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Abstract: This paper deals primarily with relatively novel thermal quantifiers called disequilibrium
and statistical complexity, whose role is growing in different disciplines of physics and other sciences.
These quantifiers are called L. Ruiz, Mancini, and Calvet (LMC) quantifiers, following the initials
of the three authors who advanced them. We wish to establish information-theoretical bridges
between LMC structural quantifiers and (1) Thermal Heisenberg uncertainties ∆x∆p (at temperature
T); (2) A nuclear physics fermion model. Having achieved such purposes, we determine to what
an extent our bridges can be extended to both the semi-classical and classical realms. In addition,
we find a strict bound relating a special LMC structural quantifier to quantum uncertainties.

Keywords: thermal uncertainties; disequilibrium; semi-classical distributions

1. Introduction

The motivation for studying L. Ruiz, Mancini, and Calvet (LMC) structural quantifiers
(LMCSQs) in quantum mechanics is that these measures have been recently shown to
describe important aspects of quantum systems at zero temperature [1–3]. Consequently, it
would be interesting to analyze how LMCSQs behave at finite temperatures.

1.1. LMC Structural Quantifiers

LMCSQs have become important tools in several scientific disciplines [1–15].
In most systems, a certain level of randomness (usually quantified by an entropy S)

coexists with some number of correlation structures. This fact can be viewed as an in-
termediate stage between two opposite extreme situations: (A) perfect order or (B) max-
imal randomness (no correlations exist). This intermediate stage has been successfully
quantified in the last 20 years by a quantity that came to be called the statistical com-
plexity C—advanced in Ref. [4]—which can be properly regarded as a structure–content
quantifier [1–15]. In Ref. [4], the authors established a kind of “distance” in probability
space (PS) that they referred to as the disequilibrium D. What does it measure? If f is the
probability density that describes the system at hand and fu is the uniform probability
density, then D tells us how far the two distributions, f (x) and fu, differ from each other [5].
In density matrix parlance, D measures the distance between the extant density matrix and
the maximally mixed one and is associated with order, which grows with the value of D.

D =
∫

dx( f (x)− fu)
2. (1)
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In addition, D provides a notion of hierarchy that makes it non-null if there are
privileged states among the accessible ones. D would then be maximal for (A) and vanish
for (B) above. In the entropy case, things are exactly reversed. S is minimal for (A), while it
reaches a maximum for (B). Reasoning in this way, L. Ruiz, Mancini, and Calvet (LMC) [4–6]
formulated what constitutes today the standard way of casting a statistical complexity
measure or structure–content quantifier C, which is written as a product between the
entropy S and D:

C = DS; S = −
∫

dx f (x) ln(x), (2)

a functional of the density distributions (DDs) [4]. This proposal received great attention
(see Refs. [1–15] as a small sample). It was used in different scenarios for the canonical,
microcanonical, and grand canonical ensembles. As already mentioned, in the present
context, we refer to C as a structure–content quantifier because one of the systems to be
discussed is the harmonic oscillator, which by no means can be regarded as “complex”.
In fact, C has been of utility in the realm of non-complex systems (see Refs. [2,3] and the
references therein).

The above thermal quantifiers will be applied below to a nuclear physics model that
has attracted attention [16–25].

1.2. Thermal Uncertainty Relations (TURs)

The motivation for this TUR endeavor is based on a recent discussion by Nagata [26],
who analyzed finite-temperature uncertainties and their relation with the LMC structural
quantifiers C (statistical complexity) and D (disequilibrium).

Thermal uncertainty relations (TURs) were the subject of great efforts and exceedingly
interesting work (one can look, for instance, at [26–33]. A recommendable review was
provided by Uffink and van Lith [34]. These thermal uncertainties [35] will be the focus of
the present work, particularly in connection with the disequilibrium notion, which will
be explained below. Our motivation arises from consideration of the TURs. Within this
framework, we wish to encompass the behavior of the LMC structural quantifiers [1–15].

