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Abstract: The possibilities of applying the pure Lagrangian vortex methods of computational fluid
dynamics to viscous incompressible flow simulations are considered in relation to various problem
formulations. The modification of vortex methods—the Viscous Vortex Domain method—is used
which is implemented in the VM2D code developed by the authors. Problems of flow simulation
around airfoils with different shapes at various Reynolds numbers are considered: the Blasius
problem, the flow around circular cylinders at different Reynolds numbers, the flow around a wing
airfoil at the Reynolds numbers 104 and 105, the flow around two closely spaced circular cylinders
and the flow around rectangular airfoils with a different chord to the thickness ratio. In addition,
the problem of the internal flow modeling in the channel with a backward-facing step is considered.
To store the results of the calculations, the POD technique is used, which, in addition, allows one to
investigate the structure of the flow and obtain some additional information about the properties of
flow regimes.

Keywords: vortex particle method; viscous vortex domain method; proper orthogonal decomposi-
tion; open source code; Blasius boundary layer; impulsively started cylinder; channel with backward
facing step

1. Introduction

Flow simulation problems and, more generally, computational fluid dynamics (CFD)
problems, are among the most difficult problems of computational mathematics, mainly
due to the nonlinearity of the governing equations and the need to take into account a large
number of factors which have both a physical nature (heat transfer, convection, chemical
reactions, cavitation, etc.), and are related to the requirements of the necessary properties
of the numerical scheme, such as accuracy, conservatism, stability, monotony, etc.

There is, however, a rather wide range of problems, for example, fluid–structure
interaction (FSI) problems, where it is necessary to estimate hydro- or aerodynamic loads
acting on the structure. At the same time, the flow simulation in most cases is a much
more complicated subtask in comparison to a structural solver. So, it is important to de-
velop numerical methods that permit aerohydrodynamic loads estimation with acceptable
accuracy and as low as possible computational cost. The flow itself in such problems is
usually out of direct interest, but it is necessary to simulate it in order to compute correctly
pressure distribution and viscous friction over the body surface, which are the source of
integral forces and momenta. In other applications, i.e., in industrial aerodynamics it is
also important to describe some “rough” (large-scale) properties of the flow: to predict
zones of increased flow velocity, stagnant zones, large vortex structures. Similar problems
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arise also in applications connected with particle simulation in the flows: usually, it is
possible to “uncouple” the problem and to solve the aerohydrodynamic problem separately,
while particle motion is modelled in preliminarily obtained velocity and pressure fields
(sometimes computed even in a steady-state statement).

In addition to the fact that the problems of numerical flow simulation are traditionally
time-consuming, in many cases, the problem of storing and analyzing the simulation
results is actual, especially when an unsteady flow is simulated and it is required to store
snapshots at many time steps. This problem sometimes wrongly seems to be not essential
or at least much more simple in comparison to flow numerical simulation itself, however,
in practice, it has nearly the same importance. Computational meshes in real engineering
problems that are currently relevant may contain millions of cells, and the number of
time steps may have the same order. Even simple storing of computational results, i.e.,
velocity and pressure, as well as other physical fields, in nodes/mesh cells with a certain
time step requires a huge amount of disk space, and their further processing also requires
significant amounts of RAM. In many cases, the effects of interest are large-scale, so the
spatial resolution of the obtained results (which is determined by the computational mesh
and time step) is superfluous for practical purposes when processing and interpreting
them, but it is necessary to obtain a qualitatively and quantitatively correct solution.

In the present paper, we consider the so-called vortex particle methods (VPM), confin-
ing ourselves to two-dimensional problem statements. Despite the rather narrow range
of applicability, which will be outlined below, such methods can be extremely efficient in
engineering applications, when it is necessary to estimate unsteady loads acting on the
structure and to predict the most significant properties of the flow, such as large vortex
structures, etc.

The aim of this paper is to describe some modern modifications of two-dimensional
VPMs, the use of which made it possible to improve the accuracy of flows simulations
significantly, and to show the efficiency of the proper orthogonal decomposition (POD)
technique for the results of flow simulations storing and further reconstruction, as well as
for different flow regimes distinguishing.

2. On Two-Dimensional Vortex Methods and Their Range of Applicability

In two particular cases—steady-state regimes simulation and, in opposite, essentially
unsteady oscillations (vibrations)—the simplified approaches for hydrodynamic loads
estimating can be implemented. For steady-state flows, when the body is immovable
or moves rather slow, stationary dimensionless coefficients of drag and lift force and
momenta can be used, which values are known from experiment or numerical simulation,
being performed preliminary. These coefficients depend on the body shape, its orientation
(angle of attack, AoA), and usually the Reynolds number. The other approach that follows
from the added mass theory, can be applied, for example, for vibrating bodies, when
the aerohydrodynamic loads are determined mainly by the accelerated motion of the
body in media while the pressure distribution and viscous friction a fortiori provide a
negligible contribution.

The last approach is closely connected to another case when the flow is considered
to be potential. Accepting the additional assumption about the incompressibility of the
media, the problem of flow simulation comes to solving the Laplacian equation with
respect to scalar potential function, which gradient is flow velocity, while the pressure and
forces can be reconstructed according to the Bernoulli or Cauchy–Lagrange integrals. This
simplification, in turn, does now allow to take into account the viscosity influence, and in
particular to provide the no-slip boundary condition satisfaction on the body surface that
leads to vorticity generation, flow separation, etc. So, the potential flow simplification can
be used only in very rough models.

However, we should note that in the framework of the above-mentioned approach it
is possible to avoid the solving of the Laplacian equation in the whole flow domain and
to replace it by solving the boundary integral equation (BIE) with respect to simple layer
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intensity, double layer intensity, or vortex sheet intensity, located on the body surface. This
approach is especially suitable in the case of outer flows simulation when the flow domain
is unbounded; it allows for exact satisfaction of the continuity (incompressibility) equation
and the perturbation decay boundary condition on infinity and does not require some
“artificial” boundary condition of non-reflective type.

These ideas were assumed as a basis of the first generation of the so-called vortex
particle methods (VPM), which could be applied for two-dimensional flow simulation
around thin plates and wing airfoils when separation point is specified a priori at the edges
or corner points. Some modifications of such approach, called discrete vortices method
(DVM), are still used in corresponding applications even nowadays, mainly due to the
extreme simplicity of the numerical algorithm. A detailed review of the first generation of
the vortex methods can be found in [1,2].

At the same time, modern modifications of VPM have been developed that allow for
viscous incompressible flows simulation that are described by the Navier–Stokes equations.
At least three approaches are known to viscosity effect taking into account, namely random
walk method [3], particle strength exchange (PSE) method [4], and diffusive velocity
method. The last one initially suggested in [5] and then improved significantly in [6–8]
seems to be the most accurate, however, its implementation is non-trivial. The VPM
modification based on this approach is called the viscous vortex domains method (VVD).
The computational cost of its algorithms, of course, is much higher in comparison to DVM,
but they remain competitive in comparison to traditional mesh-based numerical methods,
especially in coupled FSI problems, due to the fully Lagrangian nature of the VPM: they
are meshless, and there is no need to reconstruct somehow a mesh following to the body
motion [9].

In the framework of the random walk method, an efficient implementation of vortex
methods is developed in [10] that is applied efficiently to industrial aerodynamics [11].

At last, it is clear that the consideration of two-dimensional problems is extremely
attractive from the computational point of view, so it is important to determine the condi-
tions at which the two-dimensional problem statement is correct. In the present paper, we
consider some two-dimensional model problems and the results of simulation by using
VPM. The results will be compared to known experimental data and numerical results, ob-
tained by other authors. Real flows (in experiments) are considered around the cylindrical
bodies which cross-section coincides with the airfoils in two-dimensional problems. It is
well-known that there is some critical value of the Reynolds number when the flow be-
comes turbulent that means that it is essentially three-dimensional, at least, on microscales,
however, it affects significantly the parameters of the macroscale flow (which can remain
two-dimensional). In traditional mesh-based methods, such effects are normally taken
into account in the framework of Reynolds-averaging technique (RANS) of Large Eddy
Simulation (LES) by considering averaged Navier–Stokes equations together with some
closure equations, called turbulence models.

For VPM there are no known “turbulence models” nowadays, and it is important
to outline the boundaries when two-dimensional simulation remains correct and it is in
acceptable agreement with the results of full-scale experiments. However, it is interesting to
note that in [12,13] the hybrid approach is suggested, based on the control-volume method
and an original simplified modification of vortex methods at subgrid scale in order to
reproduce turbulent pulsations in the flow field.

At the end of the VPM general description, we note that among the particle-based
methods, smoothed-particle hydrodynamics (SPH) is the most popular and well-known
family of methods that can be applied for a wide range of simulations in CFD. The review
of the current state of the SPH can be found at [14]. However, since in SPH the particles are
material and they represent some volumes of the simulated medium and are characterized
by masses (or densities), the particles must fill the entire flow domain, while vorticity, and
hence, the vortex particles modeling it in VPM, as a rule, occupy only a relatively small
area (vortex wake) near the surface and behind the body. In addition, vortex particles
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have the property called “action at a distance”: all the vortex particles influence all others.
Although such influence decreases with increasing distance, it can not be neglected even
for far enough placed particles. At the same time, in SPH the effect of particles is taken
into account only at a small distance, which has an order of doubled smoothing length.
So, despite the fact that both SPH and VPM belong to Lagrangian particle-based methods,
there are fundamental differences between them.

3. Brief Description of the Viscous Vortex Domains Method for Two-Dimensional
Incompressible Flow Simulation

Two-dimensional viscous incompressible flows are described by the Navier–Stokes
equations

∇ · ~V = 0,
∂~V
∂t

+ (~V · ∇)~V = −∇p
ρ

+ ν∆~V, (1)

where ~V is flow velocity, p is pressure, ρ and ν are density and kinematic viscosity of
the media, respectively. In the framework of Lagrangian VPM, vorticity ~Ω = ∇× ~V is
a primary computational variable instead of the so-called “primitive” variables ~V and p
being considered in Eulerian mesh methods.

