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Abstract: In this paper, we deal with the classical Statistical Learning Theory’s problem of bounding,
with high probability, the true risk R(h) of a hypothesis h chosen from a set H of m hypotheses.
The Union Bound (UB) allows one to state that P

{
L
(

R̂(h), δqh
)
≤ R(h) ≤ U

(
R̂(h), δph

)}
≥ 1− δ

where R̂(h) is the empirical errors, if it is possible to prove that P{R(h)≥L(R̂(h), δ)}≥1−δ and
P{R(h)≤U(R̂(h), δ)}≥1−δ, when h, qh, and ph are chosen before seeing the data such that qh, ph∈[0, 1]
and ∑h∈H(qh+ph)=1. If no a priori information is available qh and ph are set to 1/2m, namely equally
distributed. This approach gives poor results since, as a matter of fact, a learning procedure targets
just particular hypotheses, namely hypotheses with small empirical error, disregarding the others.
In this work we set the qh and ph in a distribution-dependent way increasing the probability of being
chosen to function with small true risk. We will call this proposal Distribution-Dependent Weighted
UB (DDWUB) and we will retrieve the sufficient conditions on the choice of qh and ph that state
that DDWUB outperforms or, in the worst case, degenerates into UB. Furthermore, theoretical and
numerical results will show the applicability, the validity, and the potentiality of DDWUB.

Keywords: union bound; weighted union bound; distribution-dependent weights; statistical learn-
ing theory; finite number of hypothesis

1. Introduction

Statistical learning theory [1–4] deals with the problem of understanding and estimat-
ing the performance of a statistical learning procedure. The goal is to better understand the
factors that influence its behavior and to suggest ways to improve it. Although asymptotic
analysis is a crucial first step in this direction, finite sample error bounds are of more value
as they allow the design of model selection procedures [5–7]. These error bounds typically
have the following form: with high probability, the generalization error of the selected
hypothesis, chosen in a space of possible ones, is bounded by an empirical estimate of the
generalization error plus a penalty term which depends on the size of the hypothesis space
and the number of samples available. The latter term basically considers that the learning
procedure selects a hypothesis in a set of possible ones based on the available data. Every
data-dependent choice implies a risk, and the penalty term is exactly the measure of this
risk. When the hypothesis space is composed of an arbitrary finite number of hypothesis,
and no additional information is provided, the evaluation of the total risk is usually made
with the Union Bound (UB) [2,7,8]. The UB is an ubiquitous building block in statistical
learning theory and is exploited in many context and in many different ways to derive
the final result: in the Vapnik–Chervonenkis theory [2], in the Rademacher Complexity
theory [9,10], in the Algorithmic Stability theory [11], in the Compression Bound [12], in
the PAC-Bayes theory [13], and more recently in the Differential Privacy theory [14].

Let us consider the classical binary classification framework (The extension to the
general supervised learning characterized by bounded loss functions will be discussed
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later during the presentation.). Let X be the input space and Y = {−1,+1} be the set
of binary output labels. Let Dn = {(X1, Y1), . . . , (Xn, Yn)}, where Xi ∈ X and Yi ∈ Y ,
∀i ∈ {1, · · · , n}, be a sequence of n ∈ N∗ samples drawn independently from an unknown
probability distribution µ over X × Y . Let us consider a hypothesis h : X → Y chosen
from a finite set H of possible hypotheses of cardinality m ∈ N∗ such that H = {hi : i ∈
I} where I = {1, · · · , m}. The error of h in approximating P{Y|X} is measured by a
prescribed loss function ` : Y × Y → R. Since we are dealing with binary classification
problems the most natural choice is the loss function which counts the number of errors
`(h(X), Y) = 1{Y 6= h(X)} ∈ {0, 1}. The generalization error of h is defined as

R(h) = E{`(h(X), Y)} ∈ [0, 1].

Since the probability measure µ is usually unknown, the generalization error cannot be
computed; however, we can compute the empirical error

R̂(h) =
1
n

n

∑
i=1

`(h(Xi), Yi) ∈ [0, 1].

If the choice of h ∈ H does not depend on Dn, namely if we want to bound the
generalization error of a single hypothesis in the hypothesis space chosen before seeing the
data, it is possible to prove that (Please note that for simplicity, we will refer to R(h) and
R̂(h) with R and R̂ respectively, when it is clear from the context.)

P
{

R ≥ L(R̂, δ)
}
≥ 1− δ, P

{
R ≤ U(R̂, δ)

}
≥ 1− δ,

where δ ∈ (0, 1) while L and U are respectively lower and upper bounds of the generaliza-
tion error (see, for example, [15–17]).

Since the generalization error cannot be smaller than zero or larger than one conse-
quently we have that L(r̂, δ) ∈ [0, 1) and U(r̂, δ) ∈ (0, 1] ∀r̂ ∈ [0, 1] and ∀δ ∈ (0, 1) [15].
When, instead of [15,16], or similar results, are exploited it is necessary to truncate them.

In general, the choice of h ∈ H does depend on Dn: in this case we must estimate the
risk due to this data-dependent choice.

As an example, common practice for choosing h ∈ H based on Dn is to choose the
hypothesis with minimum empirical error

arg min
h∈H

R̂(h),

and this approach is called Empirical Risk Minimization [2,18], but others possibilities exist
such as the Structural Risk Minimization [2,19,20], or the penalized (regularized) Empirical
Risk Minimization [21–23].

To guarantee a prescribed confidence level, or risk, of the chosen hypothesis, the UB
can be applied. The UB can be expressed in two forms (Please note that for simplicity,
we will refer to R(hi) and R̂(hi) with Ri and R̂i respectively, when it is clear from the
context.) [8]: a simplified version (Theorem 1) and a generalized version (Theorem 2).

Theorem 1 (Simple UB). The following bounds hold

P
{
L

(
R̂i,

δ

2m

)
≤ Ri ≤ U

(
R̂i,

δ

2m

)
∀i ∈ I

}
≥ 1− δ.

Theorem 2 (Generalized UB). Let q(hi) ∈ (0, 1) and p(hi) ∈ (0, 1) be some weight associ-
ated with hi with i ∈ I before seeing the data (Please note that for simplicity, we will refer to
q(hi) and p(hi) with qi and pi respectively, when it is clear from the context.) and such that
∑i∈I (qi + pi) = 1, then the following bounds hold

P
{
L
(

R̂i, δqi
)
≤ Ri ≤ U

(
R̂i, δpi

)
∀i ∈ I

}
≥ 1− δ.
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Theorem 1 is a special case of Theorem 2 when qi = pi = 1/2m ∀i ∈ {1, · · · , m}.
Theorem 2 introduces a weight for each risk associated with each choice. Weighting

more the risk associated with useful choices leads to tighter bounds on the generalization
error of hypotheses that will be selected by the algorithm (hypotheses characterized by
small empirical error) and looser estimates over the others (hypotheses characterized by
high empirical error). Unfortunately, this approach is mainly theoretical since the weights
must be chosen before seeing the data and consequently we cannot set them without an a
priori knowledge about the problem. Finally, Theorem 2 does not propose any solution for
the choice of these weights.

For this reason, in this work, we propose a Distribution-Dependent Weighted UB
(DDWUB) where the weights depend on some parameters of the distribution which gener-
ated them, extending our preliminary work [24]. In particular, we define a set of functions
f p
i : Rm → R and f q

i : Rm → R with i ∈ I such that

qi = f q
i (R1, · · · , Rm), pi = f p

i (R1, · · · , Rm) ∈ (0, 1), ∀i ∈ I ,

∑
i∈I

(
f q
i (R1, · · · , Rm) + f p

i (R1, · · · , Rm)
)
= 1.

Please note that f q
i , f p

i with i ∈ I are quite general and are data independent (Please note
that in the framework of the paper (binary classification with a loss function which counts
the number of misclassified samples), the generalization error is the only parameter of the
distribution which is a Binomial). It is surely possible to consider even more general data
independent functions for defining the weights, but we think that our definition is general
enough to contemplate a wide variety of cases.

At this point the proposed DDWUB for bounding the generalization error of a hypoth-
esis chosen from a finite set of possible ones can be stated.

Theorem 3. If ∀r1, · · · , rm ∈ [0, 1]

f q
i (r1, · · · , rm), f p

i (r1, · · · , rm) ∈ (0, 1), ∀i ∈ I ,

∑
i∈I

(
f q
i (r1, · · · , rm) + f p

i (r1, · · · , rm)
)
= 1,

then the following bound holds

P
{
L
(

R̂i, δ f q
i (R1, · · ·, Rm)

)
≤Ri≤U

(
R̂i, δ f p

i (R1, · · · , Rm)
)
∀i ∈ I

}
≥1−δ.

The proof is a direct consequence of Theorem 2.
DDWUB allow the binding of the generalization error of each hypothesis in the space

of hypotheses but, to prove that the DDWUB outperforms the UB, we will require some
sufficient conditions that L, U, f q

i , and f p
i with i ∈ I must satisfy. These sufficient conditions

define a class of functions and an open problem would be to find special and simpler
classes of functions which satisfy them.

Nevertheless, we will show that it is possible to find simple classes of functions which
satisfy these conditions. For example, if one is interested in having tighter upper bound of
the generalization error of the empirical minimizer DDWUB suggest combining classical L
and U, such as [15] or [16], and set

f q
i (R1, · · · , Rm) =

1
2m

, f p
i (R1, · · · , Rm) =

1
2

e−γ max[θ,Ri ]

∑j∈I e−γ max[θ,Rj ]
, ∀i ∈ I ,

with particular values of γ ∈ [0, ∞) and θ ∈ [0, 1].
As a last remark we would like to note that all our results easily extend to multiclass

classification problems and regression problems if the loss function is bounded.
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DDWUB is a distribution-dependent form of the UB analogously to the Computable
Shell Decomposition Bounds (CSDB) [20]. The CSDB splits the hypothesis space in shells
based on the generalization error of each hypothesis and, instead of taking into account the
risk of each hypothesis in the space, show that it is possible to just take into account the risk
of choosing one shell and the risk associated with each hypothesis in the shell. This allows,
for example, to not consider hypotheses with high generalization error. The CSDB show
also how to estimate the size of these shells based on the histogram of the empirical errors.