2. The Thermal Quantum Case

With regards to quantum mixed one-dimensional states, after consulting and relat-
ing references [5,26,36,37], to see if one can cast the pertinent density matrix ρ̂ and the
associated disequilibrium D in a simple fashion, one starts with

ρ̂ = (1− e−βh̄ω)e−βn̂, (3)

where β = 1/kBT, kB the Boltzmann constant, and n̂ is the number operator [36]. In this
paper, we set the Boltzmann constant equal to unity (kB = 1). Then, one can express the
quantum disequilibrium in the fashion [5,36,37]:

D = Trρ̂2. (4)

Note that here D is exactly equal to the purity (or degree of mixedness) P(⊂) of ρ̂, so
that 0 ≤ D ≤ 1. With some simple manipulations, one can also ascertain that [5,26,36,37]:

D = tanh(βh̄ω/2). (5)

Further, the quantal harmonic oscillator (HO) expression for the entropy S is [36]:

S =
βh̄ω

eβh̄ω − 1
− ln (1− e−βh̄ω), (6)

so that, with S and D at hand, the quantum structural quantifier C = DS becomes

C = tanh(βh̄ω/2)
(

βh̄ω

eβh̄ω − 1
− ln (1− e−βh̄ω)

)
, (7)
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which vanishes both at T = 0 and at T = ∞, as one should expect. In addition, we believe
it convenient to add here the useful well-known HO expressions for the Helmholtz free
energy F, the mean value of energy U, and the specific heat CV [36]:

F =
h̄ω

2
+ T ln

(
1− e−βh̄ω

)
(8)

U = 〈Ĥ〉 = h̄ω

(
〈n̂〉+ 1

2

)
≡ h̄ω

2 tanh(βh̄ω/2)
(9)

CV =

(
h̄ωβ

eβh̄ω − 1

)2
eβh̄ω − . (10)

Finally, the the mean particle number 〈n̂〉 is easily seen to be

〈n̂〉 = 1
eβh̄ω − 1

. (11)

We now have enough material to derive our desired equality below.

3. A Strict Bound Relating D to Quantum Uncertainties

Our present results arise at this stage. We remind the reader that D, which is equal
to the ratio C/S, can also be regarded as the ratio between a structural and a random
quantifier. The thermal Heisenberg uncertainty relation is of the form [35,37]:

∆x ∆p =
h̄
2

coth(βh̄ω/2), (12)

so that it can be cast in the fashion:

D =
h̄/2

∆x ∆p
= Ur, (13)

where ∆x and ∆p are the quantum variances for the canonically conjugated observables x
and p [37], and thus, D equals the ratio Ur = (h̄ω/2)/U between the minimum possible
uncertainty value (attributable to coherent states) and the actual uncertainty value of the
mixed state under consideration. This ratio, in turn, is also the purity P(⊂̂). We are then
immediately led to our first significant result (we repeat that D, which is equal to the ratio
C/S, can also be regarded as the ratio between a structural and a random quantifier):

D ∆x ∆p =
h̄
2

. (14)

Surprisingly enough, there exist semi-classical and even classical counterparts of the
above equality, as we will show below.

Equation (14) can also be cast in purity terms, in the fashion:

P(⊂) ∆x ∆p =
h̄
2

, (15)

which constitutes, let us insist, a strict quantum equality (for the HO), which we be-
lieve to have newly established here. This relation also tells us that the ratio of “struc-
ture/randomness” times thermal uncertainty equals h̄/2.

We now depict some statistical quantifiers versus either Heisenberg’s uncertainty
q1 = ∆x∆p/h̄ or q2 = h̄ω/kBT. We begin with von Neumann’s entropy in Figure 1,
which exhibits maxima at q1 = 1 = q2. Figure 2 displays several thermal quantifiers
versus uncertainty. These curves will be compared below with their semi-classical Husimi
counterparts.
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Figure 1. (Left panel): statistical complexity C versus h̄ω/kBT. The maximum C value is detected whenever the thermal
energy equals the vibrational one, which happens at h̄ω/kBT = 1, as indicated by the vertical line. (Right panel): C versus
kBT/h̄ω. In addition, the maximum is located in h̄ω/kBT = 1.
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Figure 2. (Left panel): thermal quantum quantifiers (TQFs) versus ∆x ∆p/h̄. Towards the right, we reach the classical limit.
We can appreciate how the thermal quantifiers behave along such a route. (Right panel): TQFs versus h̄/∆x ∆p expressed in
kB-units. Towards the left, we reach the classical limit. These plots should be compared to the corresponding ones displayed
in Ref. [26].