Flow velocity field for the media in the most general case can be reconstructed accord-
ing to the generalized Biot–Savart law [15–18]:

~V(~r) = ~V∞ +
∫

S

~Ω(~ξ)× (~r−~ξ)

2π|~r−~ξ|2
dSξ +

∫
S

D(~ξ)(~r−~ξ)

2π|~r−~ξ|2
dSξ

+
∮

K

(
~n(~ξ) · ~VK(~ξ)

)
(~r−~ξ)

2π|~r−~ξ|2
dlξ +

∮
K

(
~n(~ξ)× ~VK(~ξ)

)
× (~r−~ξ)

2π|~r−~ξ|2
dlξ . (2)

Here, ~V∞ is incident flow velocity; D(~ξ) is velocity divergence, which is equal to zero in
case of incompressible media being considered in VPM; S is flow domain; K is its boundary
(the union of the airfoil boundaries); ~VK(~ξ) is the velocity of the corresponding point of the
boundary;~n(~ξ) is outer normal unit vector.

Pressure distribution in the flow domain can be reconstructed by using the analogue
of the Bernoulli and the Cauchy–Lagrange integrals [19,20]. If it is necessary to estimate
integral force and momenta acting on the airfoils in the flow, it is possible to avoid the
pressure calculation and use rather simple formulae for total force and momenta that can
be written down in different forms depending on the problem being solved [21,22].

For the velocity field described by (2), the divergence-free condition is satisfied au-
tomatically, while the Navier–Stokes equation, after applying the curl operator, in the
two-dimensional case can be written down as the following:

∂~Ω
∂t

+∇× (~V + ~W) = 0, (3)

where ~W is the so-called diffusive velocity, which expresses the viscosity effect. Because
of considering two-dimensional flows, vorticity field ~Ω is fully described by scalar field
Ω, such as ~Ω = Ω~k, where~k is a unit vector orthogonal to the flow plane. Taking it into
account, rather simple expression for diffusive velocity can be written down:

~W = −ν
∇Ω
Ω

.

Equation (3) means that the vorticity evolution in the flow domain can be considered as its
transfer along the streamlines of summary velocity field (~V + ~W). In numerical simulation
vorticity field is modelled with a large number of Lagrangian vortex particles; each particle
is described by its position~rk and strength Γk, which is a circulation of velocity field along
the closed contour encircling the particle. Particles have velocities (~Vk + ~Wk), and numerical
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algorithm for diffusive velocities computation is suggested in [8], where it is taken as a
basis for the viscous vortex domains (VVD) method. Note that the diffusive velocities being
computed straightforwardly according to [8], sometimes suffer from overshoots; so in the
simulations presented in this paper the maximal magnitude of the diffusive velocities was
bounded by the value of 1.5V∞.

The governing Equation (1) are supplemented with the boundary conditions of per-
turbation decay at infinity (if the flow domain is unbounded, otherwise the pressure value
should be specified at some point)

~V(~r)→ ~V∞, p(~r)→ p∞ at |~r| → ∞,

and the no-slip boundary conditions on the walls (airfoil boundaries):

~V(~r) = ~VK(~r) at ~r ∈ K.

The perturbation decay conditions at infinity are satisfied automatically in vortex
methods, which makes it possible to avoid artificial bounding of the flow domain. However,
considering the infinite flow domain does not affect the computational complexity of
the simulation: since the primary computational variable is vorticity, and it is normally
localized in some compact region nearby the airfoil and behind it, the computational
resources are localized in the vortex wake area.

4. High-Precision Numerical Schemes for Vorticity Generation Simulating

The no-slip boundary condition satisfaction is provided by vorticity generation on the
walls (airfoil boundaries). Note that it is impossible to derive physically correct boundary
condition with respect to vorticity, so it is formulated for the “primitive” variable, i.e.,
velocity field [18,23,24]; it therefore has integral form in terms of vorticity. The straight-
forward way to its formulation is considering the boundary integral equation (BIE) with
respect to the vorticity flux on the airfoil surface [25,26], but such an approach is not very
suitable from a practical point of view. So, it seems to be useful to accept the following
simplification: considering a small time period ∆t, assume that the vorticity being gen-
erated during it fills a thin layer in proximity to the airfoil boundary. Then, in turn, we
neglect its width and consider it as a thin vortex sheet of unknown intensity γ(~r),~r ∈ K.
This model can be also treated as implicit numerical scheme implementation according to
which the boundary condition satisfaction is provided at the end of the time step (instead
of its beginning in case of the BIE solving with respect to the vortex flux that corresponds
to the explicit numerical scheme) that leads to numerically stable algorithm even for large
time steps ∆t.

The BIE that follows directly from the no-slip condition is a vector equation since
it expresses the equality of boundary value of velocity field to the wall velocity. It can
be replaced with equivalent scalar BIE: expressing the equality between normal and tan-
gent velocity components. The first way, called “N-model”, is well-known and widely
used [27–29]. The second one, “T-model”, is described in general words in [18,23] and
mentioned in [28,30]. However, this approach is not used in existing implementations of
vortex methods, possibly due to the fact that the straightforward transfer of the discretiza-
tion procedure from the N-model onto T-models does not lead to accuracy increasing at
all. At the same time, improved discretization that can be applied only to the T-models
makes it possible to increase the accuracy significantly.

Note that while the N-model is expressed by a singular BIE of the 1-st kind with a
non-integrable kernel of the Hilbert-type, where integral should be understood as Cauchy
principal value [28,31,32], the equation in the T-model is the Fredholm-type BIE of the 2-nd
kind with bounded or at least absolutely integrable kernel.
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The unknown variable is a vortex sheet intensity γ(~r) being generated at the airfoil
boundary during small time step ∆t:

∮
K

Qτ(~r,~ξ)γ(~ξ)dlξ −
1
2

γ(~r) = fτ(~r), Qτ(~r,~ξ) =
~n(~r) · (~r−~ξ)

2π|~r−~ξ|2
, (4)

which right-hand side has the following form:

fτ(~r) = ~τ(~r) ·
(

1
2
~VK(~r)− ~V∞ −

∫
S

~k× (~r−~ξ)

2π|~r−~ξ|2
Ω(~ξ) dSξ

−
∮

K

(
~n(~ξ)× ~VK(~ξ)

)
× (~r−~ξ)

2π|~r−~ξ|2
dlξ −

∮
K

(
~n(~ξ) · ~VK(~ξ)

)
(~r−~ξ)

2π|~r−~ξ|2
dlξ

)
, (5)

where Ω(~ξ) is vorticity distribution in the flow domain.
We will not describe in details the properties of the integral operator in the Equation (4)

and the right-hand side (5), which depend on the type of problem being solved. The only
thing that should be noted that the Equation (4) has an infinite set of solutions if an
unbounded flow domain is considered, so in order to select the unique physically correct
solution, an additional integral condition for the total vorticity should be added:∮

K
γ(~ξ)dlξ = Γ∗, (6)

and if K is a union of airfoils Ki, the conditions similar to (6) should be written down for
each airfoil.

We should note that in [18,23] it is wrongly asserted that (4) has a unique solution;
precisely speaking, it is true, but only for internal flows in bounded domains.

For the coupled FSI problems the right-hand side (5) depends on unknown air-
foil boundary velocity ~VK(~r), so some type of splitting (or coupling) scheme should be
implemented—an intuitive weak coupling scheme (step-by-step flow simulation step for
the airfoil moving according to known law, and structure motion step for the airfoil mov-
ing under known forces), fully monolithic scheme [33] or iterative scheme [25]. The last
approach requires added mass tensor calculation for the airfoil and can be characterized
as a strongly-coupled scheme; it seems to be the most robust, and it is preferable for
practical purposes.

The family of numerical schemes for approximate solution of the BIE (4) with addi-
tional equations required for the selection of the unique solution, that have been developed
on the basis of the Galerkin method, is described in [34–36]. Such schemes are called
“T-schemes” and they are in general case much more accurate in comparison to the “N-
schemes” traditionally used for solving equivalent singular BIE instead of (4). Note that
the developed approach can be generalized to the three-dimensional case [37]. An efficient
iterative approach to solving of the resulting linear systems is suggested in [38].

As the result, vorticity distribution in the flow domain is modelled by large number
of vortex particles being considered as point (circular) vortices of small radius ε, having
circulations Γi, which are placed at points~ri, and move according to system of ordinary
differential equations

d~ri
dt

= ~V(~ri) + ~W(~ri), i = 1, . . . , N. (7)

Circulations Γi remain constant; they can only change at vortex particles merging.
Vorticity generated and concentrated in the vortex sheet on the airfoil boundary at the

next time step is shrunk into a set of vortex particles, placed in proximity to the boundary.
As a rule, the maximal value of vortex particle circulation is bounded by some value Γmax.
Particles in the flow placed on rather small distance, are merged into one particle, however,
the merging is performed only when the circulation of the resulting particle is smaller



Entropy 2021, 23, 118 7 of 38

than Γmax. This procedure makes it possible to reduce the number of vortex particles
significantly, which reduces, in turn, the total computational complexity of the whole
algorithm. Furthermore, at flow simulation after the airfoils, both well-streamlined and
bluff, far vortex wake can be thrown off, because it practically does not influence the forces
acting on the airfoil and the flow near to it.

The last point that should be mentioned, is connected with the “no-penetration” con-
dition control: vortex particles that move in the neighborhood of the airfoil boundary
according to (7), due to numerical errors, caused both by finite time step and errors in ve-
locities computation, sometimes cross the airfoil boundary. Such particles should be found
and excluded from the simulation, of course, with adding corresponding contributions to
other equations to provide conservation properties, etc.

