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Abstract: Channel secret key generation (CSKG), assisted by the new material intelligent reflecting
surface (IRS), has become a new research hotspot recently. In this paper, the key extraction method in
the IRS-aided low-entropy communication scenario with adjacent multi-users is investigated. Aiming
at the problem of low key generation efficiency due to the high similarity of channels between users,
we propose a joint user allocation and IRS reflection parameter adjustment scheme, while the
reliability of information exchange during the key generation process is also considered. Specifically,
the relevant key capability expressions of the IRS-aided communication system is analyzed. Then, we
study how to adjust the IRS reflection matrix and allocate the corresponding users to minimize the
similarity of different channels and ensure the robustness of key generation. The simulation results
show that the proposed scheme can bring higher gains to the performance of key generation.

Keywords: key generation; physical layer security; multi-user

1. Introduction

CSKG is different from traditional key-based upper-layer encryption [1], which is a
physical layer security(PLS) scheme based on information theory. Due to the time-varying,
short-term reciprocity, and space–time uniqueness of the shared wireless channel, legitimate
nodes can use the channel information as a natural source to extract secret keys without
key exchange [2]. However, CSKG schemes are limited by randomness in the channel
conditions, which depends on the dynamics in the wireless environment. Therefore,
it is impractical to obtain sufficiently random keys under a low-entropy environment.
This problem has always been a challenge [3], which especially affects a wide range of
wireless applications with limited mobility, that is, the channel tends to be static. This
issue has been studied in the literature and various solutions have been proposed [4–6],
including utilizing multiple-input multiple-output (MIMO) antennas [4], beamforming [5],
and deploying friendly jamming [6], but the above methods greatly increase energy and
hardware deployment costs, which means that they can not be applied on the existing
CSKG system widely.

Intelligent reflecting surface is an artificial plane with digitally controllable electromag-
netic reflection behavior, which is composed of a large number of individually adjustable
reflective elements [7]. Due to its passive reflective characteristics, IRS can work without
active radio frequency (RF), and thus it can work in full-duplex systems with low energy
consumption. In addition, IRS has a great innovation potential to control the propagation
of radio under the condition of relatively low hardware complexity. In recent years, IRS
has also been considered to improve the physical layer security of wireless communication
networks [8,9], pointing to the promising future of the wireless communication material.
However, most of these works focus on the research of secure transmission, i.e., using
passive beamforming to maximize the signal-to-noise ratio (SNR) difference between the
legal and eavesdropping channel, and few works consider the use of IRS for wireless
key generation.
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Since IRS can configure the wireless channel through passive reflection, it has great
potential in improving key extraction performance [10]. In terms of applying IRS to
optimize key extraction over a low-entropy channel, some papers have recently proposed
corresponding schemes [11]. A low-cost IRS-assisted channel key extraction prototype
system was also recently designed in [12], which proved that using IRS for key extraction
is a feasible solution.

However, the existing literature only considers the point-to-point key extraction over
a static channel. When the scenario is extended to a multi-user application, and the users
are relatively close, the key generated by each user is very relevant. This will damage
the security and the efficiency of the key generation. This paper considers channel key
extraction in multi-user downlink scenarios.

The usual method is assigning an IRS random coefficient to each user separately,
so that the multi-user, static channel-related problems can be solved. However, in the
actual key extraction process, each user needs to negotiate with the base station, and a
high signal-to-noise ratio can facilitate the negotiation interaction. Therefore, each IRS
random coefficient set needs to be effectively matched with the user channel. Based on the
above considerations, this paper studies the key generation scheme that combines user
selection and IRS random change in a multi-user downlink scenario. The simulation results
show that, compared with the no-IRS and no-user-selection scheme, it can bring perfor-
mance improvement in the robustness of information interaction and the key disagreement
rate (KDR).

The main structure of this paper is as follows. Section 2 gives the IRS-assisted multi-
user communication system model. Section 3 proposes the joint user allocation and
IRS reflection parameter adjustment scheme. Section 4 gives the simulation results and
Section 5 gives the conclusion of this paper.

Notations: Throughout our discussions, the distribution of complex Gaussian random
variables with mean 0 and variance σ2 are denoted by ∼ CN(0 , σ2). CM×N denotes the
space of M × N complex-valued matrices.

2. System Model

This article considers a situation in which the channel information of illegal eaves-
dropper is unknown. The components of the system are described in Figure 1a, which
included a single Alice, a single IRS, and N Bobs. The IRS was equipped with L passive
reflective elements, and the Alice and all Bobs were equipped with a single antenna. This
paper assumed that Alice and IRS fully knew the global channel state information (CSI)
on all the channels involved. Without the loss of generality, we considered a common
communication scenario in which all nodes were stationary and Bobs were adjacent, which
means that the channels are highly similar. Legitimate nodes generally obtain secret keys
through channel probing [13,14], quantitation [15,16], information negotiation [17,18], and
privacy amplification [19,20]. As shown in Figure 1b, Alice and N Bobs performed the key
extraction in turn within one channel coherence interval, and the time interval for each
round of the key extraction was fixed.

