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Abstract: We provide a non-asymptotic analysis of the spiked Wishart and Wigner matrix models
with a generative neural network prior. Spiked random matrices have the form of a rank-one signal
plus noise and have been used as models for high dimensional Principal Component Analysis (PCA),
community detection and synchronization over groups. Depending on the prior imposed on the
spike, these models can display a statistical-computational gap between the information theoretically
optimal reconstruction error that can be achieved with unbounded computational resources and the
sub-optimal performances of currently known polynomial time algorithms. These gaps are believed
to be fundamental, as in the emblematic case of Sparse PCA. In stark contrast to such cases, we show
that there is no statistical-computational gap under a generative network prior, in which the spike
lies on the range of a generative neural network. Specifically, we analyze a gradient descent method
for minimizing a nonlinear least squares objective over the range of an expansive-Gaussian neural
network and show that it can recover in polynomial time an estimate of the underlying spike with a
rate-optimal sample complexity and dependence on the noise level.

Keywords: spiked matrix models; generative networks; rank-one matrix recovery; statistical-
computational gap

1. Introduction

One of the fundamental problems in statistical inference and signal processing is
the estimation of a signal given noisy high dimensional data. A prototypical example is
provided by spiked matrix models where a signal y? ∈ Rn is to be estimated from a matrix
Y taking one of the following forms:

• Spiked Wishart Model in which Y ∈ RN×n is given by:

Y = u y?T + σZ , (1)

where σ > 0, u ∼ N (0, IN), Zij are i.i.d. from N (0, 1), and u and Z are independent;
• Spiked Wigner Model in which Y ∈ Rn×n is given by:

Y = y?y?T + νH (2)

where ν > 0,H ∈ Rn×n is drawn from a Gaussian Orthogonal Ensemble GOE(n), that is,
Hii ∼ N (0, 2/n) for all 1 ≤ i ≤ n andHij = Hji ∼ N (0, 1/n) for 1 ≤ j < i ≤ n.

In the last 20 years, spiked random matrices have been extensively studied, as they
serve as a mathematical model for many signal recovery problems such as PCA [1–4],
synchronization over graphs [5–7] and community detection [8–10]. Furthermore, these
models are archetypal examples of the trade-off between statistical accuracy and compu-
tational efficiency. From a statistical perspective, the objective is to understand how the
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choice of the prior on y? determines the critical signal-to-noise ratio (SNR) and number of
measurements above which it becomes information-theoretically possible to estimate the
signal. From a computational perspective, the objective is to design efficient algorithms
that leverage such prior information. A recent and vast body of literature has shown that
depending on the chosen prior, gaps can arise between the minimum SNR required to
solve the problem and the one above which known polynomial-time algorithms succeed.
An emblematic example is provided the Sparse PCA problem where the signal y? in (1)
is taken to be s-sparse. In this case N = O(s log n) number of samples are sufficient for
estimating y? [2,4], while the best known efficient algorithms require N = O(s2) [3,11,12].
This gap is believed to be fundamental. This “statistical-computational gap” has been
observed also for Spiked Wigner models (2) and, in general, for other structured signal
recovery problems where the prior imposed has a combinatorial flavor (see the next section
and [13,14] for surveys).

Motivated by the recent advances of deep generative networks in learning complex
data structures, in this paper we study the spiked random matrix models (1) and (2), where
the planted signal y? has a generative network prior. We assume that a generative neural
network G : Rk → Rn with k < n, has been trained on a data set of spikes, and the
unknown spike y? ∈ Rn lies on the range of G, that is, we can write y? = G(x?) for some
x? ∈ Rk. As a mathematical model for the trained G, we consider a network of the form:

G(x) = relu(Wd . . . relu(W2relu(W1x)) . . . ), (3)

with weight matrices Wi ∈ Rni×ni−1 and relu(x) = max(x, 0) is applied entrywise. We
furthermore assume that the network is expansive, that is, n = nd > nd−1 > · · · > n0 = k,
and the weights have Gaussian entries. These modeling assumptions and their variants
were used in [15–20].

Enforcing generative network priors has led to substantially fewer measurements
needed for signal recovery than with traditional sparsity priors for a variety of signal
recovery problems [17,21,22]. In the case of phase retrieval, [17,23] have shown that un-
der the generative prior (3), efficient compressive phase retrieval is possible with sample
complexity proportional (up to log factors) to the underlying signal dimensionality k. In
contrast, for a sparsity-based prior, the best known polynomial time algorithms (convex
methods [24–26], iterative thresholding [27–29], etc.) require a sample complexity pro-
portional to the square of the sparsity level for stable recovery. Given that generative
priors lead to no computational-statistical gap with compressive phase retrieval, one might
anticipate that they will close other computational-statistical gaps as well. Indeed, [30]
analyzed the spiked models (1) and (2) under a generative network prior similar to (3)
and observed no computational-statistical gap in the asymptotic limit k, n, N → ∞ with
n/k = O(1) and N/n = O(1). For more details on this work and on the comparison of
sparsity and generative priors, see Section 2.2.

Our Contribution

In this paper we analyze the spiked matrix models (1) and (2) under a generative
network prior in the nonasymptotic, finite data regime. We consider a d-layer feedforward
generative network G : Rk → Rn with architecture (3). We furthermore assume that the
planted spike y? ∈ Rn lies on the range of G, that is, there exists a latent vector x? ∈ Rk

such that y? = G(x?).
To estimate y?, we first find an estimate x̂ of the latent vector x? and then use G(x̂) to

estimate y?. We thus consider the following minimization problem (under the conditions
on the generative network specified below, it was shown in [15] that G is invertible and
there exists a unique x? that satisfies y? = G(x)):

min
x∈Rk

f (x) :=
1
4
‖G(x)G(x)T −M‖2

F, (4)

where:
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• for the Wishart model (1) we take M = ΣN − σ2 In with ΣN = YTY/N
• for the Wigner model (2) we take M = Y.

Despite the non-convexity and non-smoothness of the problem, our preliminary work
in [31] shows that when the generative network G is expansive and has Gaussian weights,
(4) enjoys a favorable optimization geometry. Specifically, every nonzero point outside
two small neighborhoods around x? and a negative multiple of it, has a descent direction
which is given a.e. by the gradient of f . Furthermore, in [31] it is shown that the the global
minimum of f lies in the neighborhoods around x? and has optimal reconstruction error.
This result suggests that a first order optimization algorithm can succeed in efficiently
solving (4), and no statistical-computational gap is present for the spiked matrix models
with a (random) generative network prior in the finite data regime. In the current paper, we
prove this conjecture by providing a polynomial-time subgradient method that minimizes
the non-convex problem (4) and obtains information-theoretically optimal error rates.

Our main contribution can be summarized as follows. We analyze a subgradient
method (Algorithm 1) for the minimization of (4) and show that after a polynomial number
of steps T̃ and up to polynomials factors in the depth d of the network, the iterate xT̃
satisfies the following reconstruction errors:

• in the Spiked Wishart Model :

‖G(xT̃)− y?‖2 .
(

1 +
σ2

‖y?‖2
2

)√ k log(n)
N

‖y?‖2 (5)

in the regime N & k log(n);
• in the Spiked Wigner Model:

‖G(xT̃)− y?‖2 .
ν

‖y?‖2
2

√
k log(n)

n
‖y?‖2. (6)

We notice that these bounds are information-theoretically optimal up to the log factors
in n, and correspond to the best achievable in the case of a k-dimensional subspace prior.
In particular, they imply that efficient recovery in the Wishart model is possible with a
number of samples N proportional to the intrinsic dimension of the signal y?. Similarly,
the bound in the Spiked Wigner Model implies that imposing a generative network prior
leads to a reduction of the noise by a factor of k/n.

Algorithm 1: Subgradient method for the minizimization problem (4)
Input: Weights Wi, observation matrix M, step size µ > 0, initial point

x0 ∈ Rk\{0} ;
1 for i = 0, 1, . . . , do
2 if f (xi) > f (−xi) then
3 x̃i ← −xi;

4 else
5 x̃i ← xi

6 Take vx̃i ∈ ∂ f (x̃i);
7 xi+1 ← x̃i − µvx̃i ;

Output: G(xi), xi

2. Related Work
2.1. Sparse PCA and Other Computational-Statistical Gaps

A canonical problem in Statistics is finding the directions that explain most of the
variance in a given cloud of data, and it is classically solved by Principal Component Anal-
ysis. Spiked covariance models were introduced in [1] to study the statistical performance
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of this algorithm in the high dimensional regime. Under a spiked covariance model it is
assumed that the data are of the form:

yi = uiy? + σzi, (7)

where σ > 0, ui ∼ N (0, 1) and zi ∼ N (0, In) are independent and identically distributed,
and y? is the unit-norm planted spike. Each yi is an i.i.d. sample from a centered Gaussian
N (0, Σ) with spiked covariance matrix given by Σ = y?y?T + σ2 In, with y? being the
direction that explains most of the variance. The estimate of y? provided by PCA is then
given by the leading eigenvector ŷ of the empirical covariance matrix ΣN = 1

N ∑N
i=1 yiyTi ,

and standard techniques from high dimensional probability can be used to show that (we
write f (n) & g(n) if f (n) ≥ Cn for some constant C > 0 that might depend σ and ‖y?‖2.
Similarly for f (n) . g(n) as long as N & n,

min
ε=±
‖εŷ− y?‖2 .

√
n
N

, (8)

with overwhelming probability. Note incidentally that the data matrix Y ∈ RN×n with
rows {yTi }i can be written as (1).

Bounds of the form (8), however, become uninformative in modern high dimensional
regimes where the ambient dimension of the data n is much larger than, or on the order
of, the number of samples N. Even worse, in the asymptotic regime n/N → c > 0 and
for σ2 large enough, the spike y? and the estimate ŷ become orthogonal [32], and minimax
techniques show that no other estimators based solely on the data (7), can achieve better
overlap with y? [33].

In order to obtain consistent estimates and lower the sample complexity of the problem,
therefore, additional prior information on the spike y? has to be enforced. For this reason, in
recent years various priors have been analyzed such as positivity [34], cone constraints [35]
and sparsity [32,36]. In the latter case y? is assumed to be s-sparse, and it can be shown
(e.g., [33]) that for N & s log n and n & s, the s-sparse largest eigenvector ŷs of ΣN

ŷs = argmax
y∈Sn−1

2 ,‖y‖0≤s
yTΣNy

satisfies with high probability the condition:

min
ε=±
‖εŷs − y?‖2 .

√
s log n

N
.

This implies, in particular, that the signal y? can be estimated with a number of
samples that scales linearly with its intrinsic dimension s. These rates are also minimax
optimal; see for example [4] for the mean squared error and [2] for the support recovery.
Despite these encouraging results, no currently known polynomial time algorithm achieves
such optimal error rates and, for example, the covariance thresholding algorithm of [37]
requires N & s2 samples in order to obtain exact support recovery or estimation rate

min
ε=±
‖εŷs − y?‖2 .

√
s2 log n

N
,

as shown in [3]. In summary, only computationally intractable algorithms are known to
reach the statistical limit N = Ω(s) for Sparse PCA, while polynomial time methods are
only sub-optimal, requiring N = Ω(s2). Notably, [38] provided a reduction of Sparse PCA
to the planted clique problem which is conjectured to be computationally hard.

Further strong evidence for the hardness of sparse PCA have been given in a series
of recent works [39–43]. Other computational-statistical gaps have also been found and
studied in a variety of other contexts such as sparse Gaussian mixture models [44], tensor
principal component analysis [45], community detection [46] and synchronization over
groups [47]. These works fit in the growing and important body of literature aiming at
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understanding the trade-offs between statistical accuracy and computational efficiency in
statistical inverse problems.