5. Added Masses Tensor Components Estimation

In order to verify the developed algorithms for the boundary integral equation so-
lution, we consider the model problem with a known exact solution. However, it seems
to be useful not to estimate the accuracy in a purely mathematical sense by calculating
some norm of the difference between exact and approximate solution, but to calculate
some integral characteristic of the solution. Namely, we calculate all the components of
the added mass tensor of the airfoil [39–41]. These values are required in particular in
vortex methods implementation for numerical simulation in coupled FSI problems [25],
and also they can be used directly in approximate engineering techniques for estimation of
the forces acting on the body that moves with non-zero acceleration [42].

The exact values for added masses are known for some simple-shaped airfoils. One
of the most powerful approaches for its exact computation is the usage of the conformal
mappings technique. For example, if we consider complex plane z and map a circle of
radius ηa which center is placed at point zc = a

(
ηeiα − 1

)
onto complex plane ζ according

to the rule

ζ(z) = e−iα
(

z +
1
2

(
z +

a2

z

))
,

we obtain the Zhukovsky airfoil shape [41,43] which specific feature is the cusp at the
trailing edge at point ζ = 0 (Figure 1).

0.5 1.0 1.5 2.0

-0.3

-0.1

0.1

Figure 1. Zhukovsky airfoil shape on ζ complex plane for a = 1, η = 1.15, α = π/30.

The exact expressions can be written down for all the components of the added mass
tensor which is symmetrical (here σ = η/(2η cos α− 1), ρ is density of the media), [41]:

λ∗xx =
πρa2

4
(
σ2 + η2 − 2 cos 2α

)
, λ∗yy =

πρa2

4
(
σ2 + η2 + 2 cos 2α

)
, λ∗xy =

πρa2

2
sin 2α,

λ∗xω =
πρa3

8
sin α

(
σ2 + η2 + 4(σ + η) cos α

)
,

λ∗yω =
πρa3

8
(
σ3 + η3 + (σ2 + η2) cos α + 2(σ + η) cos 2α

)
,

λ∗ωω =
πρa4

8
σ2η2(8σ2η2 cos4 α− 2ση sin2 2α + cos 4α

)
.

In [25], it is shown that the components of the added mass tensor could be easily
calculated if solution γ(~ξ) of the BIEs (4)–(6) is known. To do it, one should consider the
model problems: impulsive start of the airfoil in horizontal and vertical directions in still
media with unit velocity |~VK| = 1, and its impulsive start in rotational motion with unit
angular velocity ω = 1.
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In addition to the vortex sheet intensity γ(~ξ) it is suitable to introduce the attached
vortex sheet intensity which is equal to tangent velocity component of the airfoil surface ve-
locity:

γ̃(~r) = ~VK(~r) ·~τ(~r), ~r ∈ K,

where ~τ(~r) is tangent unit vector, which direction is chosen such as~n(~r)×~τ(~r) =~k;~n(~r) is
unit outer normal vector (directed to the flow domain);~k is unit vector orthogonal to the
flow plane. The value of total circulation in additional condition (6) should be chosen as

Γ∗ = −
∮

K
γ̃(~ξ)dlξ ,

it is non-zero only in rotational motion.
So, the components of the added mass tensor for two-dimensional flow are calculated

as follows [25]:

λdx =
∮

K
ρy(γd(~r) + γ̃d(~r))dl, λdy = −

∮
K

ρx(γd(~r) + γ̃d(~r))dl,

λdω = −1
2

∮
K

ρ(x2 + y2)(γd(~r) + γ̃d(~r))dl,

where x and y are the abscise and the ordinate of the point~r at the airfoil boundary; symbol
d has values x, y and ω; γd(~ξ) and γ̃d(~ξ) denote vortex sheets intensities that correspond
to the airfoil motion in the d-th direction.

In the numerical experiment, all nine components of the added mass tensor were
calculated, and the relative errors in comparison to exact values were estimated. Three
numerical schemes have been considered:

• Classical well-known numerical scheme of the Discrete Vortex Method [27,28] that
belongs to the above discussed N-schemes and corresponds to numerical solving of
the singular BIE (N-model);

• Developed T0-scheme, according to which the numerical solution is assumed to be
piecewise-constant [35,36], and the 2nd kind Fredholm-type integral Equation (4)
is solved;

• Developed T1-scheme, according to which the numerical solution is assumed to be
piecewise-linear [34,36].

The surface line of the airfoil was discretized and replaced with a polygon with
rectilinear legs, usually called “panels” which have nearly the same length. In Table 1,
maximal relative errors are shown for all the components of the added mass tensor for a
different number of the panels. The error values are computed as follows:

δ = max
i,j

∣∣λi,j − λ∗i,j
∣∣

λ∗i,j
, i, j = x, y, ω.

Table 1. Relative errors of the added masses tensor estimation for the wing airfoil for different
numerical schemes.

Number of Panels N-Scheme (DVM) T0-Scheme (Const) T1-Scheme (Linear)

50 3.4× 10−1 5.7× 10−2 1.7× 10−2

100 6.2× 10−2 2.5× 10−2 4.6× 10−3

200 3.9× 10−2 1.3× 10−2 1.7× 10−3

400 2.2× 10−2 6.9× 10−3 7.4× 10−4

800 1.2× 10−2 3.7× 10−3 3.5× 10−4

1600 6.1× 10−3 2.0× 10−3 1.7× 10−4

3200 3.2× 10−3 1.1× 10−3 8.5× 10−5
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One can see that the N-scheme, as well as the T0-scheme, provides close to the first
order of accuracy. The T1-scheme provides slightly higher than the first order of accuracy
for a coarse surface mesh (for a number of panels less than 400) and also the first order of
accuracy for finer meshes. The decrease of the order of accuracy in comparison to the 2nd
order mentioned in [34], is caused by the BIE (4)–(6) solution behaviour: in the x-directed
motion the exact solution γ(~ξ) is bounded and has the 1st kind discontinuity at the cusp,
however, for the y-directed and rotational motions the exact solution has a weak singularity
at the cusp point (Figure 2).

1 2 3 4
s

-1.0

-0.5

0.5

1.0

1.5

γ*(s)

1 2 3 4
s

-4

-2

0

2

4

6

γ*(s)

x-directed motion y-directed motion

Figure 2. Exact solution for the vortex sheet intensity γ∗(s) for the Zhukovsky wing airfoil in translation motions; s is arc
length, measured along the airfoil surface line from the cusp.

So, the values of the added masses λxx, λxy and λxω are estimated with the 2nd order
of accuracy when using the T1-scheme, Table 2.

Table 2. Relative errors of the added masses λxx, λxy, λxω estimation for the wing airfoil for the
T1-scheme.

N 50 100 200 400 800 1600 3200

δx 1.7× 10−2 4.6× 10−3 1.2× 10−3 2.97× 10−4 7.5× 10−5 1.9× 10−5 4.7× 10−6

Note that number of panels required for the relative error less than 1% and 0.1% for all
the components of the added mass tensor differs significantly for the considered numerical
schemes, Table 3.

Table 3. Number of panels proving the same accuracy of added masses estimation for the wing
airfoil for different numerical schemes.

N-Scheme (DVM) T0-Scheme (Const) T1-Scheme (Linear)

1% 950 265 66
0.1% 10,800 3700 307

It is clearly seen that the developed schemes, especially the T1-scheme with piecewise-
linear solution representation, provide much higher accuracy in comparison to the tradi-
tional DVM scheme.

If we consider another airfoil, i.e., an ellipse with semiaxes a and b, for which exact
values of the added mass diagonal tensor components are known [41] and non-diagonal
components are equal to zero,

λ∗xx = ρπb2, λ∗yy = ρπa2, λ∗ωω =
1
8

ρπ(a2 − b2)2,
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the opposite phenomenon is observed. In the general case, the N-scheme and the T0-scheme
provide the 1st order of accuracy for the BIE solution, while the T1-scheme provides the
2nd order of accuracy. However, since the airfoil and its discretization are symmetric, and
the solution in case of the added masses computation is also symmetric, all considered
numerical schemes provide the 2nd order of accuracy, Table 4.

Table 4. Relative errors of the added masses tensor estimation for elliptical airfoil with a = 1.0 and
b = 0.2 semiaxes for different numerical schemes.

Number of Panels N-Scheme (DVM) T0-Scheme (Const) T1-Scheme (Linear)

50 1.3× 10−1 6.1× 10−2 3.2× 10−2

100 4.4× 10−2 1.8× 10−2 1.0× 10−2

200 1.3× 10−2 4.7× 10−3 2.8× 10−3

400 3.4× 10−3 1.2× 10−3 7.3× 10−4

800 8.7× 10−4 2.9× 10−4 1.8× 10−4

1600 2.2× 10−4 7.3× 10−5 4.6× 10−5

3200 5.6× 10−5 1.8× 10−8 1.2× 10−5

One can see that for the elliptical airfoil all the numerical schemes provide nearly the
same accuracy. However, for arbitrary non-symmetric smooth airfoil, the T1-scheme will
be much more accurate in comparison to the others. Moreover, a more accurate T2-scheme
with piecewise-quadratic solution representation also can be used, but it requires airfoil
surface line representation with curvilinear panels. Such a technique is described in [44,45].
The T2-scheme is much more complicated in comparison to the T1-scheme and it seems
that its application in this problem is hardly can be justified. Note that the mentioned
schemes T0, T1 and T2 provide the 1st, 2nd and 3rd orders of accuracy in L1-norm with
respect to the solution of the BIEs (4)–(6).