We highlight here this fact regarding the right panel: The quantum structural quantifier
does not attain its maximum at minimal uncertainty h̄/2, but at twice this value. This
value is the minimum one that can be reached for semi-classical uncertainties, as we will
see below. Thus, the quantum structural quantifier seems to “sense” that the correlation
structure that it depicts is maximal as we enter the semi-classical domain. The left panel
tells us that the structural quantifier becomes maximal when the vibrational energy equals
the thermal–kinetic one.

Let us elaborate on this last result. Both the cases of T → ∞ and T = 0 (one has the
vibrational energy h̄/2) have a zero structural quantifier C. The maximum C should be
attained in a scenario that is “intermediate” between these two extreme instances. This
happens precisely when the vibrational energy equals the thermal–kinetic one.

Figure 2 displays several thermal quantifiers versus uncertainty in two distinct fash-
ions for didactic purposes. Notice that at the minimum minimorum (MM) uncertainty
value, the entropy, specific heat, and structural quantifier all vanish.

It may be of some interest to see that all relevant thermal quantifiers can be cast in
terms of D = Ur = P(ρ̂). Indeed, we have

e−βh̄ω =
1− D
1 + D

, (16)
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which implies that

1− e−βh̄ω =
2D

1 + D
. (17)

Therefore—and this is, we believe, a new way of casting HO thermal quantities—solely
in terms of D = Ur, we have the panoply of expressions:

S =

(
1− D

2D

)
ln
(

1 + D
1− D

)
+ ln

(
1 + D

2D

)
, (18)

while the structural quantifier reads

C =

(
1− D

2

)
ln
(

1 + D
1− D

)
+ D ln

(
1 + D

2D

)
, (19)

the free energy turns out to be

F = h̄ω
ln
(√

1−D2

2D

)
ln
(

1−D
1+D

) , (20)

the energy is

U =
h̄ω

2D
, (21)

and the specific heat becomes

CV =
1
4

(
1− D2

D2

)[
ln
(

1 + D
1− D

)]2
. (22)

Finally, the number of particles becomes

〈n̂〉 = 1− D
2D

. (23)

All of the HO thermodynamics can be expressed in terms of either D or the purity.
These may be trivial, but they are novel results.

4. Extending Bridges to a Semi-Classical Environment
4.1. Introduction: Coherent States and Husimi Distributions

The well-known semi-classical Wehrl entropic quantifier W constitutes a phase space
measure of localization [38,39]. It is constructed via coherent states |z〉 [38,40,41] and is
regarded as a powerful tool in statistical physics. Remember that coherent states are eigen-
states of an appropriate annihilation operator â that satisfy the relation â|z〉 = z|z〉 [41–43].
The definition of W is

W = −
∫ dx dp

2πh̄
µ(x, p) ln µ(x, p), (24)

which is thus a Shannon-like information measure [44] to which Jaynes’ MaxEnt elabora-
tions can be applied.

The Husimi distributions (HDs) µ(x, p) [45] are the diagonal elements of the density
operator in the coherent-state basis |z〉. Accordingly,

µ(x, p) = 〈z|ρ̂|z〉. (25)

The µ are semi-classical distributions linked to a density matrix ρ̂ for the system [41–43],
normalized in the fashion ∫ dx dp

2πh̄
µ(x, p) = 1. (26)
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It is well known that µ(x, p) is a Wigner distribution ρW , smeared over an h̄-sized
region of phase space [40]. Such daubing makes µ(x, p) > 0, although ρW lacks such a
positive character. The HD is a special sort of distribution, concerning an approximate
specification of location in phase space [40]. The uncertainty principle acquires the form

W ≥ 1, (27)

as conjectured by Wehrl [38] and proved by Lieb [46]. Equality is attained for ρ̂ in a coherent
state [38,46].