We finally note that many of the above mentioned problems can be phrased as recovery
of a spike vector from a spiked random matrix. The difficulty can be viewed as arising from
simultaneously imposing low-rankness and additional prior information on the signal
(sparsity in case of Sparse PCA). This difficulty can be found in sparse phase retrieval as
well. For example, [25] has shown that m = O(s log n) number of quadratic measurements
are sufficient to ensure well-posedness of the estimation of an s-sparse signal of dimension
n lifted to a rank-one matrix, while m ≥ O(s2/ log2 n) measurements are necessary for the
success of natural convex relaxations of the problem. Similarly, [48] studied the recovery
of simultaneously low-rank and sparse matrices, showing the existence of a gap between
what can be achieved with convex and tractable relaxations and nonconvex and intractable
methods.

2.2. Inverse Problems with Generative Network Priors

Recently, in the wake of successes of deep learning, generative networks have gained
popularity as a novel approach for encoding and enforcing priors in signal recovery
problems. In one deep-learning-based approach, a dataset of “natural signals” is used
to train a generative network in an unsupervised manner. The range of this network
defines a low-dimensional set which, if successfully trained, contains or approximately
contains, target signals of interest [19,21]. Non-convex optimization methods are then
used for recovery by optimizing over the range of the network. We notice that allowing
the algorithms the complete knowledge of the generative network architecture and of
the learned weights is roughtly analogous to allowing sparsity-based algorithms the
knowledge of the basis or frame in which the signal is modeled as sparse.

The use of generative network for signal recovery has been successfully demonstrated
in a variety of settings such as compressed sensing [21,49,50], denoising [16,51], blind
deconvolution [22], inpainting [52] and many more [53–56]. In these papers, generative
networks significantly outperform sparsity based priors at signal reconstruction in the
low-measurement regime. This fundamentally leverages the fact that a natural signal can
be represented more concisely by a generative network than by a sparsity prior under an
appropriate basis. This characteristic has been observed even in untrained generative
networks where the prior information is encoded only in the network architecture and has
been used to devise state-of-the-art signal recovery methods [57–59].

Parallel to these empirical successes, a recent line of works have investigated theo-
retical guarantees for various statistical estimation tasks with generative network priors.
Following the work of [15,21] gave global guarantees for compressed sensing, followed
then by many others for various inverse problems [19,20,50,51,55]. In particular, in [17] the
authors have shown that m = Ω(k log n) number of measurements are sufficient to recover
a signal from random phaseless observations, assuming that the signal lies on the range
of a generative network with latent dimension k. The same authors have then provided
in [23] a polynomial time algorithm for recovery under the previous settings. Note that,
contrary to the sparse phase retrieval problem, generative priors for phase retrieval allow
for efficient algorithms with optimal sample complexity, up to logarithmic factors, with
respect to the intrinsic dimension of the signal.

Further theoretical advances in signal recovery with generative network priors have
been spurred by using techniques from statistical physics. Recently, [30] analyzed the
spiked matrix models (1) and (2) with y? in the range of a generative network with random
weights, in the asymptotic limit k, n, N → ∞ with n/k = O(1) and N/n = O(1). The
analysis is carried out mainly for networks with sign or linear activation functions in
the Bayesian setting where the latent vector is drawn from a separable distribution. The
authors of [30] provide an Approximate Message Passing and a spectral algorithm, and they
numerically observe no statistical-computational gap as these polynomial time methods
are able to asymptotically match the information-theoretic optimum. In this asymptotic
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regime, [60] further provided precise statistical and algorithmic thresholds for compressed
sensing and phase retrieval.

3. Algorithm and Main Result

In this section we present an efficient and statistically-optimal algorithm for the
estimation of the signal y? given a spiked matrix Y of the form (1) or (2). The recovery
method is detailed in Algorithm 1, and it is based on the direct optimization of the nonlinear
least squares problem (4).

Applied in [16] for denoising and compressed sensing under generative network
priors, and later used in [23] for phase retrieval, the first order optimization method
described in Algorithm 1 leverages the theory of Clarke subdifferentials (the reader is referred
to [61] for more details). As the objective function f is continuous and piecewise smooth,
at every point x ∈ Rk it has a Clarke subdifferential given by

∂ f (x) = conv{v1, v2, . . . , vT}, (9)

where conv denotes the convex hull of the vectors v1, . . . , vT , which are respectively the
gradient of the T smooth functions adjoint at x. The vectors vx ∈ ∂ f (x) are the subgradients
of f at x, and at a point x where f is differentiable it holds that ∂ f (x) = {∇ f (x)}.

The reconstruction method presented in Algorithm 1 is motivated by the landscape
analysis of the minimization problem (4) for a network G with sufficiently-expansive
Gaussian weights matrices. Under this assumption, we showed in [31] that (4) has a benign
optimization geometry and in particular that for any nonzero point outside a neighborhood
of x? and a negative multiple of it, any subgradient of f is a direction of strict descent.
Furthermore we showed that the points in the vicinity of the spurious negative multiple of
x? have function values strictly larger than those close to x?. Figure 1 shows the expected
value of f in the noiseless case, ν = 0 and N → ∞, for a generative network with latent
dimension k = 2. This plot highlights the global minimimum at x? = [1, 1], and the flat
region in near a negative multiple of x?.

x1

1.0
0.5

0.0
0.5

1.0 x2
1.0

0.5
0.0

0.5
1.0

f(x)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 1. Expected value, with respect to the weights, of the objective function f in (4) in the noiseless
case (see (16) for explicit formula), for a network with latent dimension k = 2 and x? = [1, 1].

At each step, the subgradient method in Algorithm 1 checks if the current iterate xi has
a larger loss value than its negative multiple, and if so negates xi. As we show in the proof
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of our main result, this step will ensure that the algorithm will avoid the neighborhood
around the spurious negative multiple of x? and will converge to the neighborhood around
x? in a polynomial number of steps.

Below we make the following assumptions on the weight matrices of G.

Assumption 1. The generative network G defined in (3), has weights Wi ∈ Rni×ni−1 with i.i.d.
entries from N (0, 1/ni) and satisfying the expansivity condition with constant ε > 0:

ni+1 ≥ c ni ε−2 log(1/ε) (10)

for all i and a universal constant c > 0.

We note that in [31] the expansivity condition was more stringent, requiring an
additional log factor. Since the publication of our paper, [62] has shown that the more
relaxed assumption (10) suffices for ensuring a benign optimization geometry. Under
Assumption 1, our main theorem below shows that the subgradient method in Algorithm 1
can estimate the spike y? with optimal sample complexity and in a polynomial number
of steps.

Theorem 1. Let x? ∈ Rk nonzero and y? = G(x?) where G is a generative network satisfying
Assumption 1 with ε ≤ K1/d96. Consider the minimization problem (4) and assume that the noise
level ω satisfies ω ≤ K2‖x?‖2

22−d/d44 where:

• for the Spiked Wishart Model (1) take M = ΣN − σ2 In, and

ω := (‖y?‖2
2 + σ2)max

{√
338k log(3 nd

1nd−1
2 . . . n2

d−1n)
N

,
156k log(3 nd

1nd−1
2 . . . n2

d−1n)
N

}
;

• for the Spiked Wigner Model (2) take M = Y, and

ω := ν

√
169k log(3 nd

1nd−1
2 . . . n2

d−1n)
n

.

Consider Algorithm 1 with nonzero x0 and ‖x0‖2 < R? where R? ≥ 5‖x?‖2/(2
√

2), and
stepsize µ = 22dK3/(8d4R2

?). Then with probability at least 1 − 2e−k log n − ∑d
i=1 e−Cni−1 ,

0 < ‖xi‖2 < R? for any i ≥ 1, there exists an integer T ≤ K4 f (x0)22d/(R4
?d4ε) such that

for any i ≥ T:

‖xi+1 − x?‖2 ≤ ρi+1−T
1 ‖xT − x?‖2 + ρ2

2d

‖x?‖2
ω (11)

‖G(xi+1)− y?‖2 ≤
1.2

2d/2 ρ
i+1−T
1 ‖xT − x?‖2 + 1.3ρ2

ω

‖y?‖2
(12)

where C > 0, K1, . . . , K4 > 0, ρ1 ∈ (0, 1) and ρ2 > 0 are universal constants.

Note that the quantity 22d in the hypotheses and conclusions of the theorem is an
artifact of the scaling of the network and it should not be taken as requiring exponentially
small noise or number of steps. Indeed under Assumption 1, the ReLU activation zeros
out roughly half of the entries of its argument leading to an “effective” operator norm of
approximately 1/2. We furthermore notice that the dependence of the depth d is likely
quite conservative and it was not optimized in the proof as the main objective was to
obtain tight dependence on the intrinsic dimension of the signal k. As shown in the
numerical experiments, the actual dependence on the depth is much better in practice.
Finally, observe that despite the nonconvex nature of the objective function in (4) we obtain
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a rate of convergence which is not directly dependent on the dimension of the signal,
reminiscent of what happens in the convex case.

The quantity ω in Theorem 1 can be interpreted as the intrinsic noise level of the
problem (inverse SNR). The theorem guarantees that in a polynomial number of steps the
iterates of the subgradient method will converge to x? up to ω . For T̃ large enough G(xT̃)
will satisfy the rate-optimal error bounds (5) and (6).

Numerical Experiments

We illustrate the predictions of our theory by providing results of Algorithm 1 on a set
of synthetic experiments. We consider 2-layer generative networks with ReLU activation
functions, hidden layer of dimension n1 = 500, output dimension n2 = n = 1500 and
varying number of latent dimension k ∈ [40, 60, 100]. We randomly sample the weights
of the matrix independently from N (0, 2/ni) (this scaling removes that 2d dependence
in Theorem1). We then consider data Y according the spiked models (1) and (2), where
x? ∈ Rk is chosen so that y? = G(x?) has unit norm. For the Wishart model, we vary the
number of samples N; and for the Wigner model, we vary the noise level ν so that the
following quantities remain constant for the different networks with latent dimension k:

θWS :=
√

k log(n2
1 n)/N, θWG := ν

√
k log(n2

1 n)/n.

In Figure 2 we plot the reconstruction error given by ‖G(x)− y?‖2 against θWS and
θWG. As predicted by Theorem 1, the errors scale linearly with respect to these control
parameters, and moreover the overlap of these plots confirms that these rates are tight with
respect to the order of k.

0.5 1.0 1.5 2.0 2.5 3.0
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Figure 2. Reconstruction error for the recovery of a spike y? = G(x?) in the Wishart and Wigner models with random
generative network priors. Each point corresponds to the average over 50 random drawing of the network weights and
samples. These plots demonstrate that the reconstruction errors follow the scalings established by Theorem 1.

4. Recovery Under Deterministic Conditions

We will derive Theorem 1 from Theorem 3, below, which is based on a set of determin-
istic conditions on the weights of the matrix and the noise. Specifically, we consider the
minimization problem (4) with

M = G(x?)G(x?)T + H

for an unknown symmetric matrix H ∈ Rn×n, nonzero x? ∈ Rk, and a given d-layer feed
forward generative network G as in (3).

In order to describe the main deterministic conditions on the generative network G,
we begin by introducing some notation. For W ∈ Rn×k and x ∈ Rk, we define the operator
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W+,x := diag(Wx > 0)W such that relu(Wx) = W+,xx. Moreover, we let W1,+,x =
(W1)+,x = diag(W1x > 0)W1, and for 2 ≤ i ≤ d we define recursively

Wi,+,x = diag(Wi, Π1
j=i−1Wj,+,xx > 0)Wi,

where Π1
i=dWi = WdWd−1 . . . W1. Finally we let Λx = Π1

j=dWj,+,x and note that
G(x) = Λxx. With this notation we next recall the following deterministic condition
on the layers of the generative network.

Definition 2 (Weight Distribution Condition [15]). We say that W ∈ Rn×k satisfies the Weight
Distribution Condition (WDC) with constant ε > 0 if for all nonzero x1, x2 ∈ Rk:

‖WT
+,x1

W+,x2 −Qx1,x2‖2 ≤ ε,

where

Qx1,x2 =
π − θx1,x2

2π
Ik +

sin θx1,x2

2π
Mx̂2↔x̂2

and θx1,x2 = ∠(x1, x2), x̂1 = x1/‖x1‖2, x̂2 = x2/‖x2‖2, Ik is the k × k identity matrix and
Mx̂1↔x̂2 is the matrix that sends x̂1 7→ x̂2, x̂2 7→ x̂1, and with kernel span({x1, x2})⊥.