6. Software Implementation of Vortex Methods

Until now, a small number of software implementations of vortex methods, preferably
open source, are known, which would provide a possibility of solving a wide class of prob-
lems and would be available to researchers. Omega2D [46,47], as well as FlowVPM [48,49]
projects can be pointed out that started in 2018 and 2019, however their capabilities,
connected with modern mathematical models implementation and high-performance com-
puting, remain at a rather modest level. The authors started in 2017 the VM2D project [50,51],
where the viscous vortex domains (VVD) method is implemented together with developed
T-schemes for numerical solving the BIE.

The source code of VM2D is written in C++ and has a modular structure in order to
provide the possibility of its further development by introducing new mathematical models
and algorithms, as well as its adaptation to new types of problems. It is cross-platform
software and can be compiled under Windows and Linux by using MSVC, GCC, Clang or
Intel C++ Compiler (as well as other compilers which support C++11 standard). External
linear algebra library Eigen [52] is used in VM2D for standard operations with matrices
and vectors.

OpenMP and MPI technologies are used for computations speedup on multi-core and
multiprocessor cluster systems, and Nvidia CUDA technology is also supported. It is also
possible to solve simultaneously (on multi-processor systems) a number of different tasks,
which are organized automatically as a queue.

The results of parallelization efficiency investigation are presented in [53]. Here
we note only that the most time-consuming operations in the vortex method numerical
algorithm are convective and diffusive velocities computation of the vortex particles. Due to
the possibility of their fully independent computation for different particles, the scalability
of the algorithm on the whole is rather high, both for OpenMP and MPI technologies.
Normally, the hybrid model of computations, namely MPI + OpenMP, on cluster systems
is used, because each node of modern clusters is multiprocessor and multicore system with
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shared memory. However, the code execution on graphical accelerators (GPU) by using
Nvidia CUDA technology seems to be the most efficient, its utilization makes it possible
to speed up the computations dramatically [54]. The hybrid parallelization model, MPI
+ (OpenMP + Nvidia CUDA), is also supported, however in this case the MPI efficiency
decreases: for a cluster system with four nodes, each equipped with GPU Tesla V100, the
speedup value is slightly less than 3. At the same time, one should have in mind that
the Tesla V100 accelerator provides speedup comparable to one that can be achieved at
hundreds of CPU cores.

Programmer’s guide to VM2D is being generated automatically by using doxygen tool.
It includes full information about all the classes implemented in VM2D: description of all
the class members and methods. Relationships between the classes are shown in graphical
mode, as well as execution diagrams of the functions. A html version is available online [55]
and it is updated automatically via the Travis-CI service after every modification of source
code and its push on GitHub.

All input data should be prepared in text files, where similar to C++ syntax (separators,
comments, line-breaks, etc.) is used for general data representation and braces for list
components representation. It is also possible to introduce some user-defined variables in
order to simplify and automate somehow the solution of a series of similar problems that
differ only by some parameters. A typical input file is shown in Figure 3.

The results of simulations are saved in text or binary VTK (Visualisation ToolKit [56])
format for physical fields, which values are known at nodes or cells of some spatial grid or
at particles: velocity and pressure fields snapped on some grid, as well as vortex particles
positions and their properties.

Tabular data computed at time steps such as hydrodynamic loads acting the airfoils,
the airfoil positions and velocities, some time statistics, etc., are stored as simple text TXT or
CSV (Comma-Separated Values) formats.

All the results of flow simulation presented in this paper, are obtained by using the
VM2D code.
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1   /*--------------------------------*- VM2D -*-----------------*---------------*\
2   | ##  ## ##   ##  ####  #####   | | Version 1.9    |
3   | ##  ## ### ### ##  ## ##  ##  |  VM2D: Vortex Method | 2020/07/22     |
4   | ##  ## ## # ##    ##  ##  ##  |  for 2D Flow Simulation    *----------------*
5   |  ####  ##   ##   ##   ##  ##  |  Open Source Code |
6   |   ##   ##   ## ###### #####   |  https://www.github.com/vortexmethods/VM2D  |
7   | |
8   | Copyright (C) 2017-2020 Ilia Marchevsky, Kseniia Kuzmina, Evgeniya Ryatina  |
9   *-----------------------------------------------------------------------------*
10   | File name: passport |
11   | Info: Parameters of the problem to be solved |
12   \*---------------------------------------------------------------------------*/
13   
14   //Physical Properties
15   rho = 1.0;
16   vInf = {1.0, 0.0};   // incident flow velocity
17   vRef = 1.0;
18   nu = $nu; // the specific value is set in a batch file, e.g., 1e-4
19   
20   //Time Discretization Properties
21   timeStart = 0.0;
22   timeStop = 50.000;     
23   dt = 0.001; // time step
24   accelVel = Impulse;    // RampLin(T) and RampCos(T) modes are supported
25   
26   fileType = Binary;     // ASCII or Binary format of VTK files
27   saveVtx = 100; // frequency (in steps) of vortices storing
28   saveVP  =  20; // of velocity & pressure storing
29   
30   //Wake Discretization Properties
31   eps = 1e-7; // vortex core smoothing radius (should be small)
32   epscol = 5e-5; // vortex particles merging distance
33   distFar = 20.0; // the distance of the vortex wake cropping
34   delta = 1e-7; // distance from airfoil to the generating vortices
35   vortexPerPanel = 1;  // minimal number of vortices generating over a panel
36   maxGamma = 3e-5;     // maximal vortex particle strength
37   
38   //Numerical Schemes
39   linearSystemSolver = linearSystemGauss;     
40   velocityComputation = velocityBiotSavart;  //velocityBarnesHut is supported 
41   panelsType = panelsRectilinear; 
42   boundaryConditionSatisfaction = boundaryConstantLayerAverage; //T^0 scheme
43   
44   //Files and parameters
45   airfoil = { "naca0012"(basePoint = {0.0, 0.0},  scale = 1.0,  // geometry
46   angle = $angle, // AoA
47   mechanicalSystem = mechanicsRigidImmovable()) }; // mechanics
48   fileWake = { }; // previously stored vortex wake can be loaded

Figure 3. An example of the input file that describes the problem of flow simulation in VM2D.

7. Proper Orthogonal Decomposition

The application of artificial intelligence and machine learning methods for CFD results
processing has a rich history, described, in particular in review paper [57]. Various machine
learning methods can be used to compress and store data—the most common are Proper
Orthogonal Decomposition (POD), also known as principal component analysis (PCA),
and Dynamic Mode Decomposition (DMD).

Both POD and DMD are modal decomposition approaches that allow for reducing
the amount of stored experimental or numerical data by its low-dimensional (or low-rank)
approximate representations with high enough accuracy. The main idea of these methods
is to identify the coherent modes that dominate in the measured signal. The DMD can be
efficiently used when it is necessary to reveal frequency information and corresponding
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spatial structures throughout the field [58–60]. So, the DMD seems to be preferable for a
detailed investigation of the flow structure. In this research, the POD technique is used for
data processing and compression, since normally it requires a smaller number of modes in
comparison to DMD [58] for data reconstruction with a given accuracy. In this research,
the main purpose of the model order reduction technique usage is to store the results of
numerical simulation as efficiently as possible, having in mind its further processing or
usage in other applications. Thus, the possibility of the flow structure investigation by
using the POD technique here is considered only as an additional feature, which is however
rather valuable.

It is well-known that the proper orthogonal decomposition (POD) method, makes it
possible to extract the flow features from experimental or numerical data and construct low-
dimensional representations for initially high-dimensional data. Note that the application
of the POD technique can also be considered as some filtering tool, which permits to discard
non-essential small-scale features of the numerical solution. The scope of the POD is very
broad in modern applications, such as micromechanics [61,62], aeroelasticity [63,64], fluid
mechanics [65,66], aeroacoustics [67], and others.

In this regard, it is promising to use POD together with vortex methods.
The POD technique was introduced in 1967 [68] as an attempt to decompose a random

vector field of turbulent fluid motion as a set of deterministic functions, each of which
captures some part of the total oscillating kinetic energy in the flow. In recent decades,
the study of turbulent or extended chaotic systems has made significant progress. Two
main achievements can be distinguished: first, the recognition of the existence and high
significance of coherent structures (defined as strongly stable space-time structures in the
dynamic evolution of a system) in weakly and even strongly chaotic systems, and, second,
the adoption of mathematical methods that came from studies of nonlinear dynamical
systems [69], which led to the need to improve data storage and processing. Thus, POD
has become one of the classic tools of experimental and numerical hydrodynamics. The
main task of this method is to divide the data set into orthogonal spatial and temporal
modes, which allows one to study the data set most efficiently.

The essence of the method is as follows: the considered physical field that depends
on spatial coordinates and time, is approximately replaced by a sum of the spatial modes{

ϕ
(h)
k (~r)

}m
k=1 with time-dependent coefficients:

Ψ(h)(~r, t) ≈
m

∑
k=1

ak(t)ϕ
(h)
k (~r),

where the upper index (h) means that the corresponding field is a grid function. The
desired property of such an approximation is a small number m of required basis functions
compared to the number of time steps together with the high accuracy of the field Ψ(h)

reconstruction.
The condition of orthogonality of the basis in the sense of a n-dimensional space,

where n is the number of grid nodes or cells, is also desirable (the values of Ψ(h) at a
chosen time moment in the nodes/cells of the grid are considered as the elements of an
n-dimensional vector). The latter requirement, among other things, significantly simplifies
the procedure for calculating the coefficients ak(t).

