27 0.0665 E
30 0.0949 cd 46 0.0874 ghijk 8 0.0798 opqr 29 0.0732 xyzAB 28 0.0663 E
35 0.0938 de 32 0.087 ghijk 10 0.0797 opqr 20 0.0723 yzABC 50 0.0654 E
2 0.0936 de 31 0.0869 hijk 17 0.0788 pqrs 37 0.0721 zABC 66 0.0625 F

23 0.0935 de 22 0.0863 ijkl 64 0.0781 qrst 59 0.0719 zABC 25 0.0594 G
13 0.0929 de 69 0.0858 jklm 54 0.0777 rstu 51 0.0717 zABCD 44 0.0561 H
34 0.0926 de 57 0.0853 klm 18 0.0776 rstu 42 0.0714 zABCD 60 0.0536 I
36 0.0924 e 61 0.0843 lm 41 0.0773 stu 15 0.0712 ABCD 3 0.0522 I
68 0.09 f 9 0.0839 mn 5 0.0763 tuv 33 0.0707 BCD 7 0.0501 J

In the string of G, it means that groups containing the same alphabetic character are statistically the same, and are
different between groups without the same character.
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database. Groups 70, 56, and 19 are the same, and groups 27, 28, and 14 are the same. Groups 26, 44,
and 60 are different.

This was caused by the low Γ values. However, these shapes had a common topological structure in
which several arms were attached to a circular body. This means that lower Γ values reflect topological
attributes than the geometric attributes of the shapes. For the groups 24, 45, and 60 with low and
statistically different Γ values, the shapes belonging to each group were completely different visually.

3.3. Application II: Self-Similarity (Γ) for the Classification of Finger Gestures

In this study, we applied the self-similarity (Γ) to the finger classification problem and showed
that the Γ works well for this problem. It took about 5 min to solve this problem using MATLAB 2019a
on the same computer used to analyze the MPEG-7 shape database. For this purpose, we obtained
finger gesture shapes representing the numbers 1 to 10 from five different adults [27]. The number of
shapes corresponding to each number was 10. Considering the Γ value for MPEG-7 image shapes,
we reasonably inferred that for hand gesture shapes with a low Γ value, it would be difficult to
distinguish the shapes from each other with only one Γ value. We, therefore, introduced Z, a new
quantity based on the BLS entropy profile to improve discrimination between finger gesture shapes.

Before defining Z, when the entropy profiles for the two-finger gesture shapes are Pi
j and Pm

n ,
we must first calculate the correlation coefficient, Q, between the two profiles. Q is mathematically
described as follows:

Qi
j(P

m
n ) = max

{
corrcoe f f

(
shi f ted(Pi

j), Pm
n

)}
(7)

Here, i refers to a group of finger shapes representing the number i, and j refers to the j-th shape
in the group. m and n have the same meaning (i, j, m, n = 1, 2, 3, . . . , 10). The length of the entropy
profile for each shape is 1,000; max {} represents the maximum value among the correlation coefficient
values obtained for Pi

j shifts by 1 (up to 1,000) and Pm
n . Considering that Qi

j corresponds to the branch
length of the simple network shown in Figure 1, we define Z as the BLS entropy value for the network
as follows:

Zi =
1
10

BLS
{
mean j(Qi

j)
}

(8)

Here, the notation, “BLS” represents the entropy value for the mean values of Qi
j for j = 1, 2, . . . , 10.

Figure 6 shows a typical finger gesture shape that represents a number from 1 to 10 and shows
the mean and standard deviations of the Γ and Z values of the shapes that belong to each number
group. Gesture shapes that symbolize the numbers 1 to 5 are made by showing the back of the
hand, while gestures that represent the numbers from 6 to 10 are implemented by showing the palm.
Using loci coordinates of the little finger (pinky) and the longest finger (middle finger), we can easily
distinguish between 1–5 and 6–10. In the lower figures, the center coordinate values of the square
are the mean values of Γ and Z, respectively, while the width and height of the square represent the
standard deviation values of Z and Γ, respectively. The lower left figure shows the results for a finger



Entropy 2020, 22, 1061 8 of 11

shape representing the numbers 1 to 5 (see the number next to each square), while the lower right
figure shows the results for a finger shape representing the numbers from 6 to 10. In each figure,
the squares were well separated from each other. This means that Z and Γ can be useful for resolving
finger gesture recognition challenges.
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4. Discussion

In this study, we proposed a new measure, the self-similarity of a shape (Γ), which characterizes
shapes based on the BLS entropy profile. This characterization allows direct comparison of the degree
of differences between shapes, e.g., judging which two shapes among three given shapes (see Figure 7)
are more similar. Some people visually judge with confidence, while others judge differently depending
on their perspective. However, by calculating the Γ value for the shapes (window size = 20, lag = 20,
c = 0.8), we can clearly affirm that the shapes in the middle and right are more similar to each other,
and even estimate that these two shapes are roughly 3% different from the shapes in the left. This shape
comparison approach could be used to solve shape problems such as image retrieval.
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represents the Γ value of the shape itself.