Note that Qx1,x2 is the expected value of WT
+,x1

W+,x2 when W has rows wi ∼ N (0, Ik/n),
and if x1 = x2 then Qx1,y2 is an isometry up to the scaling factor 1/2. Below we will say
that a d-layer generative network G of the form (3), satisfies the WDC with constant ε > 0
if every weight matrix Wi has the WDC with constant ε for all i = 1, . . . d.

The WDC was originally introduced in [15], and ensures that the angle between
two vectors in the latent space is approximately preserved at the output layer and, in
turn, it guarantees the invertibility of the network. Assumption 1 will guarantees that the
generative network G satisfies the WDC with high probability.

We are now able to state our recovery guarantees for a spike y? under deterministic
conditions on the network G and noise H.

Theorem 3. Let d ≥ 2 and assume the generative network (3) has weights Wi ∈ Rni×ni−1 satisfy-
ing the WDC with constant 0 < ε ≤ K1/d96. Consider Algorithm 1 with M = G(x?)G(x?)T +
H, x? ∈ Rk\{0} and H a symmetric matrix satisfying:

‖ΛT
x HΛx‖2 ≤

ω

2d , and ω ≤ K2
‖x?‖2

22−d

d44 . (13)

Take x0 nonzero and with ‖x0‖2 < R? where R? ≥ 5‖x?‖2/(2
√

2), µ = 22dK3/(8d4R2
?). Then

the iterates {xi}i≥0 generated by the Algorithm 1 satisfy 0 < ‖xi‖ < R? and obey to the following:

(A) there exists an integer T ≤ K4
f (x0)22d

R4
?d4ε

such that

‖xT − x?‖2 ≤ K5d14√ε‖x?‖2 + K62dd10ω‖x?‖−1
2

(B) for any i ≥ T:

‖xi+1 − x?‖2 ≤ ρi+1−T
1 ‖xT − x?‖2 + ρ2

2d

‖x?‖2
ω (14)

‖G(xi+1)− G(x?)‖2 ≤
1.2

2d/2 ρ
i+1−T
1 ‖xT − x?‖2 + 1.3ρ2

ω

‖y?‖2
(15)

where K1, . . . , K6 > 0, ρ1 ∈ (0, 1) and ρ2 > 0 are universal constants.

Theorem 1 follows then from Theorem 3 after proving that with high probability the
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spectral norm of ΛT
x HΛx, where H = M− y?y?T, can be upper bounded by ω/2d, and the

weights of the network G satisfy with high probability the WDC.

In the rest of this section section we will describe the main steps and tools needed to
prove Theorem 3.

4.1. Technical Tools and Outline of the Proofs

Our proof strategy for Theorem 3 can be summarized as follows:

1. In Proposition A1 (Appendix A.3) we show that the iterates {xi}i=1 of the Algorithm 1
stay inside the Euclidean ball of radius R? and remain nonzero for all i ≥ 1.

2. We then identify two small Euclidean balls B+ and B− around respectively x? and
−ρdx?, where ρd ∈ (0, 1) only depends on the depth of the network. In Proposition A2
we show that after a polynomial number of steps, the iterates {xi} of the Algorithm 1
enter the region B+ ∪ B− (Appendix A.4).

3. We show, in Proposition A3, that the negation step causes the iterates of the algorithm
to avoid the spurious point −ρdx? and actually enter B+ within a polynomial number
of steps (Appendix A.5).

4. We finally show in Proposition A4, that in B+ the loss function f enjoys a favorable
convexity-like property, which implies that the iterates {xi} will remain in B+ and
eventually converge to x? up to the noise level (Appendix A.6).

One of the main difficulties in the analysis of a subgradient method in Algorithm 1 is
the lack of smoothness of the loss function f . We show that the WDC allows us to overcome
this issue by showing that the subgradients of f are uniformly close, up to the noise level,
to the vector field hx ∈ Rk:

hx :=
1

22d

(
xxT − h̃x h̃Tx

)
x,

where h̃x is continuous for nonzero x (see Appendix A.2). We show furthermore that hx
is locally Lipschitz, which allows us to conclude that the gradient method decreases the
value of the loss function until eventually reaching B+ ∪ B− (Appendix A.4).

Using the WDC, we show that the loss function f is uniformly close to

fE(x) =
1

22d+2

(
‖x‖4

2 + ‖x?‖4
2 − 2〈x, h̃x〉2

)
. (16)

A direct analysis of fE reveals that its values inside B− are strictly larger then those
inside B+. This property extends to f as well, and guarantees that the gradient method
will not converge to the spurious point −ρdx? (Appendix A.5).
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Appendix A. Supporting Lemmas and Proof of Theorem 3

The proof of Theorem 3 is provided in Appendix A.7. We begin this section with a set
of preliminary results and supporting lemmas.

Appendix A.1. Notation

We collect the notation that is used throughout the paper. For any real number a, let
relu(a) = max(a, 0) and for any vector v ∈ Rn, denote the entrywise application of relu
as relu(v) . Let diag(Wx > 0) be the diagonal matrix with i-th diagonal element equal
to 1 if (Wx)i > 0 and 0 otherwise. For any vector x we denote with ‖x‖ its Euclidean
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norm and for any matrix A we denote with ‖A‖ its spectral norm and with ‖A‖F its
Frobenius norm. The euclidean inner product between two vectors a and b is 〈a, b〉, while
for two matrices A and B their Frobenius inner product will be denoted by 〈A, B〉F. For
any nonzero vector x ∈ Rn, let x̂ = x/‖x‖. For a set S we will write |S| for its cardinality
and Sc for its complement. Let B(x, r) be the Euclidean ball of radius r centered at x, and
Sk−1 be the unit sphere in Rk. Let θ0 = ∠(x, x?) and for i ≥ 0 let θi+1 = g(θi) where g is
defined in (A1). We will write γ = Ω(δ) to mean that there exists a positive constant C such
that γ ≥ Cδ and similarly γ = O(δ) if γ ≤ Cδ. Additionally we will use a = b + O1(δ)
when ‖a− b‖ ≤ δ, where the norm is understood to be the absolute value for scalars, the
Euclidean norm for vectors and the spectral norm for matrices.

Appendix A.2. Preliminaries

For later convenience we will define the following vectors:

px := ΛT
x Λxx,

qx := ΛT
x Λx?x?,

v̄x := [px pTx − qxqTx ] x,

ηx := ΛT
x HΛx x.

Note then that when f is differentiable at x, then ṽx := ∇ f (x) = v̄x − ηx and in particular
when H = 0 then we have ṽx = v̄x.

The following function controls how the angles are contracted by a ReLU layer:

g(θ) := cos−1 ( (π − θ) cos θ + sin θ

π

)
. (A1)

As we mentioned in Section 4.1, our analysis is based on showing that the subgradients of
f are uniformly close to the vector field hx given by

hx :=
1

22d

(
xxT − h̃x h̃Tx

)
x, (A2)

where

h̃x :=
( d−1

∏
i=0

π − θ̄i
π

)
x? +

d−1

∑
i=1

sin θi
π

( d−1

∏
j=i+1

π − θ̄j

π

)‖x?‖
‖x‖ x, (A3)

and θi := g(θ̄i−1) for g given by (A1) and θ0 = ∠(x, y).

Lemma A1 (Lemma 8 in [15]). Suppose that d ≥ 2 and the WDC holds with
ε < 1/(16πd2)2, then for all nonzero x, x? ∈ Rk,

〈Λxx, Λx?x?〉 ≥
1

4π

1
2d ‖x‖2‖x?‖, (A4)

‖ΛT
x Λx?x? −

h̃x

2d ‖ ≤ 24
d3√ε

2d ‖x?‖, and (A5)

‖Λx‖2 ≤ 1
2d (1 + 2ε)d ≤ 1 + 4εd

2d ≤ 13
12

1
2d . (A6)

Proof. The first two bounds can be found in [15] (Lemma 8). The third bound follows by
noticing that the WDC implies:

‖Λx‖2 ≤ Π1
i=d‖Wi,+,x‖2 ≤ 1

2d (1 + 2ε)d ≤ 1 + 4εd
2d ≤ 13

12
1
2d ,

where we used log(1 + z) ≤ z and ez ≤ (1 + 2z) for all 0 ≤ z ≤ 1.
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The next lemma shows that the noiseless gradient v̄x concentrates around hx.

Lemma A2. Suppose d ≥ 2 and the WDC holds with ε < 1/(16πd2)2, then for all nonzero
x, x? ∈ Rk:

‖v̄x − hx‖ ≤ 86
d4√ε

22d max(‖x?‖2, ‖x‖2)‖x‖.

We now use the characterization of the Clarke subdifferential given in (9) to derive a
bound on the concentration of vx ∈ ∂ f (x) around hx up to the noise level.

Lemma A3. Under the assumptions of Lemma A2, and assuming ‖ΛT
x HΛx‖ ≤ ω/2d, for any

vx ∈ ∂ f (x):

‖vx − hx‖ ≤ 86
d4√ε

22d max(‖x?‖2, ‖x‖2)‖x‖+ ω

2d ‖x‖

From the above and the bound on the noise level ω we can bound the norm of the
step vx in the Algorithm 1.

Lemma A4. Under the assumptions of Lemma A3, and assuming that ω satisfies (13), for any
vx ∈ ∂ f (x):

‖vx‖ ≤
4

22d d2 max(‖x‖2, ‖x?‖2)‖x‖.

Appendix A.3. Iterates Stay Bounded

In this section we prove that all the iterates {xi} generated by Algorithm 1 remain
inside the Euclidean ball B(0, R?) where R? ≥

√
2C?‖x?‖ and C? = 5/4.

Lemma A5. Let the assumptions of Lemma A4 be satisfied, µ = K322d/(8d4R2
?) with 512π2K3 < 1.

Then for any x ∈ Rk with C?‖x?‖ < ‖x‖ ≤ R? and any λ ∈ [0, 1], it holds that ‖x− λ µ vx‖ ≤ ‖x‖.

From the previous lemma we can now derive the boundedness of the iterates of the
Algorithm 1.

Proposition A1. Under the assumptions of Theorem 3, if x ∈ B(0, R?)\{0} it follows that
x − λ µ vx ∈ B(0, R?)\{0}. Furthermore if x0 ∈ B(0, R?)\{0}, the iterates {xi}i=1 of the
Algorithm 1 satisfy xi − λ µ vxi ∈ B(0, R?)\{0} for all i ≥ 1 and λ ∈ [0, 1].

Proof. Assume C?‖x?‖ < ‖x‖ ≤ R?, then the conclusions follows from Lemma A5.
Assuming instead that ‖x‖ ≤ C?‖x?‖, note that

‖x− λ µ vx‖ ≤ ‖x‖+ µ‖vx‖ ≤ (1 +
1

2d2 )‖x‖ ≤ R?

using Lemma A4, d ≥ 2 and the assumptions on µ and R?. Finally observe that if
xi ∈ B(0, R?) then the same holds for x̃i.

Finally if for some i ≥ 0 it was the case that 0 = x̃i − λµvx̃i , then this would imply
that ‖x̃i‖ = λµ‖vx̃i‖ which cannot happen because by Lemma A4 and the choice of the
step size it holds that µ‖vx̃i‖ ≤ ‖x̃i‖/8.

Appendix A.4. Convergence to Sβ

We define the set Sβ outside which we can lower bound the norm of ‖hx‖ as

Sβ :=
{

x ∈ Rk| ‖hx‖ ≤
β

22d max(‖x‖2, ‖x?‖2)‖x‖
}

,
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where we take

β = 7 ·
(
86d4√ε + 2dω‖x?‖−2). (A7)

Outside the set Sβ the sub-gradients of f are bounded below and the landscape has
favorable optimization geometry.