In considering T equilibrium states, one usually regards the system’s state as an
incoherent mixture of eigenenergies En weighted by the Boltzmann factor exp (−βEn).
Gibbs’s canonical distribution is the thermal density matrix given by ρ̂ = exp (−βEn)/Z
with Z = ∑n exp (−βEn).

If we want a W expression for the Hamiltonian Ĥ of eigenstates |n〉 and eigen-energies
En, one can always write [40]:

µ(x, p) = 〈z|ρ̂|z〉 = 1
Z ∑

n
e−βEn |〈z|n〉|2. (28)

A useful path W begins, then, with Equation (28) and follows with Equation (24).
Distributions cast in terms of the coherent states |z〉 of the harmonic oscillator are useful in
multiple contexts [40–43].

4.2. HO Specialization

The above ruminations are of a general nature. Let us specialize things for the HO,
whose Hamiltonian reads

Ĥ = h̄ω (â† â + 1/2) = (h̄ω/2)(â† â + ââ†). (29)

The complex eigenvalues z of the destruction operator â are

z =
1
2

(
x
σx

+ i
p

σp

)
, (30)

where x and p are scaled by their respective variances (σ) in the HO ground state σx =
(h̄/2mω)1/2, σp = (h̄mω/2)1/2, and σxσp = h̄/2. Thus, the Husimi µ(x, p) becomes [40,47]

µ(x, p) ≡ µ(z) = (1− e−βh̄ω) e−(1−e−βh̄ω)|z|2 , (31)

which is normalized according to Equation (26). In addition, the mean energy is [48]:

〈Ĥ〉 = h̄ω

(
〈|z|2〉 − 1

2

)
= h̄ω

(
1

1− e−βh̄ω
− 1

2

)
≡ h̄ω

2 tanh(βh̄ω/2)
, (32)

which coincides with its quantum counterpart.

The HO–Wehrl measure now acquires the appearance [47]:

W = 1− ln (1− e−βh̄ω). (33)

5. HO–Semi-Classical Thermal Treatment and Uncertainty Relations

We enter our semi-classical contributions at this stage. The semi-classical disequilib-
rium is easily seen to be

Dsc = Dsemi−quant =
∫ d2z

π
µ2(z), (34)
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where d2z/π = d(Re z)d(Im z) = dxdp/(2πh̄) is the differential z plane’s area ele-
ment [41]. We will use the subscript sc for the semiclassical case.

After evaluation, that integral becomes

Dsemi−quant =
1
2
(1− e−βh̄ω), (35)

and by comparing to (17), we see that

Dsemi−quant =
D

1 + D
, (36)

meaning that
Dsemi−quant ≤ D, (37)

an unsuspected relationship, which makes sense, however, since, as a classical density
distribution (DD), one expects it to be closer to the uniform distribution than a quantal DD
derived from a density operator.

The structural quantifier Csc = Dsc W derives from Equations (33) and (35) and reads

Csc =
1
2
(1− e−βh̄ω)

(
1− ln(1− e−βh̄ω)

)
. (38)

Thermal uncertainties express the effect of temperature on Heisenberg’s celebrated
relations (see, for instance, [28,35,37,49]). We now use a result obtained in Ref. [40]
(Equation (3.12)), where the authors cast Wehrl’s information measure in terms of the
“coordinates” variances ∆µx and ∆µ p, obtaining

W = ln
( e

h̄
∆µx ∆µ p

)
. (39)

In the present context, the relation W = 1− ln(1− e−βh̄ω) allows us to write [47]:

∆µx ∆µ p =
h̄

1− e−βh̄ω
. (40)

In view of Equation (35), we can affirm that there is an exact semi-classical replica of
the quantum equality (14) above, which reads

Dsc ∆µx ∆µ p =
h̄
2

. (41)

In addition, the structural quantifier has the form

Csc =
ln
(

e ∆µx ∆µ p
h̄

)
∆µx ∆µ p/(h̄/2)

. (42)

We note that when ∆µx ∆µ p = h̄, then Csc = 1/2, which is the maximum possible
value attained by Csc. Figure 2 depicts the behavior of Csc in terms of the uncertainty
relation ∆µx ∆µ p. Note that W and its associated structural quantifier can be expressed
exclusively in uncertainty terms.