Secret key capacity means the maximum achievable rate of the key generation. As
shown in Figure 1, we assumed that user distribution was uniform; then we took Bob 1 as
an example to analyze the key capacity without IRS. hB1 and hB′1

represent the uplink and
downlink channel information obtained by Alice and Bob1, respectively. hB2 , hB3 , · · · , hBN

represent the channels of other Bobs. Therefore, we can express the key capacity of Bob1 as
the mutual information between hB1hB′1

and minus the leak to other channels:

IB1 = I
(

hB1 ; hB′1
|hB2 , hB3 , · · ·, hBN

)
(1)
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And we can consider the information leaked to other channels as a whole unit, namely,
we let hE = hB2 , hB3 , · · ·, hBN . Equation (1) can be derived as follows:

IB1 = I
(

hB1 ; hB′1
|hE

)
= H

(
hB1 |hE

)
+ H

(
hB′1
|hE

)
−H

(
hB1 ; hB′1

|hE

)
= H

(
hB1 , hE

)
+ H

(
hB′1

, hE

)
−H(hE)−H

(
hB1 , hB′1

, hE

)
a
= H

(
hB1 , hE

)
−H(hE)

(2)

where H(·) represents the corresponding entropy. Since (a) holds because of channel
reciprocity, hB1 and hB′1

are highly similar. It can be seen from Equation (2) that, as the
channel similarity of each user increases, the difference between the two items in the
last row becomes smaller. This means that the high similarity between users’ channels
will greatly reduce the key capacity. Furthermore, it shows that, when a user’s channel
is more independent of other channels, the achievable key rate is faster, which means
that we can increase the key generation rate by reducing the channel correlation between
multiple users.
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Figure 1. System model of key generation.

The channel model of a single user is showed in Figure 2. Alice and Bob are network
nodes that aim to extract the secret key from the shared channel. To ensure the reciprocity
between the downlink and uplink channels within coherent time, all communication nodes
adopted a half-duplex working mode and time-division-duplex (TDD) communication
style. Furthermore, this paper assumed channel coefficients of Alice–Bobs links (hABi ),
Alice–IRS link (hAI), and IRS–Bobs links (hIBi ) are satisfied as hABi ∼ CN(0, σ2

ABi ), h∆ ∼
CN(0, σ2

h∆
)∆ ∼

(
AI, IBi), where i means i-th Bob, i = 1, . . . N.

The signal received can be expressed as:

yi
B = (hH

IBi ΘhAI + hABi )x + zBi (3)

For the IRS channel, similarly to [21], we assumed that Θ = diag{
[
β1ejφ1, · · ·, βmejφm, · · ·, βLejφL

]
}

denotes the diagonal amplitude-phase shifting reflecting coefficient matrix of IRS, where
βm and φm are the amplitude and phase shifts, respectively, on the incident signal by m-th
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element, m = 1, . . . L. L is the IRS reflector number. zBi ∼ CN(0, σ2
Bi ) denotes the noise at

Bob i.
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3. Joint User Allocation and IRS Reflection Parameter Adjustment Scheme

To solve the key similarity problem, we firstly disturbed the channel using N-uncorrelated
IRS reflection matrices to N Bobs and then obtained keys with lower similarity. Note that, in
the following, we used Θj to represent the j-th IRS reflection matrix j = 1, · · ·, N.

This paper considers two continuous and discrete classic modes of IRS reflection
matrix generation. Under continuous conditions, we assumed that the IRS reflection
matrix obeyed the complex Gaussian distribution, which maximizes the entropy over
all distributions with the covariance constraint [22]. In the discrete case, we assumed
that the reflection matrix generated satisfied the full power reflection condition, namely,
βm = 1. The reflection element of the IRS only adjusted the phase to −π or π, namely,
Θ = diag

{[
ejφ1 , · · ·, ejφm , · · ·, ejφL

]}
φm ∈ {−π, π}.

In addition, Alice and Bob had multiple information exchanges in the key generation.
The reliability of the obtained information was more precise when the channel state was
better. For example, in the channel detection stage, under the same channel detection
frame design, the larger channel signal-to-noise ratio (SNR), the more accurate the channel
estimation that was obtained, which ensured the robustness of subsequent key extractions.
Therefore, we considered user allocation based on the generated IRS reflection matrix set to
enhance the reliability of key generation. Channel capacity means the maximum achievable
information rate. h represents the CSI obtained by receiver. Therefore, the channel capacity
can be expressed as follows:

R = log2(1 +
‖h‖2

σh
2 ) (4)

where σ2
h denotes variance of the channel noise. We can take Equation (3) into Equation (4)

to obtain the channel capacity of the system:

Ri,j
B = log2(1 +

‖hH
IBi ΘjhAI + hABi‖

2

σ2
Bi

) (5)
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Equation (4) shows that the channel capacity of the IRS-aided system can be adjusted
by the reflector Θj. Then, we can adjust the IRS reflector to improve information exchange
reliability. The overall optimization problem can be expressed as follows:

max ∑
i,j

Ri,j
B s.tΘj ∈ Θ i, j = 1, . . . , N (6)