DDWUB takes inspiration from several works in the field. The first idea, which is
also a driver of the CSDB, is that during any learning procedure the hypotheses with high
error will be never taken into account and consequently we should not pay the risk for
those hypotheses [10]. The second idea is that since we do not know the true error of
the hypotheses but just its empirical one, we should discard those hypotheses for which
the estimated confidence intervals do not overlap [25] with the ones of the hypothesis
of minimal training error. The third idea is that since there is no supporting theory for
discarding the hypothesis with non-overlapping confidence intervals, we should weight
differently the risk associated with each hypothesis based on their true error analogously
to what is done in the field of multiple hypotheses testing [26]. The fourth idea is that
other researchers have shown that a distribution-dependent weighting strategy can be
performed without the actual knowledge of the distribution [27]. DDWUB combines all
these ideas and improves both on the UB and the CSDB.

DDWUB applies to finite hypotheses spaces and surely more sophisticated techniques,
such as Local Vapnik–Chervonenkis [28] or the Local Rademacher Complexity [10], can be
employed and can sometimes result in tighter bounds. However, insight into finite classes
remains quite useful [20,29]. Finite class analysis can be exploited for as a pedagogical tool.
Finite class analysis can teach new directions in which to look for the development and
evolution of more sophisticated bounds. Finite class analysis can be useful for model selec-
tion purposes (e.g., selecting the most suitable hypothesis space, or set of hyperparameters,
or algorithm). Finite class analysis can be useful when the models are represented with
limited number of bits because of the constants involved in the bounds.

The rest of the paper is organized as follows. Section 2 presents the DDWUB in a
simplified setting. In Section 3 we present the DDWUB in a generalized setting, we derive the
sufficient conditions which state when DDWUB improves over the UB, we will show that
it is possible to find simple classes of functions which satisfy these conditions, and we will
make the connection between our results and the ones of [25]. Section 4 reports a comparison
between DDWUB and the UB by means of closed form results. Section 5 reports a comparison
between DDWUB and the UB by means of an extensive set of numerical results. Section 6
compares DDWUB with CSDB by means of an extensive set of numerical results. Section 7
shows the applicability and the potentiality of DDWUB. Section 8 concludes the paper.
In the Appendices known results, proof, and technicalities (See in Appendixs A–C) are
reported for completeness.

2. Distribution-Dependent Weighted Union Bound: Simplified Setting

Let us consider Theorem 3 and the bound proposed by [16] recalled by Theorem A1 in
Appendix A. Let us also suppose, for simplicity, that we are interested in upper bounding
the generalization error of the empirical risk minimizer (Extensions will be discussed at
the end of this section). In this setting it is possible to state our DDWUB.

Corollary 1. If

fi(r1, · · · , rm) =
e−γ max[θ,ri ]

∑j∈I e−γ max[θ,rj ]
, ∀i ∈ I ,
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with γ ∈ [0, ∞) and θ ∈ [0, 1] then the following bound holds

P

max

0, R̂i−

√
log
( 2m

δ

)
2n

≤Ri≤min

1, R̂i+

√√√√ log
(

2
δ fi(R1,··· ,Rm)

)
2n

 ∀i∈I

≥1−δ.

Corollary 1 is a direct consequence of Theorems 3 and A1.
The choice of the weights takes inspiration from the work of [27] which proposed, in

the context of the PAC-Bayes theory, a distribution-dependent method for assigning an
a priori distribution over a set of hypotheses to give a higher probability to the hypoth-
esis with small generalization error. This method has been shown to possess interesting
theoretical properties [30,31] and to be also quite effective in practical applications [32].

Since we are interested in choosing and bounding the generalization error of the
empirical minimizer, let us define

i∗ = arg min
i∈I

R̂i.

This approach is analogous to Page’s criterion [33], which was designed as a process
inspection scheme to detect deviations in average in only one direction (one-sided) in a
stochastic process.

In Corollary 1, γ acts as a weighting factor. The larger is γ the larger are the weights
of the risks associated with hypotheses with small empirical error and the smaller are the
weights of the risks associated with hypotheses with large empirical error. For γ → ∞
we have that (For simplicity, we assume in this statement that the empirical minimizer is
unique.) pi∗ → 1 and pi → 0 ∀i ∈ I \ i∗. The smaller is γ the less is the difference between
the weights of the risks. For γ→ 0 we have that pi = 1/m ∀i ∈ I .

In Corollary 1, θ, instead, acts as a protection against the fact that the empirical error is
measured over a finite number of samples and, if the sample size is small, hypotheses with
a small difference in the empirical error are indistinguishable. In other words, the weights
depend on unknown parameters of the data generating distribution, then we will have to
estimate them and since the number of sample is finite these estimates will not allow us to
distinguish hypotheses which show similar empirical error. For this reasons, θ gives the
same the weight to the risks associated with hypotheses with small empirical error.

The values of γ and θ must be set in a particular way to be sure that DDWUB improves
over the UB. In particular

• Lemma 1 shows that to upper bound the generalization error of the empirical risk
minimizer based on DDWUB of Corollary 1 we must solve an optimization problem;

• Lemmas 2 and 3 show that for particular values of γ the solution is unique and can be
found by simply search for the fixed point of a simple function;

• Theorem 4 and Lemma 4 show that for particular values of θ it is possible to prove
that DDWUB is tighter than, or in the worst case as tight as, the UB.

Thanks to Corollary 1 we can state the following lemma.

Lemma 1. Under the same conditions of Corollary 1 if

i∗ = arg min
i∈I

R̂i,
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then we can state that following bound holds

Ri∗≤ max
r1,··· ,rm

ri∗

s.t. max

0, R̂i−

√
log
( 2m

δ

)
2n

≤ri≤min

1, R̂i+

√√√√√√ log

(
2 ∑j∈I e−γ max[θ,rj ]

δe−γ max[θ,ri ]

)
2n

, ∀i∈I .

Lemma 1 can be further simplified as follows.

Lemma 2. Under the same conditions of Lemma 1 the following bound holds

Ri∗ ≤ max
ri∗

ri∗

s.t. ri∗ ≤ min

1, R̂i∗ +

√√√√√√ log

(
2 ∑j∈I e−γ max[θ,rj ]

δe−γ max[θ,ri∗ ]

)
2n

,

where ri = max
[

0, R̂i −
√

log( 2m
δ )

2n

]
∀i ∈ I \ i∗.

The proof can be found in Appendix B.
Please note that the optimization problem of Lemma 2 can be further simplified noting

that for particular values of γ, the solution of the optimization problem is unique.

Lemma 3. Under the same conditions of Lemma 2 if

γ ≤ 2
√

n,

the solution of the optimization problem of Lemma 2 exists, it is unique, and it is the fixed point r∗i∗
of the following function of ri∗

ri∗ = min

1, R̂i∗ +

√√√√√√ log

(
2 ∑j∈I e−γ max[θ,rj ]

δe−γ max[θ,ri∗ ]

)
2n


where ri = max

[
0, R̂i −

√
log( 2m

δ )
2n

]
∀i ∈ I \ i∗.

The proof can be found in Appendix B.
Please note that to find the fixed point defined in Lemma 3 a simple bisection method

can be applied.
For particular values of θ, it is possible to state that DDWUB is tighter than, or in the

worst case as tight as, the UB.
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Theorem 4. Under the same conditions of Lemma 3 if

θ ≥ min

1, R̂i∗+

√
log
( 2m

δ

)
2n

,

then

r∗i∗ ≤ min

1, R̂i∗+

√
log
( 2m

δ

)
2n

.

The proof can be found in Appendix B.
The problem of the θ defined in Theorem 4 is that it is data-dependent since we do

not know i∗ before seeing the data. For this reason, the following lemma suggests a data
independent threshold of θ which satisfies the conditions of Theorem 4.

Lemma 4. Under the same conditions of Theorem 4

min

1, R̂i∗+

√
log
( 2m

δ

)
2n

 ≤ min

1, min[R1, · · · , Rm]+2

√
log
( 2m

δ

)
2n

.

The proof can be found in Appendix B.
Lemma 4 provides us a method for finding a θ ≥ U

(
R̂i∗ , δ

2m

)
in a data independent

way by setting

θ = min

1, min[R1, · · · , Rm]+2

√
log
( 2m

δ

)
2n

. (1)

By finding the r∗i∗ for all possible values of θ and then by selecting the largest one which
satisfies Equation (1) we have the results of our DDWUB.

Please note that the above-mentioned result easily extends to the whole supervised
learning framework, until a bounded loss function is employed, since the inequality
proposed by [16] cover this case.

Following the same argument described in this section it is possible to derive the
DDWUB for lower bounding the generalization error of the empirical risk minimizer by
simply setting in Theorem 3

f q
i (R1, · · · , Rm) =

1
2

e−γ min[θ,1−Ri ]

∑j∈I e−γ min[θ,1−Rj ]
, f p

i (R1, · · · , Rm) =
1

2m
, ∀i ∈ I .

Finally, it is possible to derive the DDWUB for upper and lower bounding the generalization
error of the empirical risk minimizer by simply setting in Theorem 3

f q
i (R1, · · · , Rm) =

1
2

e−γ min[θ,1−Ri ]

∑j∈I e−γ min[θ,1−Rj ]
, ∀i ∈ I ,

f p
i (R1, · · · , Rm) =

1
2

e−γ max[θ,Ri ]

∑j∈I e−γ max[θ,Rj ]
, ∀i ∈ I .

Example 1. Before presenting DDWUB in the general setting we would like to show an application
of DDWUB in the simplified setting. Let us consider the case when (More general examples can be
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derived, and we will do it later with both closed form and numerical results, but here we want to
keep the presentation as simple as possible.)

R̂1 = R̂2 = 0, R̂3 = R̂4 = · · · = R̂m = ν, ν ∈
{

1
n

,
2
n

, · · · , 1
}

.