Let us assume that there is a certain amount of computed data set in the grid nodes at
consecutive times t1, t2, . . . , tN . It is assumed that this data corresponds to the results of
some unsteady CFD simulation stored with a certain step (usually significantly exceeding
the time step in the simulation). When studying the scalar field, i.e., pressure field, we
consider the initial data as a set of n-dimensional vectors {p(h)(ti)}N

i=1. For d-dimensional
vector field processing, such as velocity field, vectors {~v(h)(ti)}N

i=1 are represented as (d · n)-
dimensional vectors in which all the components of the solution in all cells are written in a
row. So hereinafter we will not distinguish scalar and vector fields and denote the data
from initial snapshots as {x(h)(ti)}N

i=1.
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To build a basis {ϕ
(h)
k }

N
k=1, the following operations are performed.

1. The calculation of the symmetric covariance matrix R of N× N size with components

Rij =
1
N

(
x(h)(ti), x(h)(tj)

)
,

where (u, v) means scalar product of the vectors u and v.
2. The calculation of eigenvalues {λk}N

k=1 and eigenvectors {νk}N
k=1 for the matrix R; the

dimension of the vectors νk is equal to number of snapshots N.
3. Setting the basis vectors, which determine spatial modes, as

ϕ
(h)
k (~r) =

N

∑
j=1

(νk)jx(h)(tj),

where (νk)j denotes the j-th component of the k-th eigenvector.

4. Calculating the time-dependent coefficients
{

ak(ti)
}N

k=1 that allow for solution recon-
structing as a linear combinations of spatial modes at all time steps i:

ak(ti) =

(
x(h)(ti), ϕ

(h)
k

)
(

ϕ
(h)
k , ϕ

(h)
k

) =

(
x(h)(ti), ϕ

(h)
k

)
∥∥ϕ

(h)
k

∥∥2 .

5. Representation of the solution at the i-th time step:

x(h)(ti) =
N

∑
k=1

ak(ti)ϕ
(h)
k .

Note that the following optimal property of the POD basis is satisfied [69]:

• For arbitrary n-dimensional vector ψ(h) such as ‖ψ(h)‖ = ‖ϕ
(h)
1 ‖,

N

∑
i=1

(
x(h)(ti), ϕ

(h)
1

)2
≥

N

∑
i=1

(
x(h)(ti), ψ(h)

)2
;

• For arbitrary n-dimensional vector ψ(h) such as ‖ψ(h)‖ = ‖ϕ
(h)
2 ‖ and

(
ψ(h), ϕ

(h)
1
)
= 0,

N

∑
i=1

(
x(h)(ti), ϕ

(h)
2

)2
≥

N

∑
i=1

(
x(h)(ti), ψ(h)

)2
;

and so on.

Due to these inequalities, the following property is satisfied: for any value of the
number m = 1, . . . , N of basis modes, the sum of the squares of the approximation errors

N

∑
i=1

∥∥∥x(h)(ti)−
m

∑
k=1

ak(ti)ϕ
(h)
k

∥∥∥2

takes the smallest value for all possible ways of choosing orthogonal basis modes {ϕ
(h)
k },

k = 1, . . . , m. This means that each subsequent basis mode ϕ
(h)
k is chosen so as to hold the

maximum possible amount of “information” about the original solution that also can be
treated as the “energy” which is contained in the solution.

In this paper, the POD technique is applied to velocity and pressure fields ~v(h)(~r, t)
and p(h)(~r, t) processing. The relative error of the field x(h)(~r, t) approximation with m



Entropy 2021, 23, 118 15 of 38

modes obtained by using the POD technique at the particular time step ti is calculated
as follows

ε(m)(ti) =

(∫
Ω

∥∥x(h)(~r, ti)− x(h)m (~r, ti)
∥∥2dΩ

)1/2

(∫
Ω

∥∥x(h)(~r, ti)
∥∥2dΩ

)1/2 ,

where the fields x(h)(~r, ti) and x(h)m (~r, ti) mean the initial grid function and its approximate
representation

x(h)m (~r, ti) =
m

∑
k=1

ak(ti)ϕ
(h)
k ,

and the integrals are understood as the corresponding quadrature sums.
The value that expresses the error on all the time steps, is calculated as follows

ε(m) =

(∫ tN

t1

dt
∫

Ω

∥∥x(h)(~r, ti)− x(h)m (~r, ti)
∥∥2dΩ

)1/2

(∫ tN

t1

dt
∫

Ω

∥∥x(h)(~r, ti)
∥∥2dΩ

)1/2 .

Note that the values ε(m) coincide with the square root of the sums of the corresponding
normalized eigenvalues:

δ(m) =

√√√√ N

∑
k=m+1

λk

/ N

∑
k=1

λk. (8)

This property of the POD algorithm makes it possible to estimate the reconstruction
error easily.

8. Numerical Experiments

Let us consider a set of model problems connected to flow simulation around some
airfoil. Our main aim is to analyze the possibility of the vortex methods application
to correct reconstruction of the flow structure in the neighborhood of the airfoil, which
determines hydrodynamical loads acting the airfoil. The quality of flow simulation in
far-field is not discussed in this paper, however, in some engineering applications, e.g., at
flow simulation around tandems of airfoils [70], it also can be important.

8.1. The Blasius Problem

The Blasius flow is one of the simplest and the most popular test that allows for
checking if the viscous stresses in the flow are modelled correctly or not.

A steady two-dimensional laminar boundary layer is simulated that is formed on a
semi-infinite plate which is parallel to a steady incident flow. The analytical asymptotic
solution is known for this flow [39,71]. In numerical simulation a thin plate of unit length
L = 1.0 and width H = 0.004 with semicircular tips was considered; the incident flow
has unit velocity V∞ = 1, its density ρ = 1 and kinematic viscosity ν = 10−3. We assume
hereinafter that all the values are dimensionless.

The airfoil was discretized into 5088 panels of the same length, parameter Γmax that
determines maximal strength of vortex particles was chosen equal to 4× 10−5, time step
for unsteady flow simulation ∆t = 2× 10−4.

The positions of vortex particles at time moment t = 7.5 are shown in Figure 4.
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Figure 4. Vortex particles positions in steady-state regime for the Blasius flow.

Velocity profiles for horizontal and vertical velocity components were measured in
the cross-section at x∗ = 0.25. Their comparison to analytical solution is shown in Figure 5.
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Figure 5. Horizontal (a) and vertical (b) dimensionless velocity profiles in cross-section x∗ = 0.25 (red circles), in comparison
to analytical solution (black solid line).

It is clearly seen that the vortex particle method implementation, based on viscous
vortex domain method, allows for very accurate simulation in laminar viscous bound-
ary layers.

8.2. The Flow in the Channel with Backward Facing Step

Another model problem widely used for numerical methods verification is internal
flow simulation in the channel with a backward-facing step. In [72], the results of experi-
ments and numerical simulations are shown for this problem. The shape of the channel is
shown in Figure 6. In numerical simulation the height of the input and output sections were
chosen as h = 1 and H = 1.94, similar to [72]. The velocity profile in the inlet cross-section
is assumed to be parabolic, which corresponds to the Poiseuille flow. The position of the
reattachment point x is estimated for different values of the Reynolds number.

h
H

x

V∞

l L

Figure 6. Scheme of the channel with backward-facing step.
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In order to eliminate the influence of the inlet and outlet boundaries, simulations were
performed for channels with different values of l and L; the lengths l = 7 and L = 13
are quite enough to simulate the flow in infinite channel. The increase of these values
practically does not affect the reattachment point position.

The Reynolds number is defined in this problem as

Re =
VD

ν
,

where V is the average flow velocity in the input section equal to two-thirds of maximal
inlet velocity, D is the hydraulic diameter of the inlet section equal to twice its height,
D = 2h, and ν is the kinematic viscosity coefficient.

The channel perimeter was discretized into 1400 panels of the same length, parameter
Γmax = 10−3, time step for flow simulation ∆t = 10−2. The velocity profile in the inlet
cross-section was simulated as the summary influence of 100 point sources, which strengths
were chosen in such a way to reconstruct the Poiseuille profile with maximal velocity V = 1.
Kinematic viscosity is variable and corresponds to the Reynolds number values in the
range from 50 to 400.

The horizontal velocity distribution in steady-state regime at time moment t∗ = 200
for Re = 100 is shown in Figure 7 and the positions of vortex particles at the same time
moment are shown in Figure 8.

Figure 7. Horizontal component of the flow velocity in the channel with backward-facing step.

Figure 8. Vortex particles positions in steady-state regime for the flow in the channel with backward-facing step.

The positions of the flow reattachment point obtained in simulations in VM2D were com-
pared to experimental data [72] for the Reynolds number in the range 50 . . . 400. Figure 9
shows the dependency of the value s = x/(H − h) against the Reynolds number.

It is seen that the results are in good agreement in the range Re = 50 . . . 300. The
significant difference between the results occurs at Re > 300, apparently due to the fact, also
noted in [72], that the real flow becomes essentially three-dimensional, so two-dimensional
simulation is incorrect.

So, the following conclusion should be done: in the general case, two-dimensional
flow simulation remains correct only for the regimes that are stable in real flows, when
long cylinders are considered in the cross flow. However, for these cases, vortex methods
show a rather high accuracy.
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Figure 9. Positions of the flow reattachment point s for different Reynolds numbers.

8.3. Flow Separation Angle for a Circular Cylinder

If the airfoil surface line is smooth enough and there are no sharp edges and corner
points, the position of the separation point depends significantly on the Reynolds number.
The positions of separation point, obtained as a result of numerical simulation, say a lot
about the correctness of flow regime simulation in the whole and, in particular, about the
accuracy of the hydrodynamic loads computation, because, for example, the drag force
value is strongly connected to the separation point position.

We consider only flows at rather low Reynolds numbers, at it follows from the pre-
vious results, namely a flow around a circular cylinder at Re = 20 . . . 200. In this range,
two flow regimes can be distinguished: steady regime, when the flow after the airfoil is
symmetric, and the regime with vortex shedding and von Karman vortex street formation.
For symmetrical regimes (the Reynolds numbers up to 40) the separation point is practically
immovable, while in modes with vortex shedding it moves periodically along some arc
during the vortex-shedding period.