In Figure 3, we notice that (i) the Wehrl structural quantifier attains its maximum
values at the same place at which the quantal structural quantifier does. (ii) This place
corresponds to the maximum possible semi-classical localization in phase space. (iii)
Wehrl’s structural quantifier grows from zero vibrational energy (VE) till the VE becomes
half the thermal-kinetic energy.
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Figure 3. (Left panel): statistical complexity Csc versus h̄ω/kBT. The vertical line indicates equality between the thermal
and the vibrational energies. As the frequency ω grows relative to the temperature, the complexity becomes a constant.
(Right panel): structural quantifier Csc versus ∆µx ∆µ p/h̄. The vertical line indicates optimal semi-classical localization.

6. Possible Classical Extension

For completeness’ sake, we add here a word regarding the classical scenario. We
obtain from Refs. [5,36,37] the three relations (note that we will use here the subscript class
for the classical case):

Dclass = βh̄ω/2, (43)

Sclass = 1− ln(βh̄ω) = 1− ln(2Dclass), (44)

vanishing thus for (here, e is the basis of natural logarithms)

Dclass = e/2, (45)

and becoming negative is Dclass > e/2, a typical classical artifact.
Finally, the special equality obeyed by the uncertainty relation can be extended to the

classical realm. In this case, one has

∆class x∆class p =
h̄

βh̄ω
=

h̄
2Dclass

, (46)

or, significantly enough, we have a classical counterpart of the quantum equality (14)
that reads

Dclass ∆class x∆class p =
h̄
2

. (47)

A word of caution may be pertinent here. In this instance, h̄ is just an arbitrary
elementary action that one introduces in classical statistical mechanics in order to avoid
Gibbs’ paradox. It is gratifying, though, that (47) preserves the structure of Equation (14).

Using relation (16), we see that

Dclass = ln (1− D)1/2 − ln (1 + D)1/2, (48)

so that Dclass vanishes if its quantum counterpart does so. However, it diverges when D
attains its maximum value of unity. In addition, with some algebra, the classical structural
quantifier can be written in terms of the quantum uncertainties as

Cclass =
ln(e ∆classx∆class p/h̄)

2∆classx∆class p/h̄
. (49)
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We illustrate things in Figures 4 and 5. Notice that, also classically, the structural
quantifier becomes maximal when the two types of energies at play become equal. Note the
extraordinary similitude between the quantum and the classical C structural quantifiers.
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Figure 4. (Left panel): structural quantifier Cclass versus h̄ω/kBT. The maximum is attained at h̄ω/kBT = 1, that is, equality
between thermal and vibrational energies. (Right panel): structural quantifier Cclass versus ∆classx∆class p = h̄. Remarkably
enough, Cclass is maximal at the same uncertainty values that maximize its quantum counterpart.
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Figure 5. Our three manners of calculating complexities (or structural quantifiers), C versus kBT/h̄ω.
The vertical line signals equality between the thermal and vibrational energies. As the temperature
grows, the three manners tend to yield identical results.

7. Application to a Nuclear Physics Model

We apply here our thermal quantifiers S, D, and C to a fermion model system used in
nuclear physics [16–20].

7.1. The Model

The Lipkin model (LM) [22] was very useful in research that revolved around the
validity and/or usefulness of several theoretical techniques devised for investigating
multiple facets of the fermion many-body problem. The LM is based on an SU(2) algebra.
The properties of the pertinent solutions can be investigated via group-theory techniques.
We will occupy ourselves here with an LM version proposed in Ref. [16].