Let us set γ = 2
√

n (see Lemma 3) and note that to upper bound the function with the smallest
empirical error (i.e., the one corresponding to R̂1) we have that DDWUB states that

r1 =

√√√√ ln

(
2 ∑m

i=1 e−2
√

n max[θ,ri ]

δe−2
√

n max[θ,r1 ]

)
2n

r2 = 0

r3 = r4 = · · · = ν−
√

ln( 2m
δ )

2n

θ = min
[

1, min[r1, · · · , rm]+2
√

log( 2m
δ )

2n

]
.

.

Please note that for a finite but large enough value of n

min[r1, · · · , rm] = 0→ θ = 2

√√√√ ln
(

2m
δ

)
2n

.

Thanks to the theory of DDWUB (see Lemma 4) we can state that

r∗1 ≤ θ.

Let us note that if

m <
δe2n( ν

2 )
2

2
,

then

r3 = · · · = rm > θ.

Then we can easily state that

lim
n→∞

2 ∑m
i=1 e−2

√
n max[θ,ri ]

δe−2
√

n max[θ,r1]
=

4
δ

,

which means that all the hypothesis in the space with R̂ 6= 0, if m < δe2n(ν/2)2/2, are not taken into account,
asymptotically, in estimating the upper bound of the hypothesis with the smaller error with DDWUB.

3. Distribution-Dependent Weighted Union Bound: General Setting

In this section, we will derive the sufficient conditions for stating that DDWUB is
tighter than, or in the worst case as tight as, the UB.

In particular, as we have done in Section 2, we will start by supposing that we are
just interested in upper bounding the generalization error of the empirical risk minimizer.
Nevertheless, as pointed out in Section 2, DDWUB can be easily generalized also to the
lower bounds, or to both lower and upper bounds, and to the general supervised setting
with bounded loss functions but, in this work, we did not report all these extensions in
order not to make the notation and the presentation over-complicated.

As noted in the introduction, the weights should not depend on the data, but they can
depend on some parameters of the data generating distribution. For this reason, we define
a set of functions fi : Rm → R with i ∈ I such that

fi(R1, · · · , Rm) ∈ (0, 1) ∀i ∈ I , ∑
i∈I

fi(R1, · · · , Rm) = 1.

In this setting DDWUB can be formulated as follows.
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Corollary 2. If ∀r1, · · · , rm ∈ [0, 1]

fi(r1, · · · , rm) ∈ (0, 1) ∀i ∈ I , ∑
i∈I

fi(r1, · · · , rm) = 1,

then the following bound holds

P
{
L

(
R̂i,

δ

2m

)
≤ Ri ≤ U

(
R̂i,

δ fi(R1, · · · , Rm)

2

)
∀i ∈ I

}
≥ 1− δ.

Corollary 2 is a direct consequence of Theorem 2.
To prove that DDWUB outperforms UB we will require some sufficient conditions

that L, U, and fi with i ∈ I must satisfy. Please note that from Corollary 2, it is possible
to derive all the lower bounds of the generalization error of the hypotheses in the class
since L

(
R̂i, δ

2m

)
depends just on known quantities. For what concerns, instead, the upper

bounds, the answer is not as easy.
In the rest of this section, we will show how to find the upper bound of the generaliza-

tion error of a hypothesis chosen inH based on DDWUB (Corollary 2) and under which
conditions these upper bounds are tighter than the one of UB (Theorem 1). For this purpose

• Lemma 5 will show that under certain conditions, the bound of Corollary 2 can be
exploited to compute the upper bound of the generalization error of a hypothesis
chosen in a class of possible ones based on the observation of a set of data, by solving
a complex optimization problem;

• Lemma 6 will show the conditions under which the optimization problem of Lemma 5
can be simplified;

• Lemma 7 will show the conditions under which the solution of the optimization
problem of Lemma 6 is unique;

• Theorem 5 will show the conditions under which the upper bound of the general-
ization error of Lemma 5 found with Lemma 7 is never looser than the one com-
puted with the UB of Theorem 1. These conditions require the knowledge of a
data-dependent threshold;

• Lemma 8 shows that it is possible to estimate this threshold of Theorem 5 in a data
independent fashion.

Thanks to Corollary 2 we can state the following lemma.

Lemma 5. Under the same conditions of Corollary 2, if ∀r̂ ∈ [0, 1] and ∀δ ∈ (0, 1)

L(r̂, δ) ∈ [0, 1), U(r̂, δ) ∈ (0, 1]

then the following bound holds with probability at least (1− δ) and ∀i ∈ I

Ri ≤ max
r1,··· ,rm

ri

s.t. L

(
R̂j,

δ

2m

)
≤ rj ≤ U

(
R̂j,

δ f j(r1, · · · , rm)

2

)
, j ∈ I .

The solution of the optimization problem of Lemma 5 is not trivial to be found and its
properties are not easy to catch.

The following lemma helps us in simplifying the optimization problem of Lemma
5 under a quite natural condition: the upper bound of the generalization error of a hy-
pothesis should decrease if the generalization error of one of the other hypotheses in the
class increases.
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Lemma 6. Under the same conditions of Lemma 5, if ∀r̂i ∈ {0, 1/n, · · · , 1}, ∀r1, · · · , rm ∈ [0, 1]
and ∀j ∈ I \ i and ∀r′j, r′′j ∈ [0, 1] such that r′j < r′′j

U

(
r̂i,

δ fi(r1, · · ·, rj−1, r′j, rj+1, · · ·, rm)

2

)
−U
(

r̂i,
δ fi(r1, · · ·, rj−1, r′′j , rj+1, · · ·, rm)

2

)
≥0,

where i ∈ I , then the optimization problem of Lemma 5 is equivalent to the following one

Ri ≤ max
ri

ri

s.t. ri ≤ U

(
R̂i,

δ fi(r1, · · · , rm)

2

)
.

where rj = L
(

R̂j, δ
2m

)
, with j ∈ I \ i.

In fact, the hypotheses of the lemma imply that to reach the maximum or ri, one must
reach the lower bounds of rj with j ∈ I \ i.

Even if the optimization problem of Lemma 6 is much simpler than the one of Lemma 5,
the next result further simplifies it under another sufficient condition which ensure the existence
and uniqueness of the solution: the upper bound of the generalization error of a hypothesis
should not increase too fast it its generalization error decreases.

Lemma 7. Under the same conditions of Lemma 6, if ∀r̂i ∈ {0, 1/n, · · · , 1}, ∀r1, · · · , rm ∈ [0, 1],
and ∀r′i , r′′i ∈ [0, 1] such that r′i < r′′i

U
(

r̂i,
δ fi(r1,··· ,ri−1,r′′i ,ri+1,··· ,rm)

2

)
− U
(

r̂i,
δ fi(r1,··· ,ri−1,r′i ,ri+1,··· ,rm)

2

)
r′′i − r′i

< 1,

then the solution r∗i of the optimization problem of Lemma 6 exists, it is unique, and it is the fixed
point of the following function of ri

ri = U

(
R̂i,

δ fi(r1, · · · , rm)

2

)
,

where rj = L
(

R̂j, δ
2m

)
with j ∈ I \ i.

In fact, the hypothesis of the lemma guarantees the uniqueness of the solution.
Algorithm 1 reports a simple pseudo-code for finding the fixed point of Lemma 7

based on the bisection method.
The next result introduces a parameter, more specifically a threshold, θ and states the

condition over θ which states that the DDWUB improves over the UB.

Theorem 5. Under the same conditions of Lemma 7, let us consider θ ∈ [0, 1] and suppose that
∀r1, · · · , rm ∈ [0, 1] and ∀r′j, r′′j ∈ [0, θ]

f j(r1, · · · , rj−1, r′j, rj+1, · · · , rm)− f j(r1, · · · , rj−1, r′′j , rj+1, · · · , rm) = 0,

with j ∈ I . Let us also suppose that if r1, · · · , rm ∈ [0, θ] then ∀j ∈ I

f j(r1, · · · , rm) =
1
m

.
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If

θ ≥ U

(
R̂i,

δ

2m

)
,

and if ∀r1, · · · , rm ∈ [0, 1], ∀j ∈ I \ i, ∀r′j, r′′j ∈ (θ, 1] such that r′j < r′′j

fi(r1, · · · , rj−1, r′j, rj+1, · · · , rm)− fi(r1, · · · , rj−1, r′′j , rj+1, · · · , rm) < 0

then the following bound holds

r∗i ≤ U

(
R̂i,

δ

2m

)
.

The proof of Theorem 5 can be found in Appendix B.
Theorem 5 basically states that under particular conditions, the solution of the problem

of Corollary 2 is never looser than the one of Theorem 1.
Unfortunately, we cannot set θ = U

(
R̂i, δ

2m

)
since this would be a data-dependent

choice which will result in a data-dependent weighting strategy. The next lemma addresses
this problem.

Algorithm 1: Algorithm for finding the fixed point of Lemma 7 based on the
bisection method.

Input: m, R̂i and fi(r1, · · · , rm) with i ∈ I , δ, n, and the precision ε
Output: r∗i

1 rj = L
(

R̂j, δ
2m

)
, j ∈ I \ i;

2 rl
i = 0, ru

i = 1;
3 while ru

i − rl
i > ε do

4 ri =
ru

i +rl
i

2 ;

5 if ri − U
(

R̂i,
δ fi(r1,··· ,rm)

2

)
≤ 0 then

6 rl
i = ri;

7 else
8 ru

i = ri;
9 r∗i = ri;

Lemma 8. Under the same conditions of Theorem 5, if ∀r̂, r̂′, r̂′′ ∈ {0, 1/m, · · · , 1} such that
r̂′ < r̂′′ we have that

i∗ = arg min
i∈I

R̂i,

L(r̂′, δ)− L(r̂′′, δ) ≤ 0,

∃L−1 : L−1(L(r̂, δ), δ) ≥ r̂,

then

U

(
R̂i∗ ,

δ

2m

)
≤ U

(
L−1

(
min[R1, · · · , Rm],

δ

2m

)
,

δ

2m

)
.

The proof of Lemma 8 can be found in Appendix B.
Lemma 8 provides us a method for finding a θ ≥ U

(
R̂i∗ , δ

2m

)
in a data independent

way by setting

θ = U

(
L−1

(
min[R1, · · · , Rm],

δ

2m

)
,

δ

2m

)
.
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Thanks to all these results we can provide a method for finding the fixed point of
Lemma 7 but with data independent weighting strategy which satisfies the hypothesis of
Theorem 5 and a data independent θ defined in Lemma 8.