The separation angle value θ is measured as shown in Figure 10.

Separation point position

O

��
V�

Figure 10. The position of the separation point for the circular airfoil in cross flow.

Numerical simulations were performed for the circular airfoil of unit diameter dis-
cretized into 1000 panels of equal length, incident flow velocity V∞ = 1, maximal vortex
particle strength Γmax = 2× 10−4, time step ∆t = 2× 10−3.

Figure 11 shows the vortex particles distribution in the near-wall region around
the airfoil and the positions of separation point for different time instants during one
vortex-shedding period T for the case of flow simulation at Re = 200.

The angular position of the separation point corresponds to the point at which the
shear stress vanishes. For example, the distribution of the share stresses along the airfoil
surface line for Re = 200 at time t∗ = 2/9T is shown in Figure 12. It is seen that the instant
value for the separation angle θ ≈ 120◦.
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Figure 11. Vortex particles positions around the airfoil and the positions of separation points for different time instants at
Re = 200.
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θ

fμ
max

fμ

o

Figure 12. Distribution of the share stresses along the airfoil surface line for the top part of the
circular airfoil.

The Table 5 shows the obtained values for the separation angle at different Reynolds
number. For the steady symmetrical regimes, only one value for the separation angle θ̄ is
given, which varies just slightly in time during the numerical simulation. For the quasi-
steady regimes with von Karman vortex street formation the position of the separation
point varies significantly during the vortex shedding period, the average value θ̄ for the
separation angle is given, as well as the range θmin . . . θmax in which θ changes periodically.
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Table 5. Separation angle values against Reynolds numbers.

Re 20 30 40 50

θ̄ 140.9 133.9 125.7 122.0

θmin . . . θmax — — — —

Re 60 80 100 120

θ̄ 119.5 119.2 117.2 117.2

θmin . . . θmax 118.3. . . 122.6 116.7. . . 125.8 115.7. . . 124.4 114.66. . . 123.66

Re 140 160 180 200

θ̄ 117.2 119.4 120.7 119.7

θmin . . . θmax 113.9. . . 121.5 113.2. . . 121.1 112.5. . . 122.2 111.4. . . 124.0

A detailed review of the results obtained numerically and experimentally by different
authors for the considered problem is given in [73]. Figure 13 shows a comparison of the
results obtained in current study from numerical simulation using VM2D code, with experi-
mental and numerical results of other authors: experimental investigations by Thom [74],
Dimopoulos and Hanratty [75], Homann [76], Grove, et al. [77], and numerical investiga-
tions by Wu, et al. [73] and Erturk and Gokcol [78]. Results in [78] are given only for the
Reynolds numbers up to 60 since the authors consider only stationary modes.

It is seen from Figure 13 that the results obtained in the current study for Reynolds
numbers up to 140 are in good agreement with the results of other researchers. While for
the Reynolds number from 160 to 200, the separation angle seems to be slightly higher than
the results of numerical simulations of recent years, however, the average values agree
quite well with the results obtained experimentally in [75,77].

50 100 150 200
Re

110

120

130

140

150

160

θ

Figure 13. The separation point angular position against the Reynolds number obtained in current
research in comparison to the results of other authors.

Thus, the vortex method usage makes it possible to simulate flow separation on a
smooth surface at low Reynolds numbers (up to 140 for circular cylinder).

8.4. The POD Technique Application to Data Compression and Flow Regimes Analysis

The number of vortex particles in the flow domain in the previously discussed problem
of flow around circular cylinder simulation has an approximately quadratic dependence
against the number of panels on the airfoil surface line. This is due to the fact that the
minimal distance between vortex particles is usually chosen proportionally to the length
of the panel (vortex particles that are closer to each other are merged into one vortex if its
summary strength is lower than Γmax).



Entropy 2021, 23, 118 21 of 38

A typical number of vortex elements in the above discussed numerical simulations
have the order of 300,000. In principally, the velocity field can be reconstructed at an
arbitrary point by using the Biot–Savart law, however, it requires storing positions and
strength of all the vortex particles for each snapshot. It is easy to estimate that one such
“snapshot” has approximately 7 Mb size, while the number of snapshots has the order of
1000. So, all the raw data takes approximately 5. . . 10 Gb. Note that velocity reconstruction
in such an approach requires significant computational resources.

If one computes velocity and pressure at the nodes of a rather fine spatial mesh that
contains approximately 60,000 points, such a snapshot would have 1.5 Mb size, and total
data would take about 1. . . 2 Gb.

However, if such velocity-pressure snapshots are used for the POD expansion con-
struction, each mode stored in a file has, again, approximately 1.5 Mb in size.

Now we consider in details the results of flow simulation around the circular cylinder
at Re = 200 in quasi-steady regime (from t∗ = 80 to t∗∗ = 160); all other parameters of
simulation are the same as in the previous section.

The plot of the first POD-mode for both components of the velocity field and pressure
field are shown in Figure 14. This mode describes precisely the averaged characteristics of
the flow. Note that hereinafter the POD technique is applied to vector field ~v (together to
both components) and separately to pressure field p.

k = 1:

vx vy p

Figure 14. The first POD-mode for the flow simulation around the circular cylinder at Re = 200.

The second and the third POD-modes are very similar, their plots are shown in
Figure 15. One can notice that the 2nd and the 3rd modes are “phase-shifted” in some
sense. It is quite natural because these modes correspond to large vortex structures (von
Karman vortices), and their linear combination allows for describing the vortices running
from left to right.

k = 2:

k = 3:

vx vy p

Figure 15. The 2nd and 3rd POD-modes for the flow simulation around the circular cylinder at
Re = 200.

Plots of the next four modes (from 4th to 7th) are shown in Figure 16. They correspond
to smaller-scale vortex structures and again are “phase-shifted” (the 4th in comparison to
the 5th and the 6th in comparison to the 7th), so they also describe running vortices.
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k = 4:

k = 5:

k = 6:

k = 7:

vx vy p

Figure 16. The POD-modes from 4th to 7th for the flow simulation around the circular cylinder at
Re = 200.

The thoughts about simulation of running vortices are in good agreement with the
values of time coefficients ak(t) that correspond to the first five POD-modes (coefficients
a6(t) and a7(t) are very similar to a4(t) and a5(t) and are not shown in the plot), Figure 17.
One can see that a1(t) is very close to constant, a2(t) and a3(t) are periodical with zero
average value, and phase shifted, and the same for a4(t) and a5(t).
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Figure 17. Time coefficient dependencies ak(t) for first five POD-modes for the flow simulation around circular airfoil at
Re = 200.

The plot of eigenvalues of the covariance matrices for velocity (considered as vector
field) and pressure fields that are processed in the POD algorithm are shown in Figure 18.
It is seen that the eigenvalues decrease rapidly. The maximal eigenvalue corresponds to
the first mode (averaged flow), λ2 ≈ λ3 corresponds to the modes that describe large-scale
von Karman running vortices, λ4 ≈ λ5 and λ6 ≈ λ7 correspond to smaller-scale running
vortices. Six more pairs of close eigenvalues are clearly observable, which also describes
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smaller-scale vortices. Some modes with numbers higher than 19 also correspond to some
small-scale vortex structures in the flow domain, some others do not have physical meaning
and seem to be some type of noise, maybe connected with the properties of the numerical
method. In any case, the values of the eigenvalues with higher numbers are many times
smaller in comparison to the first eigenvalues.

1 5 10 50 100 500
k10-3

10-1

101

103

105

λk

1 5 10 50 100 500
k

10-7

10-5

10-3

10-1

101

103

105
λk

velocity field pressure field

Figure 18. Eigenvalues λ1 . . . λ400 of the covariance matrix (in logarithmic scale) for the unsteady flow simulation around
circular cylinder at Re = 200.

In Table 6, the errors of velocity and pressure fields reconstruction are shown computed
according to (8) for the different number of the POD-modes taken into account at the fields
reconstruction.

Table 6. The error of velocity and pressure fields reconstruction for different number of the POD-modes.

m 1 3 5 7 9 11 13 15 17 19

δ
(m)
V

0.3370 0.0749 0.0417 0.0180 0.0098 0.0066 0.0049 0.0039 0.0036 0.0034

δ
(m)
p 0.3111 0.1118 0.0240 0.0123 0.0052 0.0029 0.0022 0.0016 0.0013 0.0011

It is seen that the errors of both fields reconstruction decrease at nearly the same rate,
and only nine first POD-modes storing allows for very precise solution reconstruction (with
1% error) during all the time period in quasi-steady regime. Note that the POD-modes
analysis hardly makes it possible to determine the position of the separation point on the
cylinder surface line, but it allows to reduce dramatically the size of data that should be
stored in order to have the possibility for solution reconstruction.

8.5. Flow around a Wing Airfoil Simulation

In previous subsections, it was shown that two-dimensional vortex methods allow
for correct simulation for airfoils with smooth surface lines only for low-Reynolds flows.
However, if we consider wing airfoils at a rather high Reynolds number, the obtained
results for drag and lift forces are in acceptable agreement with experimental data.

Vortex wakes after NACA-0012 airfoil in quasi-steady regime are shown in Figure 19
for the Reynolds numbers Re = 104 and Re = 105; angle of incidence α = 6◦. Parameters
of the flow simulation in VM2D were the following: wing airfoil with unit chord at unit
incident flow was considered, the airfoil surface line was discretized into 1000 panels,
maximal vortex particle strength Γmax = 3× 10−5, time step ∆t = 10−3 (input file for this
case was shown in Figure 3).



Entropy 2021, 23, 118 24 of 38

Re = 104:

Re = 105:

Figure 19. Vortex wake after the NACA-0012 wing airfoil for AoA α = 6◦ at Re = 104 and Re = 105.