Lemma A6. Let x ∈ B(0, R?)\{0} ∩ S c
β, then for all vx ∈ ∂ f (x)

‖vx‖ ≥ 6
(max(‖x‖2, ‖x?‖2)‖x‖

22d 86d4√ε +
ω

2d ‖x‖
)

. (A8)

Moreover let λ ∈ [0, 1] and xλ = x− λµvxλ
then

‖vx − vxλ
‖ ≤ 15

16
‖vx‖, (A9)

for all vx ∈ ∂ f (x) and vxλ
∈ ∂ f (xλ).

Based on the previous lemma we can prove the main result of this section.

Proposition A2. Under the assumptions of Theorem 3, if xi ∈ B(0, R?)\{0} ∩ S c
β then

f (xi+1)− f (xi) ≤ −
KR4

?d4ε

22d (A10)

for some numerical constant K > 0. Moreover there exists an integer T ≤ f (x0)22d

KR4
?d4ε

such xi+T ∈ Sβ.

Proof. Let xi /∈ Sβ and assume that f (xi) ≤ f (−xi), then x̃i = xi. By the mean value
theorem for Clarke subdifferentials [61] (Theorem 8.13), there exists λ ∈ (0, 1) such that for
xi,λ = xi − µλvxi and a vxi,λ ∈ ∂ f (xi,λ) it holds that

f (xi+1)− f (x̃i) = 〈vxi,λ ,−µvxi 〉
= 〈vxi ,−µvxi 〉+ 〈vxi,λ − vxi ,−µvxi 〉
≤ −µ‖vxi‖(‖vxi‖ − ‖vxi,λ − vxi‖)
≤ − µ

16‖vxi‖2
(A11)

where the first inequality follows from the triangle inequality and the second from
Equation (A9). Next observe that by (A8)

‖vx‖2 ≥ 36
max(‖x‖2, ‖x?‖2)2‖x‖2

24d 862d8ε

which together with the definition of µ and (A11) gives (A10).
Next take xi /∈ Sβ and assume f (xi) > f (−xi), so that x̃i = −xi. Observe that

f (xi+1)− f (xi) < f (xi+1)− f (−xi) = f (xi+1)− f (x̃i),

we obtain then (A10) proceeding as before.
Finally the claim on the maximum number of iterations directly follows by a telescopic
sum on (A10) and f (·) ≥ 0.

Appendix A.5. Convergence to a Neighborhood Around x?
In the previous section we have shown that after a finite number of steps the iter-

ates {xi} of the Algorithm 1 will enter in the region Sβ. In this section we show that,
thanks to the negation step in the descent algorithm, they will eventually be confined in a
neighborhood of x?.

The following lemma shows that Sβ is contained inside two balls around x? and −x?.
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Lemma A7. Suppose 8πd6√β ≤ 1, then we have Sβ ⊂ B+ ∪ B− where

B+ := B(x?, R1βd10‖x?‖) and B− := B(−ρdx?, R2
√

βd10‖x?‖),

where R1, R2 are numerical constants and 0 < ρd < 1 such that ρd → 1 as d→ ∞.

We furthermore observe that the ball around −x? has values strictly higher that the
one around x?.

Lemma A8. Suppose that d ≥ 2, the WDC holds with ε < 1/(16πd2)2 and H satisfies (13).
Then for any φd ∈ [ρd, 1], it holds that

f (x) < f (y), (A12)

for all x ∈ B(φdx?, $‖x?‖d−12) and y ∈ B(−φdx?, $‖x?‖d−12) where $ < 1 is a universal
constant.

The main result of this section is about the convergence to a neighborhood of x? of the
iterates {xi}.

Proposition A3. Under the assumptions of Theorem 3, if xi ∈ B(0, R?)\{0}, then there exists

a finite number of steps T ≤ K f (xi)22d

R4
?d4ε

such that xi+T ∈ B(x?, R1βd10‖x?‖). In particular it
holds that

‖xi+T − x?‖ ≤ C1d14√ε‖x?‖+ C22dd10ω‖x?‖−1. (A13)

Proof. Either xi ∈ Sβ or by Proposition A2 there exist T′ such that xi+T′ ∈ Sβ. By the choice
of ε > 0, the definition of β in (A7), and the assumption on the noise level (13), it follows
that the hypotheses of Lemma A7 are satisfied. We therefore define the two neighborhoods
S+β := Sβ ∩B+ and S−β := Sβ ∩B− and conclude that that either xi+T′ ∈ S+β or xi+T′ ∈ S−β .

We next notice that S+β ⊆ B(x?, $‖x?‖d−12) and S−β ⊆ B(−ρdx?, $‖x?‖d−12). We can

then use Lemma A8 to conclude that by the negation step, if xi+T′ ∈ S+β then x̃i+T′ ∈ S+β ,

otherwise we will have x̃i+T′ ∈ −S−β .

We now analyze the case xi+T′ ∈ −S−β ∩ S
c
β. Applying again Proposition A2, we

have that there exists and integer T′′ ≤ K f (xi+N)22d

R4
?d4ε

such that xi+T′+T′′ ∈ Sβ. Furthermore
Proposition A2 implies that f (xi+T′+T′′) < f (xi+T′), while from Lemma A8 we know that
f (xi+T′) < f (y) for all y ∈ S−β . We conclude therefore that xi+T′+T′′ must be in S+β .

In summary we obtained that there exists an integer T ≤ K f (x0)22d

R4
?d4ε

such that

xi+T ∈ S+β ⊂ B
+. Finally Equation (A13) follows from the definition of β in (A7) and

B+.

Appendix A.6. Convergence to x? up to Noise

Lemma A9. Suppose the WDC holds with ε < 1/(2004d6), then for all x ∈ B(x?, d
√

ε‖x?‖)
and vx ∈ ∂x f (x), it holds that

‖vx −
τ1

22d ‖x?‖
2(x− x?)‖ ≤ τ2

‖x?‖2

22d ‖x− x?‖+ τ3
ω

2d ‖x?‖

where τ1 = 21/5, τ2 = 17/5 and τ3 = (1 + 1/(400)2).

Based on the previous condition on the direction of the sub-gradients we can then
prove that the iterates of the algorithm converge to x? up to noise.
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Proposition A4. Under the assumptions of Theorem (3), if xT ∈ B+ then for any i ≥ T it holds
that xi ∈ B+ and furthermore

‖xi+1 − x?‖ ≤ ρi+1−T
1 ‖xT − x?‖+ ρ2

2d

‖x?‖
ω (A14)

where ρ1 ∈ (0, 1) and ρ2 > 0 are numerical constants.

Proof. If i = T, by Proposition A2, it follows that xi = x̃i ∈ B+. Furthermore, the
assumptions of Lemma A9 are satisfied and we can write:

‖xi+1 − x?‖ = ‖x̃i − µvx̃i − x?‖
≤
(
1− µτ1‖x?‖2

22d

)
‖x̃i − x?‖+ µ‖vx̃i −

τ1
22d ‖x?‖2(x̃i − x?)‖

≤
(
1− µ(τ1−τ2)‖x?‖2

22d

)
‖x̃i − x?‖+ µ τ3

ω
2d ‖x?‖.

(A15)

Next recall that ω satisfies (13), µ = K322d/(8d4R2
?) and R2

? ≥ 25‖x?‖2/8, then

‖xi+1 − x?‖ ≤
(
1− µ(τ1 − τ2)‖x?‖2

22d

)
‖x̃i − x?‖+ µ

K2

22d
τ3

d44 ‖x?‖
3

≤
[
1− (τ1 − τ2)

K3

25d4 + K2
K3

25d48

]
‖x?‖

Therefore for K2 and K3 small enough we obtain that xi+1 ∈ B(x?, R1 β d10‖x?‖) and
by induction this holds for all i ≥ T. Finally we obtain (A14) by letting ρ1 = (1 −
µ(τ1 − τ2)‖x?‖2/22d) and ρ2 = K3τ3/(25d4) in (A15).

Appendix A.7. Proof of Theorem 3

We begin recalling the following fact on the local Lipschitz property of the generative
network G under the WDC.

Lemma A10 (Lemma 21 in [16]). Suppose x ∈ B(x?, d
√

ε‖x?‖), and the WDC holds with
ε < 1/(2004d6). Then it holds that:

‖G(x)− G(x?)‖ ≤
1.2

2d/2 ‖x− x?‖.

We then conclude the proof of Theorem 3 by using the above lemma and the results in
the previous sections.

(I) By assumption x0 ∈ B(0, R?)\{0} so that according to Proposition A1 for any
i ≥ 1 it holds that xi ∈ B(0, R?)\{0}.

(II) By Proposition A3, there exists an integer T such that xT ∈ B+ and therefore it
satisfies the conclusions of Theorem 3.A

‖xT − x?‖ ≤ C1d14√ε‖x?‖+ C22dd10ω‖x?‖−1.

(III) Once in B+ the iterates of Algorithm 1 converge to x? up to the noise level, as
shown by Proposition A4 and Equation (A14)

‖xi+1 − x?‖ ≤ ρi+1−T
1 ‖xT − x?‖+ ρ2

2d

‖x?‖
ω

which corresponds to (11) in Theorem 3.B .
(IV) The reconstruction error (12) in Theorem 3.B, follows then from (11) by applying

Lemma A10 and the lower bound (A4).
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Appendix B. Supplementary Proofs

Appendix B.1. Supplementary Proofs for Appendix A.2

Below we prove Lemma A2 on the concentration of the gradient of f at a differen-
tiable point.

Proof of Lemma A2. We begin by noticing that:

v̄x − hx =
[
〈px, x〉px − 〈x, x〉 x

22d

]
+ [〈h̃x, x〉 h̃x

22d − 〈qx, x〉x].

Below we show that:

‖〈px, x〉px − 〈x, x〉 x
22d ‖ ≤

50
22d d3√ε max{‖x‖2, ‖x?‖2}‖x‖. (A16)

and

‖〈qx, x〉px − 〈h̃x, x〉 h̃x

22d | ≤
36
22d d4√ε max{‖x‖2, ‖x?‖2}‖x‖. (A17)

from which the thesis follows.
Regarding Equation (A16) observe that:

‖〈px, x〉px − 〈x, x〉 x
22d ‖ = ‖〈px, x〉

[
px −

x
2d

]
+ 〈px −

x
2d ,

x
2d 〉x‖

≤
(
‖Λxx‖2 +

‖x‖2

2d

)
‖px −

x
2d ‖

≤ 50
22d d3√ε‖x‖3

where in the first inequality we used 〈px, x〉 = ‖Λxx‖2 and in the second we used
Equations (A5) and (A6) of Lemma A1.

Next note that:

‖〈qx, x〉qx − 〈h̃x, x〉 h̃x

22d ‖ = ‖〈qx, x〉(qx −
h̃x

2d ) + 〈qx −
h̃x

2d , x〉 h̃x

2d ‖

≤ (‖qx‖+
‖h̃x‖

2d )‖x‖‖qx −
h̃x

2d ‖

≤
(13

12
+ 1 +

d
π

)‖x‖‖x?‖
2d ‖qx − h̃x‖

≤ 3
2

d
‖x‖‖x?‖

2d ‖qx − h̃x‖

where in the second inequality we have the bound (A6) and the definition of h̃x. Equation (A17)
is then found by appealing to Equation (A5) in Lemma A1.

The previous lemma is now used to control the concentration of the subgradients vx
of f around hx.

Proof of Lemma A3. When f is differentiable at x, ∇ f (x) = ṽx = v̄x + ηx, so that by
Lemma A2 and the assumption on the noise:

‖ṽx − hx‖ ≤ ‖v̄x − hx‖+ ‖ηx‖

≤ 86
d4√ε

22d max(‖x?‖2, ‖x‖2)‖x‖+ ω

2d ‖x‖.
(A18)

Observe, now, that by (9), for any x ∈ Rk, vx ∈ ∂ f (x) =conv(v1, . . . , vt), and therefore
vx = a1v1 + · · ·+ aTvT for some a1, . . . , aT ≥ 0, ∑i ai = 1. Moreover for each vi there exist
a wi such that vi = limδ→0+ ṽx+δwi . Therefore using Equation (A18), the continuity of hx
with respect to nonzero x and ∑i ai = 1:
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‖vx − hx‖ ≤
T

∑
i=1

ai‖vi − hx‖

≤
T

∑
i=1

ai lim
δ→0
‖ṽx+δwi − hx+δwi‖

≤ 86
d4√ε

22d max(‖x?‖2, ‖x‖2)‖x‖+ ω

2d ‖x‖.