Lemma 9. Under the same conditions of Lemma 8, Algorithm 2 finds the fixed point of Lemma 7
but with a data independent weighting strategy which satisfies the hypothesis of Theorem 5 and a
data independent θ defined in Lemma 8.

The proof of Lemma 9 can be found in Appendix B.

Algorithm 2: Algorithm for finding the fixed point of Lemma 7 but with data
independent weighting strategy which satisfies the hypothesis of Theorem 5
and a data independent θ defined in Lemma 8.

Input: m, R̂i and fi(r1, · · · , rm) with i ∈ I , δ, n, and the precision ε
Output: r∗i

1 i∗ = arg mini∈I R̂i;

2 rj = L
(

R̂j, n, δ
2m

)
, j ∈ I \ i∗;

3 for θ ← 0 to 1 by ε do
4 rl

i∗ = 0, ru
i∗ = 1;

5 while ru
i∗ − rl

i∗ > ε do

6 ri∗ =
ru

i∗+rl
i∗

2 ;

7 if ri∗ − U
(

R̂i∗ , n, δ fi∗ (r1,··· ,rm)
2

)
≤ 0 then

8 rl
i∗ = ri∗ ;

9 else
10 ru

i∗ = ri∗ ;

11 if
∣∣∣θ − U

(
L−1

(
min[r1, · · · , rm], n, δ

2m

)
, n, δ

2m

)∣∣∣ ≤ ε then
12 r∗i∗ = ri∗ ;

Please note that if we apply this general theory to Corollary 1 we obtain the same
results of Section 2.

In the next section, instead, we apply the general theory to a the more complex case of
when [15] is employed together with the same weights exploited in Corollary 1.

3.1. From Theory to Practice

In this section, we will exploit the same solution of Corollary 1 for the weights needed
in DDWUB and we will show that is satisfies hypothesis of the Theorems, the Corollaries,
and the Lemmas presented in the previous section. In particular we will set

fi(R1, · · · , Rm) =
e−γ max[θ,Ri ]

∑j∈I e−γ max[θ,Rj ]
∀i ∈ I ,

where γ ∈ [0,+∞) and θ ∈ [0, 1] are finite constants which regulates the shape of the
distribution of the weights.

The following lemma shows that these weighs satisfy the sufficient conditions which
states that DDWUB outperforms, or in the worst case performs as, the UB.

Lemma 10. If γ ∈ [0,+∞) is a finite constant and

fi(R1, · · · , Rm) =
e−γ max[θ,Ri ]

∑j∈I e−γ max[θ,Rj ]
∀i ∈ I ,

then the hypotheses of Corollary 2 and Theorem 5 are satisfied.
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The proof of Lemma 10 can be found in Appendix B.
Please note that for what concerns the hypothesis of Lemmas 6 and 7, we cannot prove

that condition holds without knowing the shape of the lower and upper bounds of the
generalization error. For this reason, we exploit the generalization bounds of [15] which are
the tightest ones in the settings of this paper [6]. This will allow us in Section 5 to compare
the UB with the DDWUB with a set of numerical experiments.

To reach our goal let us define the Regularized Incomplete Beta Function p =
F(r; a, b) = Ir(a, b) and its inverse r = F−1(p; a, b) with parameters specified by a ∈ N∗ and
b ∈ N∗ for the corresponding values of r and probabilities in p

F(r; a, b) =
1

B(a, b)

∫ r

0
ta−1(1− t)b−1dt, F−1(p; a, b) = {r : F(r; a, b) = p},

where

B(a, b) = B(b, a) =
(a− 1)!(b− 1)!
(a + b− 1)!

is the Complete Beta Function.
The following lemma states the conditions under which all the hypotheses of Corollary 2,

Lemmas 6 and 7, Theorem 5, and Lemma 8 are satisfied if, in Corollary 2, the lower and upper
generalization bounds proposed by [15], recalled by Theorem A2 in the Appendix A, and the
weights defined in Lemma 10 are exploited.

Lemma 11. Let us exploit the lower and upper generalization bounds proposed by [15] in Corollary 2

L(R̂, δ) =

{
F−1(δ; nR̂, n− nR̂ + 1) R̂ ∈

{
1
n , 2

n , · · · , 1
}

0 R̂ = 0
,

U(R̂, δ) =

{
F−1(1− δ; nR̂ + 1, n− nR̂

)
R̂ ∈

{
0, 1

n , · · · , n−1
n

}
1 R̂ = 1

,

together with the weights defined in Lemma 10. Then if

i∗ = arg min
i∈I

R̂i,

R̂i∗ 6= 1,

γ < min
r̂∈{0, 1

n ,··· , n−1
n }, p∈(0,1)

(
U
(

r̂, δp
2

))nr̂(
1− U

(
r̂, δp

2

))n−nr̂−1

B(nr̂ + 1, n− nr̂) δ
2 p(1− p)

,

the hypotheses of Corollary 2, Lemmas 6 and 7, Theorem 5, and Lemma 8 are satisfied. Moreover, note that

L−1(r, n, δ) = min
{

r̂ : r̂ ∈
{

0,
1
n

, · · · , 1
}

, r ≤ L(r̂, δ)

}
,

min
r̂∈{0, 1

n ,··· , n−1
n }, p∈(0,1)

(
U
(

r̂, δp
2

))nr̂(
1− U

(
r̂, δp

2

))n−nr̂−1

B(nr̂ + 1, n− nr̂) δ
2 p(1− p)

≥ 2
√

n
√

2πe
7
6

.

The proof of Lemma 11 can be found in Appendix B.
The case where R̂i∗ = 1 is trivial since, in this case, we can safely state that Ri∗ ≤ 1.
Please note that the limit in the value of γ is O(

√
n) and this result is connected and in

agreement with the consistency results derived in the PAC-Bayes [30] and in Algorithmic
Stability [31] theories where the distribution-dependent prior of [27] is exploited.
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3.2. Observation

Let us consider the case where the empirical errors of the hypotheses in the space
have been sorted as follows

R̂1 ≤ R̂2 ≤ · · · ≤ R̂m,

and let us exploit the results of Section 3.1.
Let us set

γ =

√
n

4
<

2
√

n
√

2πe
7
6

,

and suppose that

R̂1 6= 1.

Then by using the UB (see Theorem 1) we can state that with probability at least
(1− δ)

R1 ∈
[

0, U
(

R̂1,
δ

2m

)]
,

while, by using DDWUB (see Lemma 11), we can state that with probability at least (1− δ)

0 ≤ R1 ≤ r∗1 = max
r1

r1

s.t.



r1 = U
(

R̂1, δ f1(r1,··· ,rm)
2

)
ri = L

(
R̂i, δ

2m

)
, i ∈ I \ 1

fi(r1, · · · , rm) =
e−γ max[θ,ri ]

∑m
j=1 e−γ max[θ,rj ]

, i ∈ I

γ =
√

n
4

θ = U
(
L−1

(
min[r1, · · · , rm], δ

2m

)
, δ

2m

)
.

By looking at this last problem and by setting r1 = r∗1 for simplicity, we can observe some
properties. The first one is that

fi(r1, · · · , rm) =


e−γθ

|J |e−γθ+∑j=I\J e−γrj
i ∈ J

e−γri

|J |e−γθ+∑j=I\J e−γrj
i ∈ I \ J

, J = {j : j ∈ I , rj ≤ θ}.

The second one is that ∀i ∈ I \ J

e−γri

|J |e−γθ + ∑j=I\J e−γrj
≤ e−γθ

|J |e−γθ + ∑j=I\J e−γrj
.

These properties state that DDWUB, with respect to the UB, can discard, or more properly reduce, the
risk of the hypotheses hi with i ∈ I \ J when estimating the generalization error of the hypothesis
h1. As a first raw approximation, we can state that we must pay a risk only for the hypotheses hi
with i ∈ J obtaining

R1 ∈
[

0, U
(

R̂1,
δ

2|J |

)]
,

where |J | ≤ m. A quite important aspect is then to understand some properties of θ. Let us recall that

θ = U

(
L−1

(
min[r1, · · · , rm],

δ

2m

)
,

δ

2m

)
,
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but we can easily state that

min[r1, · · · , rm] = min
[
U

(
R̂1,

δ f1(r1, · · · , rm)

2

)
, L
(

R̂2,
δ

2m

)]
.

Thanks to Theorem 5, we can state that f1(r1, · · · , rm) ≥ 1
m and then the case where

min
[
U

(
R̂1,

δ f1(r1, · · · , rm)

2

)
, L
(

R̂2,
δ

2m

)]
= U

(
R̂1,

δ f1(r1, · · · , rm)

2

)
,

is quite unusual since it means that R̂2 − R̂1 is large, or, in other words, it means that our set of
hypotheses contains just one hypothesis with small error and many hypotheses with high error.
Instead, if

min
[
U

(
R̂1,

δ f1(r1, · · · , rm)

2

)
, L
(

R̂2,
δ

2m

)]
= L

(
R̂2,

δ

2m

)
,

then

θ = L

(
R̂2,

δ

2m

)
,

which means that the threshold θ is obtained from the upper bound of the second-best hypothesis in the
space, namely the hypothesis with the second smallest empirical error. To the best of our knowledge,
this result is new since in the past many researchers have tried, with similar approaches but with no
supporting theory, in proposing to clean the hypothesis space from the hypotheses with high empirical
error. The basic idea of these methods is that it is reasonable to discard all the hypotheses such that the

lower bound of their generalization error is greater than U
(

R̂1, δ
2m

)
, namely the upper bound of the

generalization error of the hypothesis with the smallest empirical error, see for example [25]. Our theory
states, instead, that we can smooth the risk due to the hypotheses such that the lower bound of their

generalization error is greater than U
(

R̂2, n, δ
2m

)
, namely the upper bound of the generalization error of

the hypothesis with the second smallest empirical error.

4. Closed Form Results
In this section, we will report some closed form results regarding the Lemma 11. These examples

are useful for providing an idea of the effect of the DDWUB, an extensive comparison with numerical
results is provided in Section 5.