The N fermion models of [16,22] treat N fermions distributed between (2N)-fold
degenerate single-particle levels, whose energy separation is a gap ε. Two quantum
numbers (qn) (mu and p) are allocated to a generic single-particle (sp) state. The µ qn
adopts the values µ = −1 (lower level) and µ = +1 (upper level). The p qn, often referred
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to as a quasi-spin or pseudo-spin, picks out a specific p value from the N-fold degeneracy.
The pair p, µ may be viewed as a ”site” that is either occupied or empty. One has

N = 2J, (50)

with J standing for an “angular momentum”.

7.2. Second Quantization Language

We need the creation and destruction operators C† and C. Following Lipkin et al. [22],
we introduce the quasi-spin operators

Ĵ+ = ∑
p

C†
p,+Cp,−, (51)

Ĵ− = ∑
p

C†
p,−Cp,+, (52)

Ĵz = ∑
p,µ

µ C†
p,µCp,µ, (53)

Ĵ2 = Ĵ2
z +

1
2
( Ĵ+ Ĵ− + Ĵ− Ĵ+), (54)

where the eigenvalues of Ĵ2 equal J(J + 1).

7.3. Hamiltonian H for Our Model

This has a coupling constant Vs and reads [16]:

Ĥ = ε Ĵz −Vs

(
1
2
( Ĵ+ Ĵ− + Ĵ− Ĵ+)− Ĵ

)
, (55)

or, with V = Vs/ε (equivalently, ε = 1). Moreover,

Ĥ = Ĵz −V
(

1
2
( Ĵ+ Ĵ− + Ĵ− Ĵ+)− Ĵ

)
, (56)

and the unperturbed ground state (gs) for V = 0 is, given Equation (50),

|J, Jz〉 = |J,−N/2〉, (57)

whose energy Eo is

Eo = −N/2. (58)

Doubly occupied p sites are not permitted. Ĥ commutes with the two operators Ĵ2

and Ĵz.
Thus, the exact solution must be located within the J-multiplet of the unperturbed

ground state. The states of this multiplet are called |J, M〉. One of them should then
minimize the energy. The concomitant M value depends on the value of V.

7.4. Phase Transitions

A remarkable feature of the model is that, as V grows from zero, Eo is not immediately
modified. It keeps its value until a critical V-specific value is reached, which equals
1/(N− 1). At this stage, the interacting ground state suddenly becomes |J,−N/2+ 1〉. If V
keeps growing, additional phase transitions (pt) occur. Between Jz = −k and Jz = −k + 1,
this takes place at V = 1/(2k − 1). The pt series ends as the interacting ground state
becomes either Jz = 0 (Vcrit = 1 for integer J) or Jz = −1/2 (Vcrit = 1/2 for odd J). In such
cases, we have, independently of the value J [16],

Vcrit = 1/2, (59)
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for half J and
Vcrit = 1, (60)

for integer J.

7.5. Finite Temperature

One needs to study model results for different J values, which is easy because double
occupancy of a p site is strictly forbidden. Thus, the Hamiltonian matrix should be the
(2J + 1)× (2J + 1) one of the Jz = −N/2 multiplet, with N = 2J [22].

One has for the free energy F(J) in terms of the partition function Z(J):

F = −T ln Z = −T ln Tr(exp (−βĤ)), (61)

where we set the Boltzmann constant equal to unity. For each different J, the trace operation
is a sum over the Jz quantum number m and

Z(J) =
m=J

∑
m=−J

exp (−βEJ
m), (62)

with an energy EJ
m [16]

EJ
m = m−V[J(J + 1)−m2 − J]. (63)

The associated Gibbs canonical ensemble probabilities PJ
m are then [50]:

PJ
m =

exp (−βEJ
m)

Z(J)
, (64)

for all m = −J,−J + 1, . . . , J − 1, J, and the Boltzmann–Gibbs S entropy becomes [50]:

S(J) = −
m=J

∑
m=−J

PJ
m ln PJ

m. (65)

As for the number of micro-states m one has, of course,

O(J) = 2J + 1, (66)

so that the uniform probabilities become

P(uJ) = 1/O(J). (67)

Our disequilibrium is then

D(J) =
m=J

∑
m=−J

[PJ
m − P(uJ)]

2. (68)

Consequently, the pertinent statistical complexity C becomes

C(J) = D(J)S(J). (69)

One expects that C will display a maximum at the phase transitions [5].