The above results are now used to bound the norm of vx ∈ ∂ f (x).

Proof of Lemma A4. Since ε < 1/(16πd2)2 observe that 86d4√ε ≤ 2d2, therefore by the
assumption on the noise level and Lemma A3 it follows that for any vx ∈ ∂ f (x) and K2 ≤ 1

‖vx − hx‖ ≤
1

22d
5
2

d2 max(‖x‖2, ‖x?‖2)‖x‖.

Next observe that that since ‖h̃x‖ ≤ d‖x?‖, we have:

‖hx‖ ≤
1

22d
5
4

d2 max(‖x‖2, ‖x?‖2)‖x‖

and from ‖vx‖ ≤ ‖vx − hx‖+ ‖hx‖ we obtain the thesis.

Appendix B.2. Supplementary Proofs for Appendix A.3

In this section we prove Lemma A5 which implies that the norm of the iterates xi does
not increase in the region B(0, R?)\B(0, C?‖x?‖).

Proof of Lemma A5. Note that the thesis is equivalent to 2〈x, vx〉 ≥ λµ‖vx‖2. Next recall
that by the WDC for any x ∈ Rk and 2dε < 1:

(1− 2εd)
2d ‖x‖2 ≤ (1− 2ε)d

2d ‖x‖2 ≤ ‖G(x)‖2 ≤ (1 + 2ε)d

2d ‖x‖2 ≤ (1 + 4εd)
2d ‖x‖2.

At a nonzero differentiable point x ∈ Rk\{0} with C?‖x?‖ < ‖x‖ < R?, then

〈ṽx, x〉 ≥ ‖G(x)‖2(‖G(x)‖2 − ‖G(x?)‖2)− ‖ΛT
x HΛx‖‖x‖2

≥ ‖x‖
2

22d

[
(1− 2εd)2‖x‖2 − [(1− 2εd)(1 + 4εd) + K2/d44]‖x?‖2

]
≥ ‖x‖

2

22d

[
(1− 4dε)‖x‖2 − [(1 + 2dε) + K2/d44]‖x?‖2

]
.

(A19)

Next, by Lemma A4, the definition of the step length µ and max(‖x‖2, ‖x?‖2) ≤ R2
?,

we have:

λµ

2
‖ṽx‖2 ≤ K3

22d ‖x‖
4, (A20)

which, using ‖x‖ > C?‖x?‖, gives

〈ṽx, x〉 − λµ

2
‖ṽx‖2 ≥ ‖x‖

2

22d

[
(1− 4dε− K3)‖x‖2 − (1 + 2dε + K2)‖x?‖2

]
≥ ‖x‖

2‖x?‖2

22d

[
(1− 4dε− K3)C? − (1 + 2dε + K2)

]
.
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We can then conclude by observing that by the assumptions and for small enough constants
(1− 4dε− K3)C? − (1 + 2dε + K2/d44) > 0.

At a non-differentiable point x, by the characterization of the Clarke subdifferential,
we can write vx = ∑m

`=1 c`v` where v` = limδ`∇ f (x+δ`w`)
then

〈x, vx〉 = 〈x,
m

∑
`=1

c`v`〉 =
m

∑
`=1

c` lim
δ`→0+

〈x + δ`w`, ṽx+δ`w`
〉

which implies that the lower bound (A19) also holds for 〈x, vx〉. Similarly Lemma A4 leads
to the upper bound (A20) also for vx, which then leads to the thesis 2〈x, vx〉 ≥ λµ‖vx‖2.

Appendix B.3. Supplementary Proofs for Appendix A.4

In the next lemmas we show that hx is locally Lipschitz.

Lemma A11. For all x, y 6= 0

‖hx − hy‖ ≤
1

22d

[
2(‖x‖2 + ‖y‖2) +

(
d2 + 5d3 max

(‖x‖
‖y‖ ,

‖y‖
‖x‖

))
‖x?‖2

]
‖x− y‖

Proof. Note that h̃x = ξ‖x?‖+ ζ‖x?‖x̂ where ξ and ζ are defined in (A23). Then observe
that by (A28) and (A29) it follows that ‖h̃x‖ ≤ d‖x?‖. Furthermore by [16] (Lemma 18) for
any nonzero x, y ∈ Rk we have

‖h̃x − h̃y‖ ≤
9
4

d2 max
( 1
‖x‖ ,

1
‖y‖

)
‖x?‖‖x− y‖ (A21)

Next notice that

‖hx − hy‖ ≤
1

22d ‖〈x, x〉x− 〈y, y〉 y‖+ 1
22d ‖〈h̃y, y〉 h̃y − 〈h̃x, x〉h̃x‖,

where by triangle inequality the first term on the left hand side can be bounded as

‖〈x, x〉x− 〈y, y〉 y‖ ≤
(
‖x‖2‖x− y‖+

∣∣∣‖x‖2 − ‖y‖2
∣∣∣ ‖y‖)

≤
(
‖x‖2 + ‖x‖‖y‖+ ‖y‖2)‖x− y‖

≤ 2
(
‖x‖2 + ‖y‖2)‖x− y‖

Finally note that by from the bound (A21) we obtain:

‖〈h̃y, y〉 h̃y − 〈h̃x, x〉h̃x‖ ≤ ‖h̃x‖‖x‖‖h̃x − h̃y‖+ ‖h̃y‖
∣∣〈h̃x, x〉 − 〈h̃y, y〉

∣∣
≤ ‖h̃x‖‖x‖‖h̃x − h̃y‖+ ‖h̃y‖‖h̃x‖‖x− y‖+ ‖h̃y‖‖y‖‖h̃x − h̃y‖
≤ d2‖x?‖2‖x− y‖+ d(‖x‖+ ‖y‖)‖x?‖‖h̃x − h̃y‖

≤
(

2d2 + 5d3 max
(‖x‖
‖y‖ ,

‖y‖
‖x‖

))
‖x?‖2‖x− y‖.

where we used

(‖x‖+ ‖y‖)max
( 1
‖x‖, ‖y‖

)
≤ 2

max
(
‖x‖, ‖y‖

)
min

(
‖x‖, ‖y‖

) = 2 max
(‖x‖
‖y‖ ,

‖y‖
‖x‖

)
.

Based on the previous lemma we can now prove that hx is locally Lipschitz..
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Lemma A12. Let x ∈ B(0, R?)\{0}, λ ∈ (0, 1), µ = K322d/(8d4R2
?) with 512π2K3 < 1 and

vx ∈ ∂ f (x), then for xλ = x− λµvx it holds that:

‖hx − hxλ
‖ ≤ 7

16
‖vx‖

Proof. Consider x ∈ B(0, R?) and observe that by Lemma A4, d ≥ 2 and the choice of µ,
for any vx ∈ ∂ f (x) and any λ ∈ (0, 1) we have µ‖vx‖ ≤ ‖x‖/8. It follows that

7
8
‖x‖ ≤ ‖xλ‖ ≤

9
8
‖x‖, (A22)

and in particular

max
( ‖x‖
‖xλ‖

,
‖xλ‖
‖x‖

)
≤ 8

7
.

Therefore by Lemma A11 we deduce that

‖hx − hxλ
‖ ≤ λµ

22d

[
2(‖x‖2 + ‖xλ‖2) + (d2 + 6d3)‖x?‖2

]
‖vx‖

≤ µ

22d

(
4R2

? + (d2 + 6d3)‖x?‖2)‖vx‖

where in the second inequality we used max(‖x‖2, ‖xλ‖2) ≤ R2
? by Proposition A1. The

thesis is obtained by substituting the definition of µ and using K3 ≤ 1.

Based on the previous result we can now prove Lemma A6.

Proof of Lemma A6. Let x ∈ B(0, R?) ∩ S c
β,

‖vx‖ ≥ ‖hx‖ − ‖vx − hx‖

≥ β

2d max(‖x?‖2, ‖x‖2)‖x‖ − 86
d4√ε

22d max(‖x?‖2, ‖x‖2)‖x‖ − ω

2d ‖x‖

≥ 6
max(‖x‖2, ‖x?‖2)‖x‖

22d (86d4√ε + 2dω‖x?‖−2)

≥ 6
(max(‖x‖2, ‖x?‖2)‖x‖

22d 86d4√ε +
ω

2d ‖x‖
)

where we used the definition β in Equation (A7) and Lemma A3.
Next take λ ∈ [0, 1] and xλ = x− λµvx with vx ∈ ∂ f (x). Then for any vxλ

∈ ∂ f (xλ)

‖vx − vxλ
‖ ≤ ‖vx − hx‖+ ‖hx − hxλ

‖+ ‖hxλ
− vxλ

‖

≤ 86
d4√ε

22d

(
max(‖x?‖2, ‖x‖2)‖x‖+ max(‖x?‖2, ‖xλ‖2)‖xλ‖

)
+

ω

2d (‖x‖+ ‖xλ‖) +
7

16
‖vx‖

≤ 86
d4√ε

22d

(
1 +

(9
8

)3)
max(‖x?‖2, ‖x‖2)‖x‖+

(
1 +

9
8

) ω

2d ‖x‖+
7

16
‖vx‖|

≤ 3
(

86
d4√ε

22d max(‖x?‖2, ‖x‖2)‖x‖+ ω

2d ‖x‖
)
+

7
16
‖vx‖

≤
(1

2
+

7
16
)
‖vx‖

where in the first inequality we used Lemma A3 and Lemma A12, in the second inequality
(A22) and in the last one (A8).
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Appendix B.4. Supplementary Proofs for Appendix A.5

Below we prove that the region of Rk where we cannot control the norm of the vector
field hx is contained in two balls around x? and −ρdx?.

We prove Lemma A7 by showing the following.

Lemma A13. Suppose 8πd6√β ≤ 1. Define:

ρd :=
d−1

∑
i=0

sin θ̌i
π

( d−1

∏
j=i+1

π − θ̌j

π

)
where θ̌0 = π and θ̌i = g(θ̌i−1). If x ∈ Sβ, then we have either:

|θ̄0| ≤ 32d4πβ and |‖x‖2 − ‖x?‖2| ≤ 258πβd6‖x?‖

or

|θ̄0 − π| ≤ 8πd4√β and |‖x‖2 − ρ2
d‖x?‖

2| ≤ 281π2√βd10‖x?‖.

In particular, we have:

Sβ ⊂ B(x?, R1βd10‖x?‖) ∪ B(−ρdx?, R2
√

βd10‖x?‖)

where R1, R2 are numerical constants and ρd → 1 as d→ ∞.

Proof of Lemma A13. Without loss of generality, let x? = e1 and x = r cos θ̄0 · e1 + r sin θ̄0 ·
e2, for some θ̄0 ∈ [0, π], and r ≥ 0. Recall that we call x̂ = x/‖x‖ and x̂? = x?/‖x?‖. We
then introduce the following notation:

ξ =
d−1

∏
i=0

π − θ̄i
π

, ζ =
d−1

∑
i=0

sin θ̄i
π

d−1

∏
j=i+1

π − θ̄j

π
, r = ‖x‖, R = max(r2, 1), (A23)

where θi = g(θ̄i−1) with g as in (A1), and observe that h̃x = (ξ x̂? + ζ x̂). Let α := 〈h̃x, x̂〉,
then we can write:

hx =
1

22d

[
〈x, x〉x− 〈h̃x, x〉h̃x

]
=

r
22d

[
r2 x̂− α(ξ x̂? + ζ x̂)

]
.