Let us consider the case where

R̂1 = R̂2 = 0, R̂3 = · · · = R̂m = 1.

Let us set

γ =

√
n

4
<

2
√

n
√

2πe
7
6

,

and note that

arg min
i∈I

R̂i = 1, R̂1 6= 1.

If we use the UB (see Theorem 1) with the [15] we obtain that with probability at least (1− δ)
the following bound holds

R1 ∈
[

0, 1− n

√
δ

2m

]
.
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If, instead, we use DDWUB (see Lemma 9 and Algorithm 2) we obtain that with probability at
least (1− δ) the following bound holds

0 ≤ R1 ≤ r∗1 = max
r

r

s.t.



r = 1− n
√

δ f1(r,r2,··· ,rm)
2

f1(r, r2, · · · , rm) =
e−γ max[θ,r]

e−γ max[θ,r]+∑m
j=2 e−γ max[θ,rj ]

r2 = 0

r3 = · · · = rm = n
√

δ
2m

θ = U
(
L−1

(
min[r, r2, · · · , rm], δ

2m

)
, δ

2m

)
γ =

√
n

4

.

Since we can surely state that

min[r∗1 , · · · , rm] = 0,

then

θ = 1− n

√
δ

2m
.

Moreover, thanks to Theorem 5, we can state that

r∗1 ≤ θ.

Asymptotic Case
Please note that

f1(r∗1 , r2, · · · , rm) =
1

2 + (m− 2)e

√
n

4

(
1−2 n

√
δ

2m

) ,

moreover

lim
n→∞

1

2 + (m− 2)e

√
n

4

(
1−2 n

√
δ

2m

) =
1
2

.

Consequently, at least asymptotically, DDWUB can discard entirely the risk due to the hypotheses
with high empirical error.

Finite Sample Case
DDWUB obviously gives an advantage, with respect to the UB, until

r3 = · · · = rm > θ,

This means that we have an advantage in terms of the tightness of the estimated upper bound for
R1 until

n

√
δ

2m
> 1− n

√
δ

2m
,

and consequently until

m < δ2n−1.

5. Numerical Results
This section is devoted to the numerical comparison between the UB (see Theorem 1) and the

DDWUB (see Lemma 11).
In particular we will focus on upper bounding the generalization error of the hypothesis, in the

set of possible ones, characterized by the smallest empirical error. The comparison between the
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UB and the DDWUB will be made in different scenarios to better understand the advantages of
the DDWUB.

Scenario A.
Scenario A is an optimistic scenario, the same of Section 4: the set of hypotheses contains

few useful hypotheses (small empirical error) and a lot of useless hypotheses (high empirical error)
such that

R̂1 = R̂2 = 0, R̂3 = · · · = R̂m = 1.

We set δ = 0.05 and set the numerical precision of the algorithms to ε = 0.0001.
Figure 1 reports the estimated generalization error upper bound of the hypothesis with the

smallest empirical error estimated with the UB and the DDWUB, together with the percentage of
improvement in three different sub-scenarios:

• Sub-scenario A.1 (Figure 1a): we set m = 1000 and we vary n ∈ {10, 20, 40, 100, 200, 400, 1000};
• Sub-scenario A.2 (Figure 1b): we vary m ∈ {10, 100, 1000, 10000, 100000} and we set n = 40;
• Sub-scenario A.3 (Figure 1c): we vary m ∈ {10, 100, 1000, 10000, 100000} and we set n = 100.

Based on the results reported in Figure 1 we can observe that

• DDWUB is always tighter, or equivalent in the worst case, with respect to the UB;
• increasing the number of samples always increases the advantage of the DDWUB over the UB

until all the risk of the hypothesis with largest empirical error is disregarded;
• increasing m increases the advantage of the DDWUB over the UB until a limit value for m: if too

many useless hypotheses are present it is not able anymore to disregard their risk. Nevertheless,
the larger is n the far is this value for m.

In a slightly less optimistic scenario when

R̂1 = R̂2 = 0, R̂3 = · · · = R̂m =
1
2

,

which is the case of lot of charlatans and just a few good candidates in a hiring process [34], the
results are reported in Figure 2a–c and do not change too much, apart from the limit of m when the
DDWUB stops to improve over the UB which is obviously smaller.

Scenario B.
The second scenario is a more classical one when

R̂1 = 0, R̂2 =
1
n

, · · · , R̂n+1 = 1.

This case is exploited in many applications (e.g., the CSDB of [20], or the Structural Risk Minimization
of [2], or the Structural Risk Minimization over data-dependent hierarchies of [19]).

Also, in this scenario we set δ = 0.05 and we set the numerical precision to ε = 0.0001. Then we
vary n ∈ {10, 20, 40, 100, 200, 400, 1000}.

Figure 3 reports the estimated generalization error upper bound of the hypothesis with the
smallest empirical error estimated with the UB and the DDWUB, together with the percentage of
improvement.

Figure 3 clearly shows the advantage of the DDWUB over the UB and the improvement in the
advantage as soon as n increases.
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(a) Sub-scenario A.1 (m = 1000).
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(b) Sub-scenario A.2 (n = 30).
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(c) Sub-scenario A.3 (n = 100).

Figure 1. Scenario A (R̂1 = R̂2 = 0 and R̂3 = · · · = R̂m = 1): upper bound of the generalization error
of the hypothesis with the smallest empirical error computed with the UB and the DDWUB together
with the percentage of improvement.



Entropy 2021, 23, 101 19 of 38

1 1.5 2 2.5 3

log
10

(n)

0

0.2

0.4

0.6

0.8

R

UB

DDWUB

1 1.5 2 2.5 3

log
10

(n)

0

20

40

60

%
 o

f 
Im

p
ro

v
e
m

e
n
t

(a) Sub-scenario A.1 (m = 1000)
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(b) Sub-scenario A.2 (n = 30)
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(c) Sub-scenario A.3 (n = 100)

Figure 2. Scenario A (R̂1 = R̂2 = 0 and R̂3 = · · · = R̂m = 1
2 ): upper bound of the generalization

error of the hypothesis with the smallest empirical error computed with the UB and the DDWUB
together with the percentage of improvement.
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Figure 3. Scenario B: upper bound of the generalization error of the hypothesis with the smallest
empirical error computed with the UB and the DDWUB together with the percentage of improvement.

Scenario C.
The last scenario involves the unlucky case in which our set of m hypotheses is taken from all

2n possible binary hypotheses over n data. Please note that the number of hypotheses with i errors
in the 2n possible binary hypotheses over n data are (n

i ). Then we force our m hypotheses to have
at least one hypothesis for each possible value of the empirical error and consequently m ≥ n + 1.
The remaining m− n− 1 are taken from the 2n possible binary hypotheses over n to approximate
the distribution of the 2n possible binary hypotheses. The result of this approach is that our set of

hypotheses will be composed by m = ∑n
j=0

⌈ (n
j)

2n z
⌉

hypotheses, with z ∈ N∗, as follows

R̂1 = · · · = R̂⌈
(n0)
2n z
⌉ = 0,

R̂⌈
(n0)
2n z
⌉
+1

= · · · = R̂⌈
(n0)
2n z
⌉
+

⌈
(n1)
2n z
⌉ =

1
n

,

· · ·
R̂

∑n−1
j=0

⌈
(nj )

2n z
⌉
+1

= · · · = R̂
∑n

j=0

⌈
(nj )

2n z
⌉ = 1.

Please note that for example, when z = 1 we obtain the Scenario B.
Also, in this scenario we set δ = 0.05 and we set the numerical precision to ε = 0.0001.
Figure 4a–c reports the estimated generalization error upper bound of the hypothesis with the

smallest empirical error estimated with the UB and the DDWUB, together with the percentage of
improvement in the same sub-scenarios of Scenario A.

Figure 4 shows that even in this unlucky case, the DDWUB can remarkably outperform the UB.
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(a) Sub-scenario C.1 (z = 1000)
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(b) Sub-scenario C.2 (n = 30)
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(c) Sub-scenario C.3 (n = 100)

Figure 4. Scenario C: upper bound of the generalization error of the hypothesis with the smallest
empirical error computed with the UB and the DDWUB together with the percentage of improvement.

5.1. The Importance of γ and θ

In this section, we would like to discuss the importance of γ and θ also by means of some
numerical experiments supporting our claims.

Let us start with θ. From one side setting θ = 1 would make the DDWUB degenerate in the UB
eliminating all the benefits of using the DDWUB. From the other side setting θ = 0, namely removing
θ, is not possible because of the constraint on θ of Theorem 5 which does not allow us, in this case,
to guarantee that the solution of the DDWUB always outperform, or in the worst case degenerates
in, the UB. Hence, θ ∈ (0, 1) deals with the fact that we do not know the generalization error of our
hypotheses, then we must estimate it, and consequently hypotheses with a small but close empirical
error cannot be distinguished. Unfortunately, the constraint of Theorem 5 on θ is data-dependent
and consequently we must resort to a suboptimal, but data independent, limitation on θ as reported
in Lemma 8. The question which raises here is the practical difference of all these choices. For this
reason, we consider the Scenario A previously defined with R̂1 = 0.1, R̂2 = ν and R̂3 = · · · = R̂m = 1,
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where we set δ = 0.05, n = 100, and m = 1000. Then we vary ν ∈ {0.1, 0.2, · · · , 1}, and we reported
in Figure 5 the comparison between the UB and the DDWUB with θ = 0, θ = θ̂ i.e., equal to the lower
limit of the constraint of Theorem 5, θ = ˆ̂θ i.e., equal to the lower limit of the constraint of Lemma 8,
and θ = 1.
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Figure 5. Scenario A (R̂1 = 0.1, R̂2 = ν and R̂3 = · · · = R̂m = 1): upper bound of the generalization
error of the hypothesis with the smallest empirical error computed with the UB and the DDWUB
with θ ∈ {0, θ̂, ˆ̂θ, 1} together with the percentage of improvement when we set δ = 0.05, n = 100,
and m = 1000 and we vary ν ∈ {0.1, 0.2, · · · , 1}. The two figures above depict the whole range while
the two figures below report a zoom on the most interesting parts.