Drag and lift coefficients for NACA-0012 airfoil, obtained experimentally by Winslow,
et al. [79] and numerically in the VM2D code, are shown in Figure 20 for the Reynolds
number values Re = 104 and Re = 105.
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Figure 20. Drag force and lift force coefficients against the AoA for NACA-0012 airfoil at Re = 104 and Re = 105.

Despite the fact that the drag force coefficient is overestimated in numerical simu-
lations, the main result of this simulation is the following: two-dimensional simulation
permits to obtain correct results at rather high Reynolds numbers, if the airfoil with a sharp
edge (or angle point) is considered, and the flow separation takes place at this point; the
viscous vortex domains method allows for correct resolving the viscosity effect that is
especially clearly seen for the lift coefficient dependency against the angle of attack (AoA).

Note that for AoA higher than shown in Figure 20, the results differ significantly from
the experimental. This is due to the fact that after some critical AoA, the intensive flow
separation takes place from the smooth part of the wing airfoil. This phenomenon hardly
can be described and simulated correctly in the framework of “pure” two-dimensional
simulation without any additional models, such as turbulence closure models. Recall that
nowadays there are no such models developed for vortex methods, and its creation can be
treated as a significant achievement in vortex methods development.

8.6. Unsteady Flow Simulation around Circular Cylinders

It seems that unsteady and transient regimes simulation is the most attractive area
where Lagrangian vortex methods can be efficiently applied. As it was mentioned in
Introduction, in number of engineering applications it is important to determine unsteady
hydrodynamic loads, acting on the structure at transient regime. So another test case was
considered that is connected with flow simulation around impulsively started cylinder.

Unsteady drag force computation for an impulsively started cylinder at different
Reynolds number is also a “standard” test problem that have been investigated by many
researchers. In Figure 21, the vortex wakes are shown for a circular cylinder of unit diameter
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that was discretized into 3200 panels of equal length. The media was considered to be still
(zero incident velocity), while the airfoil starts to move impulsively from left to right with
unit velocity. The value of Γmax was chosen equal to 2× 10−5, time step for flow simulation
∆t = 10−4. Two cases were considered, for which media viscosity coefficients have been
chosen in such a way to provide the Reynolds numbers Re = 40 and Re = 200.

Re = 40 Re = 200

Figure 21. Vortex particles positions in vortex wakes after the impulsively started circular cylinder at
Re = 40 and Re = 200 at time moment t∗ = 0.5.

Time dependencies for summary drag force (caused by pressure distribution and
viscous friction) for the considered cases are shown in Figure 22 in comparison to the
results, obtained by Bar-Lev and Yang [80], Collins and Dennis [81] and Koumoutsakos
and Leonard [82].
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Re = 40 Re = 200

Figure 22. Unsteady drag force coefficient acting on the impulsively started circular cylinder at
Re = 40 and Re = 200.

It is seen that the results of flow simulation are in good agreement with the results
obtained by other researchers.

Similar simulation have been performed for higher Reynolds number, namely Re = 3000,
but the final time of simulation now was chosen ten times larger, equal to t∗ = 5.0. The
results of numerical simulation of such flow for different discretization parameters are
shown in Figure 23 for the unsteady drag force coefficient. These results can be considered
as mesh convergence investigation. For simulations marked as “Mesh 1” . . . “Mesh 5”, the
following parameters have been varied: maximal vortex particle strength Γmax and time
step ∆t that were divided in half for each subsequent “Mesh”. Note that number of panels
that approximate the airfoil surface line, was the same for “Meshes 1, 2, 3”, and then it was
doubled twice for “Mesh 4” and “Mesh 5”.



Entropy 2021, 23, 118 26 of 38

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

0.20

0.40

0.60

0.80

1.00

1.20

1.40

CD

Mesh 1
Mesh 2
Mesh 3
Mesh 4
Mesh 5

Figure 23. Results of mesh convergence investigation for unsteady drag force coefficient acting the
impulsively started circular cylinder at Re = 3000.

It is clearly seen that the results of simulation for the set of parameters, marked as
“Mesh 3, 4, 5” are close to each other. The finest parameters that correspond to the “Mesh 5”
are the following: 3200 panels on the airfoil surface line, Γmax = 10−5, ∆t = 2.5× 10−4.

Vortex wakes at time moments t = 1.0, t = 2.0, t = 3.0, t = 4.0 and t = 5.0 are shown
in Figure 24.

t = 1.0

t = 5.0

t = 3.0

t = 4.0

t = 2.0

Figure 24. Vortex particles positions in vortex wakes after the impulsively started circular cylinder at
Re = 3000 at different time moments.

In [10,80,82–96] the results are presented for this problem at Re = 3000. In Figure 25,
the results obtained by using the VM2D code with the above mentioned discretization param-
eters set “Mesh 5” are shown in comparison to the results of Pepin [86], Shankar [87], Ander-
son and Reider [88], Koumoutsakos and Leonard [82], Ploumhans and Winckelmans [90],
Lakkis and Ghoneim [93] and Liu and Kopp [95] thatseem to be the most accurate.

A very good agreement is observed; it should be pointed out that the results of
computations using the VM2D code that are shown in Figure 25 by red color, are just unsteady
results, presented without any averaging. So, the vortex method, based on the developed
T-schemes, makes it possible to obtain non-oscillating unsteady hydrodynamic loads.
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Figure 25. Unsteady drag force coefficient acting the impulsively started circular cylinder at Re = 3000.

Note that in the last simulation number of vortex particles has order of 1 million, and
storing of their positions and strength for all the snapshots requires a lot of disk space (each
snapshot file size is about 20–30 Mb).

At the same time if 1000 snapshots are stored for the last simulation (with time step
0.005), the POD technique can be efficiently applied to this data. The first 100 eigenvalues
of the covariance matrices for velocity (considered as vector field) and pressure fields are
shown in Figure 26, it is seen that they decrease rather rapidly.
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Figure 26. Eigenvalues λ1 . . . λ100 of the covariance matrix (in logarithmic scale) for the unsteady flow simulation around
impulsively started circular cylinder at Re = 3000.

Plots of the first six POD-modes are shown in Figure 27. On the modes that corre-
sponds to velocity components, large vortex structures are clearly seen, and the larger is
number of the mode, the smaller scale of structures it describes.

This flow is essentially unsteady, and it can be considered as a typical transient
regime that is especially interesting in engineering practice due to significant variations
of the hydrodynamic loads, acting on the structure in the flow. Time dependencies for
the coefficients ak(t) that correspond to the first five POD modes are, consequently, non-
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periodic (in fact, the same behaviour is observed for coefficients with higher indices),
Figure 28.

k = 1:

k = 2:

k = 3:

k = 4:

k = 5:

k = 6:

vx vy p

Figure 27. The first six POD-modes for the unsteady flow simulation around impulsively started
circular circle at Re = 3000.

At the same time, the velocity and pressure fields can be reconstructed with rather
high accuracy that seems to be quite enough for practical purposes by taking into account
only small number of the POD-modes. The errors for both fields reconstruction are shown
in the Table 7 for this simulation; it should be noted that the error decreases not as rapidly
as in Table 6 for the quasi-steady flow regime.

Table 7. The error of velocity and pressure fields reconstruction for different number of the
POD-modes.

m 2 4 6 8 10 12 14 16 18 20

δ
(m)
V

0.0913 0.0390 0.0255 0.0182 0.0130 0.0101 0.0080 0.0064 0.0053 0.0046

δ
(m)
p 0.0139 0.0044 0.0019 0.0011 0.0006 0.0004 0.0003 0.0002 0.0002 0.0001
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Figure 28. Time coefficient dependencies ak(t) for first five POD-modes for the flow simulation around impulsively started
cylinder at Re = 3000.

As the result, we should point out that even for transient flow regime only 10–20
POD-modes are required for unsteady flow reconstruction with high accuracy: 1 % error is
achieved for 12 modes. Note that the pressure field is reconstructed with higher accuracy
in comparison to velocity field.

In the present simulation, spatial mesh on which velocities were snapped consists of
about 60,000 nodes, so in order to store 15 POD-modes, less then 25 Mb of disk space is
required; files with time coefficient values ak(t) are much smaller and their total size is
comparable with a size of a file that corresponds to one POD-mode.

8.7. Flow Simulation around Two Closely Spaced Circular Airfoils

To verify the accuracy of the unsteady hydrodynamic loads calculation in the VM2D
a series of model problems of the external flow simulation around two circular airfoils
with different mutual positions were considered. Note that similar problems arising in
pipe bundles dynamic simulation, was successfully investigated by using some simplified
modification of the vortex method [97].

Let us consider two closely spaced circular airfoils (Figure 29), the angle α varies
from 0◦ to 180◦, as in [98], where numerical and experimental results for such problems
are presented. The incident flow has unit velocity V∞ = 1, its density ρ = 1. The
simulations were performed for the regime with intermediate Reynolds number, namely
Re = 103. The Reynolds number is calculated with respect to the diameter of a large
cylinder: Re = DV∞/ν.

In addition to the VM2D, the same simulations were performed in the OpenFOAM. For
computations in OpenFOAM meshes with different number of cells were used: 50,000, 150,000,
450,000 cells. Computations in VM2D were performed with different discretization: the large
circle was discretized into 250, 500 and 1000 elements (panels), which corresponds to
approximately 15,000, 30,000 and 100,000 vortex elements in the vortex wake in steady-
state mode, respectively.

The results obtained with different discretization show that for both codes the most
coarse discretization is sufficient to obtain results that are in acceptable agreement with
the results of two-dimensional simulation in [98]. So in the VM2D code the following
discretization has been used: the large circle was discretized into 250 panels, the small
one—into 112 panels, the time step was chosen as ∆t = 0.008.