Using the definition of x̂ and x̂? we obtain:

22dhx

r
=
[
(r2 − α ζ) cos θ̄0 − α ξ

]
· e1 + [r2 − αζ] sin θ̄0 · e2,

and conclude that since x ∈ Sβ, then:

|(r2 − α ζ) cos θ̄0 − α ξ| ≤ βR (A24)

|[r2 − αζ] sin θ̄0| ≤ βR. (A25)

We now list some bounds that will be useful in the subsequent analysis. We have:
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θ̄i ≤ θ̄i−1 for i ≥ 1 (A26)

θ̄i ≤ cos−1(1/π) for i ≥ 2 (A27)

|ξ| ≤ 1 (A28)

|ζ| ≤ d
π

sin θ̄0 (A29)

ξ ≥ π − θ̄0

π
d−3 (A30)

θ̌i ≤
3π

i + 3
for i ≥ 0 (A31)

θ̌i ≥
π

i + 1
for i ≥ 0 (A32)

θ̄0 = π + O1(δ)⇒ |ξ| ≤
δ

π
(A33)

θ̄0 = π + O1(δ)⇒ ζ = ρd + O1(3d3δ) if
d2δ

π
≤ 1 (A34)

1/π ≤ α ≤ 1. (A35)

The identities (A26) through (A34) can be found in Lemma 16 of [16], while the identity
(A35) follows by noticing that α = ξ cos θ̄0 + ζ = cos θd and using (A27) together with
d ≥ 2.

Bound on R. We now show that if x ∈ Sβ, then r2 ≤ 4d and therefore R ≤ 4d.
If r2 ≤ 1, then the claim is trivial. Take r2 > 1, then note that either | sin θ̄0| ≥ 1/

√
2 or

| cos θ̄0| ≥ 1/
√

2 must hold. If | sin θ̄0| ≥ 1/
√

2 then from (A25) it follows that r2 − αζ ≤√
2βR =

√
2βr2 which implies:

r2 ≤ α ζ

1−
√

2β
≤ 1

(1−
√

2β)

d
π
≤ d

2

using (A29) and (A35) in the second inequality and β < 1/4 in the third. Next take
| cos θ̄0| ≥ 1/

√
2, then (A24) implies |r2 − αζ| ≤

√
2(βr2 + αξ) which in turn results in:

r2 ≤ α(ζ +
√

2ξ)

1−
√

2β
≤ 4d

using (A28), (A29), (A35) and β < 1/4. In conclusion if x ∈ Sβ then r2 ≤ 4d⇒ R ≤ 4d.

Bounds on θ̄0. We proceed by showing that we only have to analyze the small angle case
θ̄0 ≈ 0 and the large angle case θ̄0 ≈ π.
At least one of the following three cases must hold:

1. sin θ̄0 ≤ 16βπd4: Then we have θ̄ = O1(32πβπd4) or θ̄ = π + O1(32πβπd4) as
32πβπd4 < 1.

2. |r2 − αζ| <
√

βR: Then (A24), (A35) and β < 1 yield |ξ| ≤ 2
√

βπR. Using (A30), we
then get θ̄ = π + O1(2

√
βπ2d3R).

3. sin θ̄0 > 16βπd4 and |r2 − αζ| ≥
√

βR: Then (A25) gives |r2 − αζ| ≤ βM/ sin θ̄0
which used with (A24) leads to:

|αξ| ≤ βR + |r2 − αζ| ≤ βR +
βR

sin θ̄0
≤ 2

βR
sin θ̄0

.

Then using (A35), the assumption on sin θ̄0 and R ≤ 4d we obtain ξ ≤ d−3/2. The
latter together with (A30) leads to θ̄0 ≥ π/2. Finally as |r2 − αζ| ≥

√
βR then (A25)
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leads to | sin θ̄0| ≤
√

β. Therefore as θ̄0 ≥ π/2 and β < 1, we can conclude that
θ̄0 = π + O1(2

√
β).

Inspecting the three cases, and recalling that R ≤ 4d, we can see that it suffices to ana-
lyze the small angle case θ̄0 = O1(32d4πβ) and the large angle case θ̄ = π +O1(8

√
βπ2d4).

Small angle case. We assume θ̄0 = O1(δ) with δ = 32d4πβ and show that ‖x‖2 ≈ ‖x?‖2.
We begin collecting some bounds. Since θ̄i ≤ θ̄0 ≤ δ, then 1 ≥ ξ ≥ (1 − δ/π)d ≥
1 + O1(2dδ/π) assuming δd/π ≤ 1/2, which holds true since 64d5β < 1. Moreover from
(A29) we have ζ = O1(dδ/π). Finally observe that cos θ̄0 = 1 + O1(θ̄

2
0/2) = 1 + O1(δ/2)

for δ < 1. We then have α = 1 + O1(2dδ) so that αζ = O1(d2δ) and αξ = 1 + O1(4d2δ). We
can therefore rewrite (A24) as:

(r2 + O1(d2δ))(1 + O1(δ/2))− (1 + O1(4d2δ)) = O1(βR).

Using the bound r2 ≤ R ≤ 4d and the definition of δ, we obtain:

r2 − 1 = O1

( δr2

2
+ d2δ +

d2δ2

2
+ 4d2δ + 4dβ

)
= O1(8d2δ + 4dβ)

= O1(258πd6β)

(A36)

Large angle case. Here we assume θ̄ = π + O1(δ) with δ = 8
√

βπ2d4 and show that it
must be ‖x‖2 ≈ ρ2

d‖x?‖
2.

From (A33) we know that ξ = O1(δ/π), while from (A34) we know that ζ = ρd +
O1(3d3δ) as long as 8

√
βπd6 ≤ 1. Moreover for large angles and δ < 1, it holds cos θ̄0 =

−1 + O1((θ̄0 − π)2/2) = −1 + O1(δ
2/2). These bounds lead to:

α = ξ cos θ̄0 + ζ

= ρd + O1
( δ

π
+

δ3

2π
+ 3d3δ

)
= ρd + O1(4d3δ),

and using ρd ≤ d:

αζ = ρ2
d + O1(4d3δρd + 3d3δρd + 12d6δ) = ρ2

d + O1(20d6δ),

αξ = O1(
δ

π
ρd + 4

d3δ2

π
) = O1(2d3δ).

Then recall that (A24) is equivalent to (r2 − αζ) cos θ̄0 − αξ = O1(4βd), that is:(
r2 − ρ2

d + O1(20d6δ)
)(

1 + O1(δ
2/2)

)
+ O1(2d3δ) = O1(4βd)

and in particular:

r2 − ρ2
d = O1

(
20d6δ + 10d6δ3 +

ρdδ2

2
+

r2δ2

2
+ 2d3δ + 4βd

)
= O1

(
35d6δ + 4βd

)
= O1(281π2√βd10)

(A37)

where we used ρd ≤ d, the definition of δ and δ < 1.

Controlling the distance. We have shown that it is either θ̄0 ≈ 0 and ‖x‖2 ≈ ‖x?‖2 or
θ̄0 ≈ π and ‖x‖2 ≈ ρ2

d‖x?‖
2. We can therefore conclude that it must be either x ≈ x? or

x ≈ −ρdx?.
Observe that if a two dimensional point is known to have magnitude within ∆r of

some r and is known to be within an angle ∆θ from 0, then its Euclidean distance to the
point of coordinates (r, 0) is no more that ∆r + (r + ∆r)∆θ. Similarly we can write:
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‖x− x?‖ ≤ |‖x‖ − ‖x?‖|+ (‖x?‖+ |‖x‖ − ‖x?‖|)θ̄0. (A38)

In the small angle case, by (A36), (A38), and ‖x?‖ |‖x‖ − ‖x?‖| ≤ |‖x‖2 − ‖x?‖2|, we have:

‖x− x?‖ ≤ 258πd6β + (1 + 258πd6β) 32d4πβ ≤ 550 πd10β.

Next we notice that ρ2 = 1/π and ρd ≥ ρd−1 as follows from the definition and (A31),
(A32). Then considering the large angle case and using (A37) we have:

|‖x‖ − ρd| ≤
281π2√βd10

‖x‖+ ρd
≤ 281π3√βd10.

The latter, together with (A38), yields:

‖x + ρdx?‖ ≤ |‖x‖ − ρd|+ (ρd + |‖x‖ − ρd|)(π − θ̄0)

≤ 281π3√βd10 + (d + 281π3√βd10)8
√

βπ2d4

≤ 284π3√βd10

where in the second inequality we have used ρd ≤ d and in the third 8
√

βπd6 ≤ 1.
We conclude by noticing that ρd → 1 as d→ 1 as shown in [16] (Lemma 16).

We next will show that the values of the loss function in a neighborhood of x? are
strictly smaller that those in a neighborhood of −ρdx?.

Recall that f (x) := 1/4‖G(x)G(x)T − G(x?)G(x?)T − H‖2
F, we next define the fol-

lowing loss functions:

f0(x) :=
1
4
‖G(x)G(x)T − G(x?)G(x?)T‖2

F,

fH(x) := f0(x)− 1
2
〈G(x)G(x)T − G(x?)G(x?)T, H〉F,

fE(x) :=
1

22d+2

(
‖x‖4 + ‖x?‖4 − 2〈x, h̃x〉2

)
.

In particular notice that f (x) = fH(x) + 1/4‖H‖2
F. Below we show that assuming the

WDC is satisfied, f0(x) concentrates around fE(x).

Lemma A14. Suppose that d ≥ 2 and the WDC holds with ε < 1/(16πd2)2, then for all nonzero
x, x? ∈ Rk

| f0(x)− fE(x)| ≤ 16
22d (‖x‖

4 + ‖x?‖4)d4√ε

Proof. Observe that:

| f0(x)− fE(x)| ≤ 1
4
|‖G(x)‖4 − 1

22d ‖x‖
4|

+
1
4
|‖G(x?)‖4 − 1

22d ‖x?‖
4|

+
1
2
|〈G(x), G(x?)〉2 −

1
22d 〈x, h̃x〉2|.

We analyze each term separately. The first term can be bounded as:
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1
4
|‖G(x)‖4 − 1

22d ‖x‖
4| = 1

4
|‖G(x)‖2 +

1
2d ‖x‖

2| |‖G(x)‖2 − 1
2d ‖x‖

2|

≤ 1
4

1
2d

(13
12

+ 1
)
‖x‖2 |‖G(x)‖2 − 1

2d ‖x‖
2|

≤ 1
4

1
2d

(13
12

+ 1
)
‖x‖2 24

d3√ε

2d ‖x‖
2

≤ 1
22d 13d3√ε‖x‖4

where in the first inequality we used (A6) and in the second inequality (A5) . Similarly we
can bound the second term:

1
4
|‖G(x?)‖4 − 1

22d ‖x?‖
4| ≤ 1

22d 13d3√ε‖x?‖4.

We next note that ‖h̃x‖ ≤ (1 + d/π)‖x?‖ and therefore from (A6) and d ≥ 2 we obtain:

|‖G(x)‖‖G(x?)‖+ ‖x‖
‖h̃x‖

2d | ≤
1
2d

(13
12

+ 1 +
d
π

)
‖x‖‖x?‖ ≤

1
2d

3
2

d‖x‖‖x?‖

We can then conclude that:

1
2
|〈G(x), G(x?)〉2 − 〈x,

h̃x

2d 〉
2| ≤ 1

2
|〈x, ΛT

x Λx?x? − h̃x〉| |‖G(x)‖‖G(x?)‖+ ‖x‖‖h̃x‖|

≤ 1
2
‖x‖24

d3√ε

2d ‖x?‖
1
2d

3
2

d ‖x‖‖x?‖

≤ 9
22d d4√ε(‖x?‖4 + ‖x‖4)

.

We next consider the loss fE and show that in a neighborhood−ρdx?, this loss function
has larger values than in a neighborhood of x?.

Lemma A15. Fix 0 < a ≤ 1/(2π3d3) and φd ∈ [ρd, 1] then:

fE(x) ≤ 1
22d+2 ‖x?‖

4 +
1

22d+2

[
(a + φd)

4 − 2φ2
d + 2πda

]
‖x?‖4 ∀x ∈ B(φdx?, a‖x?‖) and

fE(x) ≥ 1
22d+2 ‖x?‖

4 +
1

22d+2

[
(a− φd)

4 − 2ρ2
dφ2

d − 40πd3a
]
‖x?‖4 ∀x ∈ B(−φdx?, a‖x?‖).