From Figure 5 it is possible to derive some observations. Setting θ = 0 in the DDWUB can result
in worse estimates with respect to the ones of the UB since when R̂2 is close to R̂1 (small ν) we cannot
distinguish between the first two hypotheses which are the ones with the lowest generalization error.
As soon as ν grows the difference between R̂1 and R̂2 becomes statistical relevant and so setting θ = 0
in the DDWUB results in better estimates with respect to the UB or even better that the ones of the
DDWUB since θ in this particular scenario for large ν is useless. Setting θ = θ̂ gives the best results
and always outperform the UB while setting θ = ˆ̂θ results in worse estimates but still better than the
ones of the UB. Please note that for small and large ν, θ̂ and ˆ̂θ are equivalent while there is a middle
range of ν for which θ̂ performs better ˆ̂θ. The explanation of this phenomena can be derived using the
observations of Section 3.2. The hypothesis that regulates θ̂ is the one corresponding to R̂1 (the one
with the smallest empirical error). The hypothesis that regulates ˆ̂θ, instead, is the one corresponding
to R̂2 (the second-best hypothesis) if the distance between R̂1 and R̂2 is small, i.e., for small ν, while
is the one corresponding to R̂1 if the distance between R̂1 and R̂2 is large. Consequently, when R̂1
and R̂2 are close it is indifferent to choose one or the other and the estimates of the DDWUB are
almost equivalent. When, instead, the difference between R̂1 and R̂2 increases, R̂2, instead of R̂1,
regulates θ and the DDWUB with θ̂ performs better than the DDWUB with ˆ̂θ. Finally, when the
distance between R̂1 and R̂2 is large, θ is regulated by R̂1 both for θ̂ and ˆ̂θ and consequently the
corresponding estimates of the DDWUB are equivalent. Finally, setting θ = 1 results in the UB.

Let us now consider γ. From one side setting γ = 0 would make the DDWUB degenerate in
the UB eliminating all the benefits of using the DDWUB. From the other side setting γ = ∞ would
result in splitting equally the confidence just over the hypotheses with estimated error less than θ,
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not considering all the other hypotheses, which is our scope but unfortunately this is not possible
because of the constraints of Lemma 7, which then result in the limitation over γ in Lemma 11. This
is the reason we set, in the experiments, γ to the limits of what Lemma 11 allows. After that limit we
do not know how the solution of the DDWUB behaves since we do not even know how to retrieve it.
Setting a γ smaller than the maximum value allowed by Lemma 11 would diminish the performance
of the DDWUB until the DDWUB degenerates in the UB. To support this statement we consider
Scenario A with R̂1 = R̂2 = 0 and R̂3 = · · · = R̂m = 1, then set δ = 0.05, n = 100 and m = 1000, and
we vary γ ∈ {10−5√n, 10−4√n, · · · , 10−1√n, γ̂}, where γ̂ is the limit defined in Lemma 11, and we
reported the comparison between the DDWUB and the UB in Figure 6.
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Figure 6. Scenario A (R̂1 = R̂2 = 0 and R̂3 = · · · = R̂m = 1): upper bound of the generalization
error of the hypothesis with the smallest empirical error computed with the UB and the DDWUB
together with the percentage of improvement when we set n = 100 and m = 1000 and we vary
γ ∈ {10−5√n, 10−4√n, · · · , 10−1√n, γ̂}, where γ̂ is the limit defined in Lemma 11.

From Figure 6 it is possible to clearly observe that the maximum improvement is achieved
when γ is maximum and consequently when γ = γ̂. The same result can be observed in all the
other scenarios.

6. What About the Computable Shell Decomposition Bounds?
In this section, we will show that the DDWUB also improves over the CSDB. Before starting the

comparison, we must recall this milestone result.

Theorem 6 ([20]). The following bounds hold

P

Ri ≤ max

r : r ∈ [0, 1], kl(R̂i||r) ≤
Ŝ(ddree, n, δ) + ln

(
4n
δ

)
n

 ∀i ∈ I

≥1−δ,

where ddree = max[1, drne]/n ∈ {1/n, · · · , n/n} and if ddree = k/n then r ∈ [k− 1/n, k/m], kl(q||p) =
q ln(q/p) + (1− q) ln(1− q/1− p) is the Kullback–Leibler divergence, and

Ŝ

(
k
n

, n, δ

)
= ln

max

1, 2

∣∣∣∣∣∣∣∣
hi : i ∈ I ,

∣∣∣∣R̂i −
k
n

∣∣∣∣≤ 1
n
+

√√√√ ln
(

16n2

δ

)
2n− 1


∣∣∣∣∣∣∣∣

.

Let us consider the same scenario of Section 4.
The DDWUB is able, at least asymptotically, to discard all risk associated with the hypotheses

with high empirical error obtaining that for n large enough, the rate of convergence of the bound on
R1 is O(1/n).

Instead, if we use the CSDB of Theorem 6 we get that for n large enough, the rate of convergence
of the bound on R1 is O( ln(n)/n). Moreover, note that O( ln(n)/n) is also the fastest possible rate of
convergence for Theorem 6.
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If instead of checking the asymptotic behavior of the DDWUB and the CSDB we check their
finite sample behavior by means of numerical experiments as in Section 5, we can derive other
interesting observations. Figures 7–10 (and the associated sub-figures) report the same comparison
of Figures 1–4 in Section 5 but, instead of comparing the UB with the DDWUB, here we compare the
CSDB with the DDWUB.
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(a) Sub-scenario A.1 (m = 1000).
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(b) Sub-scenario A.2 (n = 30).
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(c) Sub-scenario A.3 (n = 100).

Figure 7. Scenario A (R̂1 = R̂2 = 0 and R̂3 = · · · = R̂m = 1): upper bound of the generalization
error of the hypothesis with the smallest empirical error computed with the CSDB and the DDWUB
together with the percentage of improvement.
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(a) Sub-scenario A.1 (m = 1000)
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(b) Sub-scenario A.2 (n = 30)
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(c) Sub-scenario A.3 (n = 100)

Figure 8. Scenario A (R̂1 = R̂2 = 0 and R̂3 = · · · = R̂m = 1
2 ): upper bound of the generalization

error of the hypothesis with the smallest empirical error computed with the CSDB and the DDWUB
together with the percentage of improvement.
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Figure 9. Scenario B: upper bound of the generalization error of the hypothesis with the smallest em-
pirical error computed with the CSDB and the DDWUB together with the percentage of improvement.
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(a) Sub-scenario C.1 (z = 1000)
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(b) Sub-scenario C.2 (n = 30)
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(c) Sub-scenario C.3 (n = 100)

Figure 10. Scenario C: upper bound of the generalization error of the hypothesis with the smallest em-
pirical error computed with the CSDB and the DDWUB together with the percentage of improvement.

As it can be clearly seen from the results the DDWUB performs consistently better than
the CSDB.

7. Improving the Computable Shell Decomposition Bounds
The purpose of this section is to demonstrate that the DDWUB can be exploited to improve

known results in Statistical Learning Theory. In particular, this section we will show that DDWUB
can be exploited to improve the CSDB.

The proof of the CSDB of Theorem 6 relies on two main results, reported in the next theorem,
combined with the UB.
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Theorem 7 ([20]). The following bounds hold

P

kl(R̂i||Ri) ≤
ln(|H|) + ln

(
2
δ

)
n

∀i ∈ I

 ≥ 1− δ,

P
{
S

(
k
n

, n
)
≤ Ŝ

(
k
n

, n, 2nδ

)}
≥ 1− δ,

where

S

(
k
n

, n
)
= ln

(
max

[
1, 2
∣∣∣∣{hi : i ∈ I , Ri ∈

[
k−1

n
,

k
n

]}∣∣∣∣])
and Ŝ

(
k
n , n, δ

)
is defined as in Theorem 6.

By splitting the hypotheses in shells based on their generalization error, namely Hr =
{hi : i ∈ I , Ri ∈ [k−1/n, k/n]} with r ∈ {1/n, 2/n, · · · , 1}, by combining the two probabilistic bounds
of Theorem 7, by using the UB, and by considering the worst case scenario, the result of Theorem
6 is derived. Consequently, [20] consider 2n probabilistic bounds, two for each of one the shells,
and spread the confidence (risk) equally over them.

We propose, instead, to use the same approach of the DDWUB in the CSDB. Instead of spreading
the confidence equally over the 2n probabilistic bounds, we spread the confidence over them based
on the maximum generalization error of the function in each of the n shells to which the bounds refer.
The results is reported in the following lemma.

Lemma 12. The following bound holds

P

Ri≤max

r:r∈[0, 1], kl(R̂i||r)≤
Ŝ(ddree, n, np(ddree)δ)+ ln

(
4

δp(ddree)

)
n

∀i ∈ I

≥1−δ,

where

p(r) =
e−

nr
ln(n)

∑n
i=1 e−

i
ln(n)

.

The proof is the simple application of the concepts behind the DDWUB. θ is not needed since
for each one of the shells we exactly know by definition the maximum generalization error of the
functions inside it. γ is set to n/ln(n) and the reason is the following one. The rate of convergence of
CSDB is O(

√
ln(n)/n) in the general case and O( ln(n)/n) when R̂i = 0. Let us study instead the rate of

convergence of the bound of Lemma 12. Thanks to the Geometric Series we can state that

p(r) =
e−

nr
ln(n)

∑n
i=1 e−

i
ln(n)

= e−
nr

ln(n)
1− e

1
ln(n)

1− e
n

ln(n)

For n large enough we can state that

ln
(

1
p(r)

)
≈ nr

ln(n)
+ ln(ln(n))

Consequently, the rate of convergence of the bound of Lemma 12 is O(
√

ln(ln(n))/n) in the general
case and O( ln(ln(n))/n) when R̂i = 0. This means that for γ = n/ln(n) the rate of convergence of the
bound of Lemma 12 of better than the one of CSDB.