7.6. Application Results

The numerical progtam utilized can be inspected in Figure A1 in Appendix A. Also,
see Figures 6–10. Just to show how the model works, we depict the free energy F (Figure 7)
and the specific heat CV (Figure 6) versus V/T.

Afterwards, we plot the three quantifiers S(J), D(J), and C(J) below as a function
of the ratio between the coupling constant V and the temperature T. We see that the
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three quantities behave in a quite different manner according to whether the number of
fermions in the system is even or odd. These odd–even effects have their counterparts in
nature [51–53].

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

V/kBT

C
V
/k
B

J=5/2

J=2

Figure 6. CV versus V/T for N = 4 5.
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Figure 7. F) versus V/T for N = 4 5.
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Figure 8. S(J) versus V/T for different J values. Since the fermion number N = 2J, we detect a
significantly distinct behavior according to whether the fermion number is even or odd.
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Figure 9. D(J) versus V/T for different J values. Since the fermion number N = 2J, we detect
a significantly distinct behavior according to whether the fermion number is even or odd.
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Figure 10. C(J) versus V/T for different J values. This displays a maximum that signals the phase
transition. Since the fermion number N = 2J, we detect a significantly distinct behavior according to
whether the fermion number is even or odd.

As stated above, our odd–even effects detected here have their counterparts in
nature [51–53]. The odd–even staggering of nuclear binding energies is well known [53].
A rather similar effect can be found in other finite fermion systems. The staggering in
nuclei and grains is attributed mainly to pairing correlations . In clusters, it originates from
the Jahn–Teller effect (see [51–53] and the references therein). These odd–even differences
in nuclear masses are also influenced by mean-field and odd-nucleon blocking effects [54].

8. Conclusions

This work had several parts. In the first part, we uncovered and/or found some novel
facets of information-related Gibbs statistical descriptions. More specifically, for mixed
states (at a temperature T), we established the equality

∆x∆pP = ∆x∆pD = h̄/2.

This equality was suitably extended, mutatis mutandis, to both the semi-classical and
the classical realms, as we explained above. Further,

• At the minimum minimorum uncertainty value, the entropy, specific heat, and struc-
tural quantifier C all vanish.

• There is a strong connection between the disequilibrium D and the thermal uncertainty
(TU). As D grows, the TU decreases. The TU is minimal for pure states where D = 1.
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• Note that all quantities involved in (15) are observable (in principle), so we are dealing
with a relation that has its counterpart in nature.

The second part of this effort involved semi-classical and classical scenarios. We
highlight that

1. The Wehrl structural quantifier Csc attains its maximum values at the same place at
which the quantal structural quantifier C does so.

2. This place corresponds to the maximum possible semi-classical localization in phase
space.

3. Wehrl’s structural quantifier Csc grows from zero at null vibrational energy (VE) until
the VE attains half of the thermal–kinetic energy, and then remains constant.

4. ∆µx ∆µ p/h̄ can be regarded as the phase-space localization error e (in its natural units)
that accompanies the Husimi distribution.

5. The Wehrl structural quantifier Csc becomes a maximum in these circumstances.
6. We emphasize that CV attains its constant classical value as soon as the thermal energy

equals the vibrational one.
7. The three different structural quantifiers, C, at play in this work behave in a remark-

ably similar fashion, as shown in the last graphs.

The third part referred to the application of the three different structural quantifiers S,
D, and C to a nuclear physics model, where the quantifiers permit one to find significant
fermionic differences.
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Abbreviations
The following abbreviations are used in this manuscript:

LMC Lopez-Rioz, Mancini, and Calbet
LMCTSQ Lopez-Rioz, Mancini, and Calbet thermal structural quantifiers
TUR Thermal uncertainty relation
HO Harmonic oscillator
MM Minimum minimorum
TQF Thermal quantum quantifiers
HD Husimi distributions
DD Density distribution
LM Lipkin model

Appendix A. Mathematics Program

It is given in Figure A1 below.
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Figure A1. Our computer program
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