In Section 3.1, we suggested two issues that need to be addressed to better understand the
self-similarity. One is the relationship between the number of nodes forming the boundary of the shape
and the BLS entropy profile, and the other is the relationship between the vertices of the shape and
the cusps of the entropy profile. In the former case, from the fact that the difference in the number of
nodes of the shape boundary causes a very large change in its entropy profile, we easily infer that this
problem is linked to the sensitivity of the entropy profile to shape deformation. Thus, further analysis
of the node density effect would be needed as a follow-up study. In the latter case, as shown in Figure 4,
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the BLS entropy profile near the vertex position of an equilateral triangle showed cusps. We confirmed
that these cusps appeared at various vertexes of different shapes. The sharpness and height of the
cusps seemed to be strongly affected by the geometrical factors around the vertex. By understanding
the cusp problem, we would take one step closer to solving the inverse problem of inferring the original
shape from the entropy profile.

For Section 3.2, researchers have conducted a study on the MPEG-7 shape database to classify
70 objects with various approaches. Largely, there are classifications using contour-based and
region-based shape descriptors [26]. Also, contour-based descriptors can be divided into structural
descriptors (e.g., chain code, polygons, Gaussian smoothing invariants) and convention descriptors
(e.g., Fourier descriptors, perimeters, compactness). In the study of Zhang and Lu (2003) [28],
the contour-based descriptor showed an accuracy of over 86.4% on average, while the region-shape
descriptor showed an accuracy of over 76.5%. Some showed an accuracy of 95.0% or more depending
on the type of descriptor. In recent years, fusion methods using artificial neural networks have been
used to further improve the performance [27]. The existing methods mentioned above aim to improve
classification accuracy. On the other hand, our method is not aimed at high classification accuracy,
but rather shows which shapes are grouped according to the level of the Γ value. As shown in Figure 5,
shapes belonging to statistically similar groups with high Γ values had visually similar characteristics,
while shapes belonging to statistically identical groups with a low Γ value were geometrically similar or
different. However, they were all somewhat similar topologically. In this respect, the existing method
and our method cannot be directly compared in terms of the classification performance accuracy.
Grouping shapes with a certain level of Γ value would allow us to select shapes that appropriately
contain both geometric and topology information. From this point of view, it would be mathematically
interesting to explore the relationship between the information and Γ values.

For Section 3.3, Lee and Tanaka (2013) [29] proposed a simple algorithm for finger gesture
recognition. The algorithm starts working with all fingers extended. Then, the smallest finger is
set as the thumb. Then, the finger order is determined using the distance information between the
fingers. Finally, the gesture is classified by checking whether each finger is folded or not. The authors
tested the algorithm in dark, rough, and normal conditions, and obtained 97.1%, 96.7%, and 98.3%
accuracy, respectively. There was also active research using neural networks [30] and support vector
machines [31]. The studies had the advantage that the data preprocessing process was simple. For this
problem, our method, a combination of Γ and Z based on BLS entropy, yielded approximately 92–95%
classification accuracy. We photographed the hands of five people several times to get the shape
of the hand. Among the obtained images, there were cases where finger gestures were made well,
and cases were not. The results obtained from a well-made gesture shape yielded higher accuracy,
and a relatively poorer gesture shape resulted in lower accuracy. Also, the intrinsic property of Γ
contributed to the degradation of our method. The Γ cannot distinguish between symmetrical shapes.
In this application example, Γ could not distinguish between the right hand and the left hand, and also
could not clearly distinguish between the gesture shape when one index finger was incompletely
straightened and the gesture shape when one little finger was completely straightened. To improve
our method, it is necessary to introduce an additional variable that breaks the symmetry. In terms of
shape classification accuracy, our method is inferior to the existing method. However, this comparison
does not devalue the results in Section 3.3 in that a simple combination of Γ and Z showed not bad
classification accuracy (more than 90%). In other words, our method showed room for performance
improvement by adding other variables besides Γ and Z.

One more issue that needs to be considered to be a follow-up study of this paper is to measure the
self-similarity of shapes with colors or gray levels. One idea is to represent a shape with RGB channels
as two BLS entropy profiles. One is an entropy profile that defines the distance between nodes as an
edge, and the other is an entropy profile that defines a color value of nodes as an edge. Since two BLS
entropy profiles can be created for each channel, a shape with RGB colors can be characterized by six
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BLS entropy profiles. The six Γ values calculated from the profiles could characterize the color shape.
It would be very interesting to explore this problem.

Consequently, we believe that this study is not only meaningful in defining and introducing a
new concept of self-similarity based on BLS entropy, but also showing its applicability. In addition,
we consider it worthwhile to propose problems that need to be addressed to broaden the applicability
of self-similarity.
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