It could be possible to improve the bound with a different values of γ and θ or to prove that
for particular values of γ and θ, Lemma 12 is always better than the CSDB but this is beyond of the
scope in this paper.
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If, instead, we compare the finite sample behavior of the CSDB and the Lemma 12 (that we will
call CSDB+DDWUB) by means of numerical experiments as in Section 5, we can observe the possible
benefit of using DDWUB in CSDB, a well-known result of Statistical Learning Theory. Figures 11–14
(and the associated sub-figures) report the same comparison of Figures 1–4 in Section 5 but, instead
of comparing the UB with the DDWUB, here we compare the CSDB with the CSDB+DDWUB.
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(a) Sub-scenario A.1 (m = 1000).
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(b) Sub-scenario A.2 (n = 30).
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(c) Sub-scenario A.3 (n = 100).

Figure 11. Scenario A (R̂1 = R̂2 = 0 and R̂3 = · · · = R̂m = 1): upper bound of the generaliza-
tion error of the hypothesis with the smallest empirical error computed with the CSDB and the
CSDB+DDWUB together with the percentage of improvement.
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(a) Sub-scenario A.1 (m = 1000)
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(b) Sub-scenario A.2 (n = 30)
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(c) Sub-scenario A.3 (n = 100)

Figure 12. Scenario A (R̂1 = R̂2 = 0 and R̂3 = · · · = R̂m = 1
2 ): upper bound of the generaliza-

tion error of the hypothesis with the smallest empirical error computed with the CSDB and the
CSDB+DDWUB together with the percentage of improvement.
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Figure 13. Scenario B: upper bound of the generalization error of the hypothesis with the smallest
empirical error computed with the CSDB and the CSDB+DDWUB together with the percentage
of improvement.
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(a) Sub-scenario C.1 (z = 1000)
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(b) Sub-scenario C.2 (n = 30)
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(c) Sub-scenario C.3 (n = 100)

Figure 14. Scenario C: upper bound of the generalization error of the hypothesis with the smallest
empirical error computed with the CSDB and the CSDB+DDWUB together with the percentage
of improvement.

As it can be clearly seen from the results the CSDB+DDWUB performs consistently better than
the CSDB.

8. Conclusions and Discussion
In this work we derived, for an arbitrary finite hypothesis space, a fully empirical new upper

bound on the generalization error of the hypothesis of minimal training error. As noted in the paper,
although we presented just the upper bound, our result can be easily generalized also to lower or
both upper and lower bounds.

In particular we depicted a quite general framework under which it is possible to improve the
Union Bound with a distribution depended weighting strategy associated with the risk of each choice.
Then we stated the conditions under which the proposed Distribution-Dependent Weighed Union
Bound is always tighter than the one based on the Union Bound. We showed that these conditions
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are quite easy to satisfy. By means of both closed form and numerical results we demonstrated
that Distribution-Dependent Weighed Union Bound is consistently tighter than the Union Bound
in different scenarios. Finally, we showed that the Distribution-Dependent Weighed Union Bound
is also able to improve over the Computable Shell Decomposition Bound, another quite powerful
distribution-dependent Union Bound.

The results of this work are quite promising and pave the way toward many different future
improvements. One is surely to derive a class of weighting strategies which satisfies behind the
Distribution-Dependent Weighed Union Bound. Another one is to understand how to exploit the
results of this work for improving all the results in Statistical Learning Theory where the Union Bound
is employed. A final one, and probably the most important one, is how to extend and apply our
results to the infinite-dimensional hypothesis spaces. This extension, which is obviously not trivial,
has multiple alternatives which can be speculated. The first, and naive, approach would be to plug
our approach into the compression bound which already deals with the infinite-dimensional case,
exploiting the concept of compression, and exploits naively the union bound. The second approach,
less intuitive, would be to split the hypothesis spaces in a finite number of shells, estimate the size
of each shell with classical bounds based on the Vapnik–Chervonenkis or Rademacher Complexity
theories and then exploit our Distribution-Dependent Weighed Union Bound to pay the price of the
choice of one of the shells. The last, and more challenging, approach would be to plug our weighting
strategy directly in the derivation of the Vapnik–Chervonenkis or Rademacher Complexity bases
bounds shrinking then the measures of complexity as alternative to the localization approaches.
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Appendix A. Known Results

Known bounds and results exploited in the paper are included in this section.

Theorem A1 ([16]). The following bounds hold

P

R ≥ R̂−

√√√√ ln
(

1
δ

)
2n

 ≥ 1− δ, P

R ≤ R̂ +

√√√√ ln
(

1
δ

)
2n

 ≥ 1− δ.

Theorem A2 ([15]). The following bounds hold

P
{

R ≥
{

F−1(δ; nR̂, n− nR̂ + 1) R̂ ∈
{

1
n , 2

n , · · · , 1
}

0 R̂ = 0

}
≥ 1− δ,

P
{

R ≤
{

F−1(1− δ; nR̂ + 1, n− nR̂
)

R̂ ∈
{

0, 1
n , · · · , n−1

n

}
1 R̂ = 1

}
≥ 1− δ.

Theorem A3 ([35]). If n ∈ N∗, the following bounds hold

√
2πnnne−n ≤ n! ≤

√
2πnnne−ne

1
12n .

Theorem A4 ([6]). If n ∈ N∗, p ∈ [0, 1], q ∈ {0, 1/n, 2/n, · · · , 1}, and R̂ < p, the following bound holds

F(p; nq, n− nq + 1) ≤ e−nkl(q||p)
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where

F(p; nq, n− nq + 1) =
nq

∑
i=0

(
n
i

)
pi(1− p)n−i,

is the beta cumulative density function, and

kl(q||p) = q ln
(

q
p

)
+ (1− q) ln

(
1− q
1− p

)
is the Kullback–Leibler divergence.

Appendix B. Proofs

Proofs of our results are included in this section.

Proof. (Lemma 2) Please note that under the assumptions of the lemma, ∀r1, · · · , rm ∈ [0, 1], and
∀i ∈ I \ i∗ and ∀r′k, r′′k ∈ [0, 1] such that r′k < r′′k√√√√√ log

(
2 ∑j∈I\k e−γ max[θ,rj ]+e−γ max[θ,r′k ]

δe−γ max[θ,ri ]

)
2n

−

√√√√√ log
(

2 ∑j∈I\k e−γ max[θ,rj ]+e−γ max[θ,r′′k ]

δe−γ max[θ,ri ]

)
2n

≥ 0,

then the statement of the lemma is proved.

Proof. (Lemma 3) Please note that under the assumptions of the lemma

0 < min

1, R̂i +

√√√√√ log
(

2 ∑j∈I e−γ max[θ,rj ]

δe−γ max[θ,ri∗ ]

)
2n

 ≤ 1.

Note also that if

γ ≤ 2
√

n

pi∗ =
e−γri∗

∑j∈I e−γrj

then

∂

√√√√ log

(
2 ∑j∈I e

−γrj

δe−γri∗

)
2n

∂ri∗
=

γpi∗ (1− pi∗ )

4npi∗

√
ln
(

2
δpi∗

)
2n

<
(1− pi∗ )

2

√
ln
(

2
δpi∗

)
2

< 1,

then the statement of the lemma is proved.

Proof. (Theorem 4) Let us define

ϑ = min

1, R̂i∗+

√√√√ log
(

2m
δ

)
2n

.

Let us suppose that

ri ≤ ϑ, ∀i ∈ I \ i∗.

If we set

r∗i∗ = ϑ,
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we have, thanks to the hypothesis of the theorem that

e−γ max[θ,ri ]

∑j∈I e−γ max[θ,rj ]
=

1
m

, ∀i ∈ I ,

then r∗i∗ is a fixed point and since it is unique by Lemma 3 we have that r∗i∗ ≤ ϑ.
Let us suppose now that

ri ≤ ϑ, ∀i ∈ I \ {i∗, k}, rk > ϑ, k ∈ I \ i∗.

Thanks to the hypothesis of the theorem, we can state that

e−γ max[θ,ri∗ ]

∑j∈I\{i∗ ,k} e−γ max[θ,rj ] + e−γ max[θ,ri∗ ] + e−γ max[θ,rk ]
>

e−γ max[θ,ri∗ ]

∑j∈I\i∗ e−γθ + e−γ max[θ,ri∗ ]
,

and, consequently, we can also state that

ri∗ = min

1, R̂i∗+

√√√√√ log
(

2 ∑j∈I\{i∗ ,k} e−γ max[θ,rj ]+e−γ max[θ,ri∗ ]+e−γ max[θ,rk ]

δe−γ max[θ,ri∗ ]

)
2n



≤ min

1, R̂i∗+

√√√√√ log
(

2 ∑j∈I\i∗ e−γθ+e−γ max[θ,ri∗ ]

δe−γ max[θ,ri∗ ]

)
2n

.

Consequently, by exploiting the same reasoning exploited before, r∗i∗ ≤ ϑ.
By induction, the statement of the theorem is proved.

Proof. (Lemma 4) Please note that

min[R1, · · · , Rm] ≥ max

0, min
[
R̂1, · · · , R̂m

]
−

√√√√ log
(

2m
δ

)
2n

.

Then we can state that

R̂i∗ ≤ min[R1, · · · , Rm] +

√√√√ log
(

2m
δ

)
2n

,

and consequently, the statement of the theorem is proved.

Proof. (Theorem 5) Let us define

ϑ = U

(
R̂i,

δ

2m

)
.

Let us suppose that

rj ≤ ϑ, ∀j ∈ I \ i.

If we set

r∗i = ϑ,

we have, thanks to the hypothesis of the theorem that

f1(r1, · · · , ri−1, r∗i , ri+1, · · · , rm) = · · · = fm(r1, · · · , ri−1, r∗i , ri+1, · · · , rm) =
1
m

,

then r∗i is a fixed point and since it is unique by Lemma 7 we have that r∗i ≤ ϑ.
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Let us suppose now that

rj ≤ ϑ, ∀j ∈ I \ {i, k}, rk > ϑ, k ∈ I \ i.

Thanks to the hypothesis of the theorem, we can state that

fi(ϑ, · · · , ϑ, ri, ϑ, · · · , ϑ, rk, ϑ, · · · , ϑ) > fi(ϑ, · · · , ϑ, ri, ϑ, · · · , ϑ),

and, consequently, we can also state that

ri = U

(
R̂i,

δ fi(ϑ, · · · , ϑ, ri, ϑ, · · · , ϑ, rk, ϑ, · · · , ϑ)

2

)
≤ U

(
R̂i,

δ fi(ϑ, · · · , ϑ, ri, ϑ, · · · , ϑ)

2

)
.