The following integral characteristics were measured in numerical simulation: the
average values and the root mean square (RMS) amplitudes for the drag force coefficient
CD and the lift force coefficient CL and the dimensionless vortex shedding frequency St.
The drag and lift force coefficients for the large cylinder are calculated as CD1 = 2FD1

ρDV2
∞

and

CL1 = 2FL1
ρDV2

∞
, respectively, and those for the small cylinder CD2 = 2FD2

ρdV2
∞

and CL2 = 2FL2
ρdV2

∞
,

respectively, where FD and FL are the drag and lift forces acting on the cylinder in the
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horizontal and vertical direction, respectively, the subscripts “1” and “2” denote the large
and small cylinders, respectively.

 

D

d

y

x
α

Figure 29. Mutual position of two circular cylinders with different diameters.

In Figure 30, average values of drag and lift force coefficients are shown for different
values of α in comparison to the data presented in [98].
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Figure 30. Average values of drag and lift force coefficients CD and CL for large and small cylinders.

It is seen that the results obtained in OpenFOAM and VM2D are in acceptable agreement
with the data given in [98]. The largest difference between VM2D and results from [98] is
observed for the lift coefficient for the small cylinder CL2, while the graph for OpenFOAM
is nearly the same as the results [98]. However, for a large cylinder, the results for CL1
obtained in VM2D and [98] correlate well enough, while OpenFOAM gives a notable error and
incorrect tendency of dependence on the angle.

In Figure 31, the root mean square (RMS) amplitudes for the drag coefficient CD and
the lift coefficient CL are shown for different values of α in comparison to the data given
in [98].
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Figure 31. The root mean square (RMS) amplitudes for drag and lift coefficients CD and CL for large and small cylinders.

The RMS amplitude results are also in good agreement for all the experiments. Note
only a slight overestimation of the RMS amplitude of CD1 obtained in [98] for α = 67.5 and
α = 90.0 in comparison to results from VM2D and OpenFOAM and slight underestimation of
the RMS amplitude of CL1 for α = 90.0 and α = 112.5 obtained in VM2D in comparison to
results from OpenFOAM and [98].

The vortex shedding frequency is determined by applying the Fast Fourier Transform
(FFT) to the lift coefficients time dependency for the large cylinder and choosing the
dominant frequency from the spectra. The dependency of the Strouhal number, calculated
as St = f D/V∞, where f is the dominant frequency of the oscillation of the lift coefficients,
is shown in Figure 32.
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Figure 32. The dimensionless vortex shedding frequency.
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It is seen that the results obtained in VM2D and OpenFOAM agree with each other quite
well but slightly differ from the results [98].

As the result, we can conclude that the vortex methods allow not only for average
(or steady) hydrodynamic loads computation with acceptable accuracy but also for their
time oscillations. This fact is important for engineering applications having in mind the
possibility of flow-induced vibrations simulation.

8.8. Flow around Rectangular Airfoils

The last model problem is connected to flow simulation around rectangular airfoils
with different chord to thickness (c/t) ratio. In the results presented in [95] the interesting
phenomenon is observed: the Strouhal number, calculated with respect to rectangular
airfoil chord St = f c/V∞, where f is the dominant frequency in the lift force spectra, V∞
is incident flow velocity, depends on the chord length c stepwise: for small elongation
3 < c/t < 5.5 its value is approximately constant, St ≈ 0.5; for 5.5 < c/t < 9 it varies just
slightly around the value St ≈ 1.0, and for rectangles of large elongation 9 < c/t < 10 it is
close to St ≈ 1.5.

Note that similar behaviour is observed for different Reynolds numbers, we consider
the case that corresponds to Re = 400 (note that the Reynolds number is calculated with
respect to the airfoil thickness, Re = tV∞/ν, where ν if the kinematic viscosity of the flow).
The following parameters were chosen in all numerical simulations in VM2D: incident flow
velocity V∞ = 5.0, its kinematical viscosity ν = 0.0125, maximal vortex particle strength
Γmax = 0.05, time step ∆t = 0.002. All the airfoils had thickness t = 1 while their chords
were in the range 3.5 ≤ c ≤ 10. Vortex wakes in quasi-steady regimes at time moment
t∗ = 100 are shown in Figure 33.

c/t = 3.5

c/t = 7.0

c/t = 10.0

Figure 33. Vortex wakes in quasi-steady regimes for rectangular airfoils with chord to thickness
ratios c/t = 3.5, c/t = 7.0 and c/t = 10.0 at the Reynolds number Re = 400.

The obtained values for the Strouhal number are shown in Figure 34 in comparison to
results of numerical simulations by Tan, et al. [99] and Liu and Kopp [95] performed also
at Re = 400.

In [95], it is noted that at c/t = 9.0 two dominant frequencies in the spectra are
observed, the corresponding Strouhal number values are marked on the plot by crossings.
In the present study, a similar situation took place also for c/t = 5.0. In general, the
results obtained by using the vortex method are in good agreement with the previously
known results of numerical simulation. However, it is not easy to recognize the cause of
stepwise Strouhal number behavior, watching vortex wake structures. At the same time,
the POD-analysis allows for doing it easily. If the POD technique is applied for snapshots
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processing in quasi-steady regime, i.e., omitting the transient regime after simulation start,
during which boundary layer and vortex wake are developing, the following results are
obtained for first three POD-modes (Figures 35–37).

The first mode corresponds and describes with high accuracy averaged flow, while on
the plots for the second and third modes vortex structures are clearly distinguished. These
vortex structures have the largest scale; the higher POD-modes correspond to smaller-scale
vortices, which accumulate, of course, a much smaller fraction of energy. It is seen that
for airfoils with small elongation 3 ≤ c/t ≤ 4.5 two pairs of vortices are formed along
their chord, for the airfoils with 6 ≤ c/t ≤ 7.5 three pairs of vortices are observed, and for
8.5 ≤ c/t ≤ 10 four pairs are distinguished. It is interesting also to note that the distance,
at which the large-scale vortices are generated in the boundary layer, increases with the
c/t ratio.

So, the POD analysis allows for clear distinguishing of different flow regimes that
determine macroscopic flow parameters, such as the Strouhal number.

●
● ● ● ●

●
● ● ● ● ● ●

● ●

●
● ●

3 4 5 6 7 8 9 10
c/t

0.40

0.80

1.20

1.60
St

Tan et al.

Liu & Kopp

● VM2D (current study)

Figure 34. The Strouhal number against chord to thickness c/t ratio at the Reynolds number
Re = 400.

c/t = 3.0 c/t = 4.0 c/t = 4.5

c/t = 6.0 c/t = 6.5 c/t = 7.5

c/t = 8.5 c/t = 9.5 c/t = 10.0

Figure 35. The first POD-mode for velocity field (velocity magnitude is shown) for the quasi-steady
flow regime around rectangular airfoils at Re = 400.
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c/t = 3.0 c/t = 4.0 c/t = 4.5

c/t = 6.0 c/t = 6.5 c/t = 7.5

c/t = 8.5 c/t = 9.5 c/t = 10.0

Figure 36. The second POD-mode for velocity field (velocity magnitude is shown) for the quasi-steady
flow regime around rectangular airfoils at Re = 400.

c/t = 3.0 c/t = 4.0 c/t = 4.5

c/t = 6.0 c/t = 6.5 c/t = 7.5

c/t = 8.5 c/t = 9.5 c/t = 10.0

Figure 37. The third POD-mode for velocity field (velocity magnitude is shown) for the quasi-steady
flow regime around rectangular airfoils at Re = 400.

9. Conclusions

The possibilities of applying two-dimensional Lagrangian vortex methods of compu-
tational fluid dynamics, namely, the particular modification—the Viscous Vortex Domains
method—were considered in relation to various types of problems. The original method
of Viscous Vortex Domains, developed by prof. G. Ya. Dynnikova, supplemented by the
original high-accurate numerical schemes for simulating vorticity generation on the airfoil
surface line and implemented in the parallel code VM2D.
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All the considered numerical simulations were performed by using the VM2D code. The
results of the simulations in the model problems allow us to conclude that the viscous vortex
domains method can be efficiently applied to viscous incompressible flows simulation for
regimes with low Reynolds numbers when the contribution of three-dimensional effects in
the flow is not significant. Simulation for higher Reynolds numbers is also possible, the
numerical results are in good agreement with the results of other researchers, however,
it should be taken into account that the two-dimensional formulation in this case can be
not correct. For example, in the case of bluff airfoils, when considering two-dimensional
formulation, the flow separation point is shifted against its true position being observed in
the experiment when the Reynolds number is higher than 160. However, for the case when
there is an angle point or a sharp edge (i.e., the point from which flow separation occurs
in most modes), the range of Reynolds numbers, when the two-dimensional modeling
remains correct, can be much wider in comparison to airfoils with a smooth surface line.

For the model problems, the VM2D code verification is performed by computing un-
steady hydrodynamic loads acting on the airfoils—the most common application of vortex
methods. The simulation results are in good agreement with the numerical results of other
authors and experimental data.

The POD technique is used to store and analyze the results of simulations obtained
in VM2D which initially have the form of snapshots (in VTK format) at different time steps,
containing information about the velocity and pressure on the spatial mesh. The POD
application makes it possible to reduce significantly the amount of memory required for
data storing. Of course, such data compression comes with some loss and it is impossible
to reconstruct the original physical fields exactly, but the error analysis shows that the
storing of 10–20 first POD-modes (instead of hundreds or thousands of original snapshots)
is quite enough to provide about one percent error.

From the above, the authors are pleased to conclude that they managed to create a
computational tool that allows for flow modeling using pure Lagrangian vortex meth-
ods, which is available to researchers, first of all, to engineers. The performed extensive
verification confirms its efficiency and applicability in a wide range of problems.
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