Proof. Let x ∈ B(φdx?, a‖x?‖) then observe that 0 ≤ θ̄i ≤ θ̄0 ≤ πa/2φd and (φd −
a)‖x?‖ ≤ ‖x‖ ≤ (a + φd)‖x?‖. Then observe that:

〈x,
h̃d

2d 〉 =
1
2d

( d−1

∏
i=0

π − θ̄i
π

)
‖x?‖‖x‖ cos θ̄0 +

1
2d

d−1

∑
i=0

sin θ̄i
π

d−1

∏
j=i+1

π − θ̄j

π
‖x?‖‖x‖

≥ 1
2d

( d−1

∏
i=0

π − πa
2φd

π

)
(φd − a)‖x?‖2(1− π2a2

8φ2
d

)
≥ 1

2d

(
1− da

φd

)
(φd − a)

(
1− π2a2

8φ2
d

)
‖x?‖2.

using cos θ ≥ 1− θ2/2 and (1− x)d ≥ (1− 2dx) as long as 0 ≤ x ≤ 1. We can therefore
write:
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fE(x)− ‖x?‖
4

22d+2 ≤
1

22d+2 ‖x‖
4 − 1

22d+1

(
1− da

φd

)2
(φd − a)2(1− π2a2

8φ2
d

)2‖x?‖4

≤ 1
22d+2

[
(φd + a)4 − 2

(
1− 2

da
φd

)
(φd − a)2(1− π2a2

4φ2
d

)]
‖x?‖4

where in the second inequality we used (1− x)2 ≥ 1− 2x for all x ∈ R. We then observe
that:

(
1− 2

da
φd

)
(φd − a)2(1− π2a2

4φ2
d

)
≥
(
1− π2a2

4φ2
d
− 2ad

φd

)
φ2

d + a(a− 2φd)
(
1− 2

da
φd

)(
1− π2a2

4φ2
d

)
≥ φ2

d − a
( 1

2πd3 + 2dφd
)
+ a(a− 2φd)

(
1− 2

da
φd

)(
1− π2a2

4φ2
d

)
≥ φ2

d − a
( 1

2πd3 + 2dφd + 2φd
)

≥ φ2
d − πda,

where in the second inequality we have used π3d3a ≤ 2 and in the last one d ≥ 2 and
φd ≤ 1. We can then conclude that:

fE(x)− ‖x?‖
4

22d+2 ≤
1

22d+2

[
(φd + a)4 − 2(φ2

d − πda)
]
‖x?‖4

We next take x ∈ B(−φdx?, a‖x?‖) which implies 0 ≤ π − θ̄0 ≤ π2a/2 =: δ and ‖x‖ ≤
(a + φd)‖x?‖. We then note that for ξ and ζ as defined in (A23) we have:

|xTh̃x|2 ≤ (|ξ|+ |ζ|)2(a + φd)
2‖x?‖4

≤
( δ

π
+ 3d3δ + ρd

)2
(a + φd)

2‖x?‖4

≤
(π3d3

2
a + ρd

)2
(a + φ)2‖x?‖4

≤ (2π3d3a + ρ2
d)(a + φd)

2‖x?‖4

≤ 20πd3a + ρ2
dφ2

d

where the second inequality is due to (A33) and (A34), the rest from d ≥ 2, ρd ≤ φd ≤ 1
and 2π3d3a ≤ 1. Finally using (φd − a)‖x?‖ ≤ ‖x‖, we can then conclude that:

fE(x)− ‖x?‖
4

22d+2 ≥
1

22d+2

[
(φd − a)4 − 2(20πd3a + ρ2

dφ2
d)
]
‖x?‖4.

The above two lemmas are now used to prove Lemma A8.

Proof of Proposition A8. Let x ∈ B(±φd x?, ϕ‖x?‖) for a 0 < ϕ < 1 that will be specified
below, and observe that by the assumptions on the noise:

|〈G(x)G(x)T − G(x?)G(x?)T, H〉F| ≤ |G(x)THG(x)|+ |G(x?)THG(x?)|

≤ ω

2d (‖x‖
2 + ‖x?‖2)

≤ ω

2d ((φd + ϕ)2 + 1)‖x?‖2,

and therefore by Lemma A14:
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| f0(x)− fE(x)|+ 1
2
|〈G(x)G(x)T − G(x?)G(x?)T, H〉F| ≤

≤ 16
22d ((φd + ϕ)4 + 1)‖x?‖4d4√ε +

ω

2d ((φd + ϕ)2 + 1)‖x?‖2

≤ 272
22d ‖x?‖

4d4√ε +
ω

2d ((φd + ϕ)2 + 1)‖x?‖2

We next take ϕ = ε and x ∈ B(φd x?, ϕ‖x?‖), so that by Lemma A15 and the assumption
2dd44w ≤ K2‖x?‖2, we have:

fH(x) ≤ fE(x) + | f0(x)− fE(x)|+ 1
2
|〈G(x)G(x)T − G(x?)G(x?)T, H〉F |

≤ 1
22d+2

[
1 + (ε + φd)

4 − 2φ2
d + 2πdε

]
‖x?‖4 + 272d4√ε‖x?‖4 +

ω

2d+1 (2 + 2ε + ε2)‖x?‖2

≤ 1
22d+2

[
1− 2φ2

d + (ε + φd)
4]‖x?‖4 +

1
22d

( 3
2

2d‖x?‖−2ω +
πd
2

+ 272d4
)√

ε‖x?‖4 +
ω

2d ‖x?‖
2

≤ 1
22d+2

[
1− 2φ2

d + (ε + φd)
4]‖x?‖4 +

1
22d

( 3
2

K2d−44 +
πd
2

+ 272d4
)√

ε‖x?‖4 + K2
‖x?‖4

22d d−44.

Similarly if y ∈ B(−φd x?, ϕ‖x?‖), and ϕ = ε we obtain:

fH(y) ≥ fE(y)− | f0(y)− fE(y)| −
1
2
|〈G(y)G(y)T − G(x?)G(x?)T, H〉|

≥ 1
22d+2

[
1− 2φ2

dρ2
d + (ε− φd)

4]‖x?‖4 − 1
22d

( 3
2

2d‖x?‖−2ω + 10πd3 + 272d4
)√

ε‖x?‖4 − ω

2d ‖x?‖
2

≥ 1
22d+2

[
1− 2φ2

dρ2
d + (ε− φd)

4]‖x?‖4 − 1
22d

( 3
2

K2d−44 + 10πd3 + 272d4
)√

ε‖x?‖4 − K2
‖x?‖4

22d d−44.

In order to guarantee that f (y) > f (x), it suffices to have:

2(1− ρ2
d)φ

2
d − 8K2d−44 > 4Cd

√
ε

with Cd := (544d4 + 10πd3π + 3K2d−44 + πd/2 + 1/100), that is to require:

ϕ = ε <

(
(1− ρ2

d)φ
2
d − 4K2d−44

2Cd

)2

.

Finally notice that by Lemma 17 in [16] it holds that 1 − ρd ≥ (K(d + 2))−2 for some
numerical constant K, we therefore choose φ = $/d12 for some $ > 0 small enough.

Appendix B.5. Supplementary Proofs for Appendix A.6

In this section we use strong convexity and smoothness to prove convergence to x? up
to the noise variance ω. The idea is to show that every vector in the subgradient points in
the direction (x− x?). Recall that the gradient in the noiseless case was:

v̄x = ΛT
x [ΛxxxTΛT

x −Λx?x?x?TΛT
x? ]Λxx.

We show that by continuity of Λx, when x is close to x?, then v̄x it is close to:

vx := ΛT
x Λx[xxT − x?x?T]ΛT

x Λxx.

which in turn concentrates around:

v̌x :=
1

22d [xxT − x?x?T]x

by the WDC.

We begin by recalling the following result which can be found in the proof of Lemma
22 of [16].
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Lemma A16. Suppose x ∈ B(x?, d
√

ε‖x?‖) and the WDC holds with ε < 1/(2004d6). Then it
holds that:

‖ΛT
x Λxx? −ΛT

x Λx?x?‖ ≤
1

16
1
2d ‖x− x?‖.

We now prove that v̄x ≈ vx for x close to x?.

Lemma A17. Suppose x ∈ B(x?, d
√

ε‖x?‖) and the WDC holds with ε < 1/(2004d6). Then it
holds that:

‖v̄x − vx‖ ≤
13
96

1
22d ‖x‖‖x?‖‖x− x?‖

Proof. Let gx,? := ΛT
x Λxx? and qx,? := ΛT

x Λx?x?. Then observe that:

‖v̄x − vx‖ = ‖〈gx,?, x〉gx,? − 〈qx,?, x〉qx,?‖
≤ (‖x‖‖gx,?‖+ ‖Λxx‖‖Λx?x?‖)‖gx,? − qx,?‖

≤ 13
6

1
2d ‖x‖‖x?‖‖gx,? − qx,?‖

≤ 13
96

1
22d ‖x‖‖x?‖‖x− x?‖

where the second inequality follows from Lemma A1, and the third from Lemma A16.

We next prove that by the WDC vx ≈ v̌x.

Lemma A18. Suppose the WDC holds with ε < 1/(16πd2)2. Then for all nonzero x, x?:

‖vx − v̌x‖ ≤
25
12

4εd
22d ‖x‖‖x− x?‖‖x + x?‖

Proof. For notational convenience we define Ed := Ik/2d the scaled identity in Rd, Qx :=
ΛT

x Λx and Mx,? = xxT − x?x?T. Next observe that:

‖vx − v̌x‖ ≤ ‖(Qx − Ed)Mx,?Qxx‖+ ‖Ed Mx,?(Qx − Ed)x‖,

≤ 25
12

1
2d ‖Qx − Ed‖‖Mx,?‖x‖|

≤ 25
12

4εd
22d ‖Mx,?‖‖x‖

where the second inequality follows from Lemma A1 and the third from (17) in [15]. We
conclude by noticing that ‖Mx,?‖ ≤ ‖x− x?‖‖x + x?‖.

Next consider the quartic function f̌ (x) := 1/22d+2‖xxT − x?x?T‖2
F and observe that:

∇ f̌ (x) =
1

22d (xxT − x?x?T)x = v̌x,

∇2 f̌ (x) =
1

22d (‖x‖
2 In + 2xxT − x?x?T).

Following [63] we show that v̌x is β-smooth and strongly convex, in turn deriving the
result in Lemma A19.

Lemma A19. Assume ‖x− x?‖ ≤ γ‖x?‖ with γ < 1/5. Take τ ≥ 3(1 + γ)2 + 1, then:

‖v̌x −
τ

22d ‖x?‖
2(x− x?)‖ ≤

√
τ(τ − α)‖x− x?‖

‖x?‖2

22d

where α = 2− 9γ.
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Proof. Let ‖x− x?‖ ≤ γ‖x?‖ with γ < 1/5, then:

(1− γ)‖x?‖ ≤ ‖x‖ ≤ (1 + γ)‖x?‖ (A39)

‖∆‖‖x‖ ≤ γ(1 + γ)‖x?‖2 (A40)

since ∆ = x− x? satisfies ‖∆‖ ≤ ‖x‖. Using (A40) we then obtain

xxT = x?x?T + ∆xT + x∆T − ∆∆T,

� x?x?T − 3‖∆‖‖x‖Ik,

� x?x?T − 3γ(1 + γ)‖x?‖2 Ik.

We therefore have:

22d∇2 f̌ (x) = ‖x‖2 Ik + 2xxT − x?x?T

� ‖x‖2 Ik + x?x?T − 6γ(1 + γ)‖x?‖2 Ik,

� ((1− γ)2 + 1− 6γ(1 + γ))‖x?‖2 Ik,

� (2− 9γ)‖x?‖2 Ik,

where in the second line we have used (A39) and in the third 0 < γ < 1/5.
Next notice that using (A39) we have

22d‖∇2 f̌ (x)‖ ≤ 3‖x‖2 + ‖x?‖2 ≤ (3(1 + γ)2 + 1)‖x?‖2

and therefore, for all x ∈ B(x?, γ‖x?‖)

(2− 9γ)‖x?‖2 Ik � 22d∇2 f̌ (x) � (3(1 + γ)2 + 1)‖x?‖2.