Consequently, by exploiting the same reasoning exploited before, r∗i ≤ ϑ.
By induction, the statement of the theorem is proved.

Proof. (Lemma 8) Please note that

min[R1, · · · , Rm] ≥ L
(

min
[
R̂1, · · · , R̂m

]
,

δ

2m

)
.

Then we can state that

R̂i∗ ≤ L−1
(

min[R1, · · · , Rm],
δ

2m

)
,

and consequently, the statement of the theorem is proved.

Proof. (Lemma 9) To prove the theorem we first just have to note that for a fixed θ, the problem can

be solved with Algorithm 1 and that its solution is r∗i∗ (θ) and rj(θ) = L
(

R̂j, δ
2m

)
with j ∈ I \ i∗. Then,

searching for the largest fixed point, varying θ, such that

θ = U
(

L−1
(

min[r1(θ), · · · , ri∗−1(θ), r∗i∗ (θ), ri∗+1(θ), · · · , rm(θ)],
δ

2m

)
,

δ

2m

)
gives the proposed algorithm.

Proof. (Lemma 10) For what concerns Corollary 2, we must prove that ∀r1, · · · , rm ∈ [0, 1]

fi(r1, · · · , rm) ∈ (0, 1) ∀i ∈ I , ∑
i∈I

fi(r1, · · · , rm) = 1.

These two properties are trivially provable by definition.
For what concerns Theorem 5, instead, we must prove that for θ ∈ [0, 1], ∀r1, · · · , rm ∈ [0, 1],

and ∀r′j, r′′j ∈ [0, θ]

f j(r1, · · · , rj−1, r′j, rj+1, · · · , rm)− f j(r1, · · · , rj−1, r′′j , rj+1, · · · , rm) = 0,

with j ∈ I . Moreover, we must prove that ∀r1, · · · , rm ∈ [0, θ] and ∀j ∈ I

f j(r1, · · · , rm) =
1
m

.

These properties are trivially provable by definition. Then we must prove that ∀r1, · · · , rm ∈ [0, 1],
∀j ∈ I \ i, ∀r′j, r′′j ∈ (θ, 1] such that r′j < r′′j

fi(r1, · · · , rj−1, r′j, rj+1, · · · , rm)− fi(r1, · · · , rj−1, r′′j , rj+1, · · · , rm) < 0.
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Then, let us note that

e−γ max[θ,ri ]

e−γ max[θ,r′′j ] + ∑k∈I\j e−γ max[θ,rk ]
− e−γ max[θ,ri ]

e−γ max[θ,r′j ] + ∑k∈I\j e−γ max[θ,rk ]

>
e−γ max[θ,ri ]

e−γ max[θ,r′j ] + ∑k∈I\j e−γ max[θ,rk ]
− e−γ max[θ,ri ]

e−γ max[θ,r′j ] + ∑k∈I\j e−γ max[θ,rk ]
= 0,

consequently, the property is proven.

Proof. (Lemma 11) For what concerns Corollary 2 and Theorem 5, the proof is a trivial consequence
of Lemma 10.

For what concerns Lemma 6, we have to prove that ∀r̂i ∈ {0, 1/m, · · · , 1}, ∀r1, · · · , rm ∈ [0, 1],
and ∀j ∈ I \ i and ∀r′j, r′′j ∈ [0, 1] such that r′j < r′′j

U

(
r̂i,

δ fi(r1, · · ·, rj−1, r′j, rj+1, · · ·, rm)

2

)
−U
(

r̂i,
δ fi(r1, · · ·, rj−1, r′′j , rj+1, · · ·, rm)

2

)
≥0,

where i ∈ I . Let us define

gi(r1, · · · , rm) =
e−γri

∑j∈I e−γrj
, i ∈ I ,

and note that

∂gi(r1, · · · , rm)

∂rj
= γgi(r1, · · · , rm)gj(r1, · · · , rm), i ∈ I , j ∈ I \ i.

Combining this property with Proposition A1 we obtain the result.
For what concerns Lemma 7, we must prove that ∀r′i , r′′i ∈ [0, 1] such that r′i < r′′i

U
(

R̂i,
δ fi(r1,··· ,r′′i ,··· ,rm)

2

)
− U
(

R̂i,
δ fi(r1,··· ,r′i ,··· ,rm)

2

)
r′′i − r′i

< 1,

U

(
R̂i,

δ fi(r1, · · · , ri−1, 0, ri+1, · · · , rm)

2

)
> 0,

U

(
R̂i,

δ fi(r1, · · · , ri−1, 1, ri+1, · · · , rm)

2

)
< 1.

The second and the third properties are trivially true if R̂i 6= 1. For the first, instead, note that

∂gi(r1, · · · , rm)

∂ri
= −γgi(r1, · · · , rm)(1− gi(r1, · · · , rm)), i ∈ I .

Then we can state, thanks also to Proposition A1 that

U
(

R̂i,
δ fi(r1,··· ,r′′i ,··· ,rm)

2

)
− U
(

R̂i,
δ fi(r1,··· ,r′i ,··· ,rm)

2

)
r′′i − r′i

≤ max
r̂∈{0, 1

n ,··· , n−1
n }, p∈(0,1)

B(nr̂ + 1, n− nr̂)(
U
(

r̂, δp
2

))nr̂(
1− U

(
r̂, δp

2

))n−nr̂−1
δ

2
γp(1− p)

Since this quantity must be strictly smaller than one we have that

γ < min
r̂∈{0, 1

n ,··· , n−1
n }, p∈(0,1)

(
U
(

r̂, δp
2

))nr̂(
1− U

(
r̂, δp

2

))n−nr̂−1

B(nr̂ + 1, n− nr̂) δ
2 p(1− p)

,

Note also that by denoting

ŝ = nr̂, U = U
(

r̂,
δp
2

)
,
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then, thanks to Theorems A3 and A4 we can state that

B(ŝ + 1, n− ŝ)
1

Uŝ(1− U)n−ŝ−1 p =
ŝ!(n− ŝ− 1)!

n!
1

Uŝ(1− U)n−ŝ−1 p

≤
√

2πŝŝŝe−ŝe
1

12ŝ
√

2π(n− ŝ− 1)(n− ŝ− 1)n−ŝ−1e−(n−ŝ−1)e
1

12(n−ŝ−1)

√
2πnnne−n

1

Uŝ(1− U)n−ŝ−1 p

=
√

2πe1+ 1
12ŝ +

1
12(n−ŝ−1)

√
ŝŝŝ
√
(n− ŝ− 1)(n− ŝ− 1)n−ŝ−1

√
nnn

1

Uŝ(1− U)n−ŝ−1 p

≤
√

2πe
7
6

√
ŝ
√
(n− ŝ)ŝŝ(n− ŝ)n−ŝ
√

nnn
1

Uŝ(1− U)n−ŝ
1− U

n− ŝ
p

=
√

2πe
7
6

√
ŝ
√
(n− ŝ)ŝŝ(n− ŝ)n−ŝ
√

nnn
1

Uŝ(1− U)n−ŝ
1− U

n
(

1− ŝ
n

) p

≤
√

2πe
7
6

√
ŝ
√
(n− ŝ)ŝŝ(n− ŝ)n−ŝ
√

nnn
1

Uŝ(1− U)n−ŝ
1
n

p

=
√

2πe
7
6

√
ŝ(n− ŝ)√

n
1

e
−n
[

ŝ
n ln

(
ŝ
n
U

)
+ n−ŝ

n ln
(

1− ŝ
n

1−U

)] 1
n

p

≤
√

2πe
7
6

√
ŝ(n− ŝ)√

n
1

∑ŝ
i=0 (

n
i )U

i(1− U)n−i
1
n

p

=
√

2πe
7
6

√
ŝ
n

(
1− ŝ

n

)
√

n
2
δ

≤
√

2πe
7
6

1√
n

1
δ

,

and, consequently

min
r̂∈{0, 1

n ,··· , n−1
n }, p∈(0,1)

(
U
(

r̂, δp
2

))nr̂(
1− U

(
r̂, δp

2

))n−nr̂−1

B(nr̂ + 1, n− nr̂) δ
2 p(1− p)

≥ 2
√

n
√

2πe
7
6

.

Finally, for what concerns Lemma 8, we must prove that ∀r̂, r̂′, r̂′′ ∈ {0, 1/m, · · · , 1} such that
r̂′ < r̂′′, we have that

L(r̂′, δ)− L(r̂′′, δ) ≤ 0,

∃L−1 : L−1(L(r̂, n, δ), δ) ≥ r̂.

Exploiting Proposition A1 the first property can be easily derived. The second property is true by
definition of L−1(r, δ).

Appendix C. Technicalities

Technicalities of the paper are included in this section.

Proposition A1 (for Theorem A2). Let us define

L(R̂, n, δ) =

{
F−1(δ; nR̂, n− nR̂ + 1) R̂ ∈

{
1
n , 2

n , · · · , 1
}

0 R̂ = 0
,

U(R̂, n, δ) =

{
F−1(1− δ; nR̂ + 1, n− nR̂

)
R̂ ∈

{
0, 1

n , · · · , n−1
n

}
1 R̂ = 1

,

then

L(R̂, n, δ) ∈ [0, 1], U(R̂, n, δ) ∈ [0, 1],
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and

∂L(R̂, δ)

∂δ
=

{
B(nR̂,n−nR̂+1)

(L(R̂,δ))nR̂−1(1−L(R̂,δ))n−nR̂ R̂ ∈
{

1
n , 2

n , · · ·, 1
}

0 R̂ = 0
∈ [0, ∞),

∂U(R̂, δ)

∂δ
=

{ −B(nR̂+1,n−nR̂)
(U(R̂,δ))nR̂(1−U(R̂,δ))n−nR̂−1 R̂ ∈

{
0, 1

n , · · ·, n−1
n

}
0 R̂ = 1

∈ (−∞, 0].

The derivation of Proposition A1 is trivial.

Appendix D. Code

All Matlab codes used in this paper are available by request to the corresponding author.
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