To find out the optimal parameter configuration of IRS, we propose the corresponding
configuration algorithm. Firstly, the generated N IRS reflection matrices are paired with N
receivers to obtain the channel capacity under the corresponding pairings. Secondly, we
obtain a N × N value matrix to be sorted, where the i-th row is the result of the i-th Bob
that sequentially matches all IRS reflection matrices. Then, the first pair is the pair with
the largest value. In order to sufficiently reduce the randomness between keys, a reflection
matrix is allocated to only one receiver. Finally, in the remaining pairs without elements
of the last pair, we find the next pair with the largest value, and so on, until all reflection
matrices are allocated. As a result, the allocation process of the proposed scheme can be
summarized as shown in Algorithm 1.

Algorithm 1 Rank algorithm of IRS allocation for Bobs scheduling.

Input: R(i,j)
B

Output: pair
pair = ∅
for loop = 1:N

(i, j) = argmax
i,j?[1,N]

(R(i,j)
B )

RB = RB\(R
(i,:)
B UR(:,j)

B )
pair = pairU(i, j) % Pair relationship between IRS reflection matrix and Bob
end

4. Simulation and Numerical Results

We analyzed the proposed scheme through Monte Carlo simulation. The number
of Bobs is set to 16, and all channels in the model—hABi , hAI , and hIBi —are set as com-
plex Gaussian channels conforming to CN(0, 1). To make the results more accurate, we
performed 10,000 simulations for each parameter point.

We adopted the Pearson correlation coefficient [1] to analyze the impact of the IRS on
the correlation of adjacent multi-user channels. Without IRS, we set the coefficient between
user channels as 0.9. Figure 3 shows the correlation coefficients of channel measurement
values between multiple Bobs under different reflector numbers L(1~128). It can be seen
that, compared with the system without IRS, the correlation between Bobs of the IRS-
assisted system is greatly reduced, which effectively improves the overall key extraction
efficiency and key security. In addition, we also compared our scheme with the random
sorting algorithm, which mainly assigns the generated matrixes to each user randomly.
Thus, we can see that under the two IRS modes, when the reflector number reaches about
20, the disturbance of the channel tends to be smooth and the discrete mode has a relatively
low degree of disturbance to the channel.

In addition, we set the number of reflectors as 128, and compared the effect of the
IRS on the improvement of the channel capacity under the condition that the user channel
SNR is 1 to 20 in Figure 4a. Next, we fixed the SNR to be 10, and analyzed the effect of
the IRS reflector number L(1~128) on channel capacity in Figure 4b. We noted that the
channel capacity in the figure is normalized, that is, the average channel capacity of each
user channel.
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As shown in Figure 4a, compared with the system without IRS, the channel capacity
of the IRS-assisted system was greatly improved, which means that the proposed scheme
guarantees the improvement of information exchange reliability in the key generation
process. It can also be observed that our proposed scheme performs better than random
algorithms, i.e., the ‘rank & discrete mode’ and ‘rank & continuous mode’, and that the
‘continuous IRS mode’ has better performance.

As shown in Figure 4a, we can see that, as the scale of the IRS increases, the channel
capacity continues to rise, and the uptrend tends to be smooth. It can also be observed
that the ‘continuous IRS mode’ is essentially the upper limit of the performance of the
discrete mode.
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We also compared the key disagreement rate performance of the different schemes
that adopt multi-bit adaptive quantization with equal probability [15]. We set the reflector
number as 128, and analyzed the influence of IRS on KDR when the user channel signal-to-
noise ratio is 1 to 10. The key disagreement rate is assumed as Kdis/Ktotal , where Kdis is
the inconsistent key bits number and Ktotal is the total key bits number obtained by Alice
and Bobs in each channel detection.

Since our solution improves the channel environment during the key generation
process, there is less noise interference on communication parties and the inconsistency of
the keys generated by the two parties can be reduced. As shown in Figure 5, compared with
the system without IRS, the KDR of the IRS-assisted system is greatly reduced. It can be
seen that the KDR of the IRS-rank algorithm is better than the IRS-random algorithm. This
means our scheme can obtain the initial channel keys with a lower key disagreement rate,
which makes information coordination easier to implement in the process of key generation.
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5. Conclusions

The high similarity of the generated secret key between adjacent multi-users in a
low-entropy channel results in low key generation efficiency. This paper proposed a new
IRS-assisted key generation scheme, which mainly studied the problem of user allocation
under the random variation of IRS parameters. Our scheme can greatly reduce the similarity
of the adjacent multi-users’ channel to improve the efficiency of key generation. Morover,
it can ensure the reliability of information exchange in the key generation process, which
makes our scheme able to reduce the key inconsistency. The simulation results showed
that our proposed scheme greatly improves the performance of the key extraction process.
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