The above bounds imply in particular that for all x ∈ B(x?, γ‖x?‖2) the gradient of f̌
satisfies the regularity condition (see [63]):

2〈∇ f̌ (x), x− x?〉 ≥ µ‖∇ f̌ (x)‖2 + λ‖x− x?‖2, (A41)

where λ = (2− 9γ)‖x?‖2/22d and 1/µ = (3(1 + γ)2 + 1)‖x?‖2/22d. By (A41) we can then
conclude that for σ ≥ 1/µ:

‖∇ f̌ (x)− σ(x− x?)‖2 ≤ ‖∇ f̌ (x)‖2 + σ2‖x− x?‖2 − 2σ〈∇ f̌ (x), x− x?〉
≤ (1− σµ)‖∇ f̌ (x)‖2 + σ(σ− λ)‖x− x?‖2

≤ σ(σ− λ)‖x− x?‖2

Finally letting σ = τ‖x?‖2/2d, α = (2− 9γ), and by the assumptions on γ and τ the thesis
follows.

We finally can prove Lemma A9

Proof of Lemma A9. Let x ∈ B(x?, d
√

ε‖x?‖), then ‖x + x?‖ ≤ (2 + d
√

ε)‖x?‖ and since
ε < 1/(2004d6) we have from Lemma A17 and Lemma A18

‖v̄x − v̌x‖ ≤ ‖v̄x − vx‖+ ‖vx − v̌x‖ ≤
1

22d
13
48
‖x‖‖x?‖‖x− x?‖.

If x ∈ B(x?, d
√

ε‖x?‖) is a differentiable point of f , then by Lemma A19 and the assumption
(13) on the noise H, it holds that:

‖ṽx −
τ

22d ‖x?‖
2(x− x?)‖ ≤

[13
48

(1 + γ) +
√

τ(τ − α)
]‖x?‖2

22d ‖x− x?‖+
ω

2d (1 + γ)‖x?‖.
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where γ = d
√

ε, α = 2− 9γ and τ ≥ 3(1 + γ)2 + 1.
In general, if x ∈ B(x?, γ‖x?‖) and vx ∈ ∂ f (x), by the characterization of Clarke

subdifferential (9) and the previous results:

‖vx −
τ

22d ‖x?‖
2(x− x?)‖ ≤

T

∑
t=1

ct‖vt −
τ

22d ‖x?‖
2(x− x?)‖

≤
[13

48
(1 + γ) +

√
τ(τ − α)

]‖x?‖2

22d ‖x− x?‖+
ω

2d (1 + γ)‖x?‖.

We finally obtain the thesis by noting that by the assumptions on ε it holds that γ = d
√

ε <
1/(400)2 and taking τ = τ1 = 21/5, τ2 = 17/5 and τ3 = (1 + 1/(400)2).

Appendix C. Proof of Theorem 1

By Theorem 3 it suffices to show that with high probability the weight matrices
{Wi}d

i=1 satisfy the WDC, and that ω/2d upper bounds the spectral norm of the noise term
ΛT

x HΛx where

• in the Spiked Wishart Model H = ΣN − Σ where ΣN = YTY/N and the
Σ = y?y?T + σ2 In;

• in the Spiked Wigner Model H = νH whereH ∼ GOE(n).

Regarding the Weight Distribution Condition (WDC), we observe that it was initially
proposed in [15], where it was shown to hold with high probability for networks with
random Gaussian weights under an expansivity condition on their dimensions. It was later
shown in [62] that a less restrictive expansivity rate is sufficient.

Lemma A20 (Theorem 3.2 in [62]). There are constants C, c > 0 with the following prop-
erty. Let 0 < ε < 1 and suppose W ∈ Rn×k has i.i.d. N (0, 1/n) entries. Suppose that
n ≥ c k ε−2 log(1/ε). Then with probability at least 1− exp(−Ck), W satisfies the WDC with
constant ε.

By a union bound over all layers, using the above result we can conclude that the WDC
holds simultaneously for all layers of the network with probability at least 1−∑d

i=1 e−Cni−1 .
Note in particular that this argument does not requires the independence of the weight
matrices {Wi}d

i=1.
By Lemma A20, with high probability the random generative network G satisfies

the WDC. Therefore if we can guarantee that the assumptions on the noise term H are
satisfied, then the proof of the main Theorem 1 follows from the deterministic Theorem 3
and Lemma A20.

Before turning to the bounds of the noise terms in the spiked models, we recall the
following lemma which bounds the number of possible Λx for x 6= 0. Note that this is
related to the number of possible regions defined by a deep ReLU network.

Lemma A21. Consider a network G as defined in (3) with d ≥ 2, weight matrices Wi ∈ Rni×ni−1

with i.i.d. entries N (0, 1/ni). Then, with probability one, for any x 6= 0 the number of different
matrices Λx is

|{Λx|x 6= 0}| ≤ 10d2
(nd

1nd−1
2 . . . nd)

k ≤ (nd
1nd−1

2 . . . nd)
8k

Proof. The first inequality follows from Lemma 16 and the proof of Lemma 17 in [15]. For
the second inequality notice that as k ≥ 1, n1 > k and d ≥ 2 it follows that 7k log(nd

1nd−1
2 . . . nd)

≥ 7 k d(d + 1) log(n1)/2 ≥ 3.5d(d + 1) log(2) ≥ d2 log(10).

In the next section we use this lemma to control the noise term ΛT
x HΛx on the event

where the WDC holds.
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Appendix C.1. Spiked Wigner Model

Recall that in the Wigner model Y = G(x?)G(x?)T + νH and the symmetric noise
matrixH follows a Gaussian Orthogonal Ensemble GOE(n), that isHii ∼ N (0, 2/n) for all
1 ≤ i ≤ n and Hji = Hij ∼ N (0, 1/n) for 1 ≤ j < i ≤ n. Our goal is to bound ‖ΛT

xHΛx‖
uniformly over x with high probability.
Fix x ∈ Rk, and let N1/4 be a 1/4-net on the sphere Sk−1 such that (see for example [64])
|N1/4| ≤ 9k and

‖ΛT
xHΛx‖ ≤ 2 max

z∈N1/4
|〈ΛT

xHΛxz, z〉|.

Observe next that for any v ∈ Rn by the definition of GOE(n) it holds that

vTHv =
n

∑
i

Hiiv2
i + 2

n

∑
i<j

Hijvivj ∼ N
(

0, 2
(
∑

i
v4

i + 2 ∑
i<j

v2
i v2

j
)
/n
)
= N

(
0, 2‖v‖4/n

)
.

Therefore for any z ∈ N1/4 let `x,z := Λxz ∈ Rn, then `Tx,zH`x,z ∼ N (0, 2‖`x,z‖4/n). In
particular by (A6), the quadratic form `Tx,zH`x,z is sub-Gaussian with parameter γ2 given by

γ2 :=
2
n

(13
12

)2 1
22d .

Then for fixed x ∈ Rk, standard sub-Gaussian tail bounds (e.g., [64]) and a union
bound over N1/4 give for any u ≥ 0

P
[
‖ΛT

xHΛx‖ ≥ 2u
]
≤ P

[
max

z∈N1/4
‖`Tx,zH`x,z‖ ≥ u

]
≤ ∑

z∈N1/4

P
[
‖`Tx,zH`x,z‖ ≥ u

]
≤ 2 · 9ke

− u2

2γ2 .

Lemma A21, then ensures that the number of possible Λx is at most (nd
1nd−1

2 . . . nd)
8k, so a

union bound over this set allows us to conclude that

P
[
‖ΛT

xHΛx‖ ≤ 2u, for all x
]
≥ 1− (nd

1nd−1
2 . . . nd)

8kP
[
‖ΛT

xHΛx‖ ≥ 2u
]

≥ 1− 2 exp
(
8k log(2 nd

1nd−1
2 . . . nd)− u2/(2γ2)

)
Choosing then u =

√
2γ2 · 9k log(2 nd

1nd−1
2 . . . nd) and substituting the definition of γ2, we

obtain

P
[
‖ΛT

xHΛx‖ ≤
1
2d

√
169k log(2 nd

1nd−1
2 . . . nd)

n
, for all x

]
≥ 1− 2e−k log(2 nd

1nd−1
2 ...nd)

which implies the thesis as n = nd and log(n) ≤ log(2 nd
1nd−1

2 . . . nd).

Appendix C.2. Spiked Wishart Model

Each row {yi}N
i=1 of the matrix Y in (1) can be seen as i.i.d. samples from N (0, Σ)

where Σ = y?y?T + σ2 In. In the minimization problem (4) we take M = ΣN − σ2 In where
ΣN is the empirical covariance matrix YTY/N. The symmetric noise matrix H is then
given by H = ΣN − Σ and by the Law of Large Numbers H → 0 as N → ∞. We bound
‖ΛT

x HΛx‖ with high probability uniformly over x ∈ Rk.
Fix x ∈ Rk, let N1/4 be a 1/4-net on the sphere Sk−1 such that |N1/4| ≤ 9k, and

notice that:
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‖ΛT
x HΛx‖ ≤ 2 max

z∈N1/4
|zTΛT

x HΛxz|.

By a union bound on N1/4 we obtain for any fixed z ∈ N1/4:

P
[
‖ΛT

x HΛx‖ ≥ 2u
]
≤ 9kP

[
|zTΛT

x HΛxz| ≥ u
]
.

Let `x,z := Λxz and si := `Tx,zyi, so that we can write

zTΛT
x HΛxz =

1
N

N

∑
i=1

(
(`Tx yi)

2 −E[(`Tx yi)
2]
)
=

1
N

N

∑
i=1

(
s2

i −E[s2
i ]
)

and in particular

P
[
‖ΛT

x HΛx‖ ≥ 2u
]
≤ 9kP

[
|zTΛT

x HΛxz| ≥ u
]
= 9kP

[ 1
N
|

N

∑
i=1

s2
i −E[s2

i ]| ≥ u
]

Observe then that si ∼ N (0, γ2) with γ2 = `Tx,zΣ`x,z. It follows for u ∈ [0, γ2] by the small
deviation bound for χ2 random variables (e.g., [33] (Example 2.11))

P
[
‖ΛT

x HΛx‖ ≥ 2u
]
≤ 2 exp

(
2k log 3− Nu2

8γ4

)
Recall now that |{Λx|x 6= 0}| ≤ (nd

1nd
2 . . . nd)

8k, then proceeding as for the Wigner
case by a union bound over all possible Λx:

P
[
‖ΛT

x HΛx‖ ≤ 2u, for all x
]
≥ 1− (nd

1nd−1
2 . . . nd)

8kP
[
‖ΛT

x HΛx‖ ≥ 2u
]

≥ 1− 2 exp
(
8k log(2 nd

1nd−1
2 . . . nd)−

Nu2

8γ4

)
.

Substituting u =
√

8γ4 · 9k log(2 nd
1nd−1

2 . . . nd)/N we find that:

P
[
‖ΛT

x HΛx‖ ≤ 2

√
72k log(2 nd

1nd−1
2 . . . nd)

N
γ2, for all x

]
≥ 1− 2e−k log(n) (A42)

since log(n) ≤ log(2 nd
1nd−1

2 . . . nd).
Similarly if u > γ2 by large deviation bounds for sub-exponential variables

P
[
‖ΛT

x HΛx‖ ≤ 2u, for all x
]
≥ 1− 2 exp

(
8k log(2 nd

1nd−1
2 . . . nd)−

Nu
8γ2

)
.

Substituting u = 8γ2 · 9k log(2 nd
1nd−1

2 . . . nd)/N we find that:

P
[
‖ΛT

x HΛx‖ ≤ 2
72k log(3 nd

1nd−1
2 . . . nd)

N
γ2, for all x

]
≥ 1− 2e−k log(n) (A43)

Finally observe that using (A6) for bounding ‖Λx‖2 (by the WDC) and σ2 + ‖y?‖2 for
bounding ‖Σ‖, we have

γ2 ≤ 13
12

1
2d (‖y?‖

2 + σ2),

which combined with (A42) and (A43) implies the thesis.
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