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Abstract: In a host of business applications, biomedical and epidemiological studies, the problem
of multicollinearity among predictor variables is a frequent issue in longitudinal data analysis for
linear mixed models (LMM). We consider an efficient estimation strategy for high-dimensional data
application, where the dimensions of the parameters are larger than the number of observations.
In this paper, we are interested in estimating the fixed effects parameters of the LMM when it is
assumed that some prior information is available in the form of linear restrictions on the parameters.
We propose the pretest and shrinkage estimation strategies using the ridge full model as the base
estimator. We establish the asymptotic distributional bias and risks of the suggested estimators and
investigate their relative performance with respect to the ridge full model estimator. Furthermore,
we compare the numerical performance of the LASSO-type estimators with the pretest and shrinkage
ridge estimators. The methodology is investigated using simulation studies and then demonstrated
on an application exploring how effective brain connectivity in the default mode network (DMN)
may be related to genetics within the context of Alzheimer’s disease.

Keywords: linear mixed model; ridge estimation; pretest and shrinkage estimation; multicollinearity;
asymptotic bias and risk; LASSO estimation; high-dimensional data

1. Introduction

In many fields such as bio-informatics, physical biology, and epidemiology, the re-
sponse of interest is represented by repeated measures of some variables of interest that
are collected over a specified time period for different independent subjects or individuals.
These types of data are commonly encountered in medical research where the responses are
subject to various time-dependent and time-constant effects such as pre- and post-treatment
types, gender effect, and baseline measures, among others. A widely-used statistical tool in
the analysis and modeling of longitudinal and repeated measures data is the linear mixed
effects model (LMM) [1,2]. This model provides an effective and flexible way to describe
the means and the covariance structures of a response variable after accounting for within
subject correlation.

The rapid growth in the size and scope of longitudinal data has created a need for
innovative statistical strategies in longitudinal data analysis. Classical methods are based
on the assumption that the number of predictors is less than the number of observations.
However, there is an increasing demand for efficient prediction strategies for analysis of
high-dimensional data, where the number of observed data elements (sample size) are
smaller than the number of predictors in a linear model context. Existing techniques that
deal with high-dimensional data mostly rely on various penalized estimators. Due to the
trade-off between model complexity and model prediction, the statistical inference of model
selection becomes an extremely important and challenging problem in high-dimensional
data analysis.
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Over the years, many penalized regularization approaches have been developed to
do variable selection and estimation simultaneously. Among them, the least absolute
shrinkage and selection operator (LASSO) is commonly used [3]. It is a useful estimation
technique in part due to its convexity and computational efficiency. The LASSO approach
is based on an `1 penalty for regularization of regression parameters. Ref. [4] provides a
comprehensive summary of the consistency properties of the LASSO approach. Related
penalized likelihood methods have been extensively studied in the literature, see for
example [5–10]. The penalized likelihood methods have a close connection to Bayesian
procedures. Thus, the LASSO estimate corresponds to a Bayes method that puts a Laplacian
(double-exponential) prior on the regression coefficients [11,12].

In this paper, our interest lies in estimating the fixed effect parameters of the LMM
using a ridge estimation technique when it is assumed that some prior information is
available in the form of potential linear restrictions on the parameters. One possible
source of prior information is using a Bayesian approach. An alternative source of prior
information may be obtained from previous studies or expert knowledge that search for or
assume sparsity patterns.

We consider the problem of fixed effect parameter estimation for LMMs when there
exist many predictors relative to the sample size. These predictors may be classified into
two groups: sparse and non-sparse. Thus, there are two choices to be considered: a full
model with all predictors, and a sub-model that contains only non-sparse predictors. When
the sub-model based on available subspace information is true (i.e., the assumed restriction
holds), it then provides more efficient statistical inferences than those based on a full model.
In contrast, if the sub-model is not true, the estimates could become biased and inefficient.
The consequences of incorporating subspace information therefore depend on the quality or
reliability of the information being incorporated into the estimation procedure. One way to
deal with uncertain subspace information is to use a pretest estimation strategy. The validity
of the information is tested before incorporation into a final estimator. Another approach is
shrinkage estimation, which shrinks the full model estimator to the sub-model estimator
by utilizing subspace information. Besides these estimation strategies, there is a growing
literature on simultaneous model selection and estimation. These approaches are known
as penalty strategies. By shrinking some regression coefficients toward zero, the penalty
methods simultaneously select a sub-model and estimate its regression parameters. Several
authors have investigated the pretest, shrinkage, and penalty estimation strategies in partial
linear model, Poisson regression model, and Weibull censored regression model [13–15].

To formulate the problem, we suppose that the vector of the fixed effects parameter β
in the LMM can be partitioned into two sub-vectors β = (β′1, β′2)

′, where β1 is the coefficient
vector of non-sparse predictors and β2 is the coefficient vector of sparse predictors. Our
interest lies in the estimation of β1 when β2 is close to zero. To deal with this problem in
the context of low dimensional data, ref. [16] propose an improved estimation strategy
using sub-model selection and post-estimation for the LMM. Within this framework, linear
shrinkage and shrinkage pretest estimation strategies are developed, which combine full
model and sub-model estimators in an effective way as a trade-off between bias and
variance. Ref. [17] extend this study by using a likelihood ratio test to develop James–Stein
shrinkage and pretest estimation methods based on LMM for longitudinal data. In addition,
the non-penalty estimators are compared with several penalty estimators (LASSO, adaptive
LASSO and Elastic Net) for best performance.

In most real data situations, there is also the problem of multicollinearity among
predictor variables for high-dimensional data. Various biased estimation techniques such
as shrinkage estimation, partial least squares estimation [18] and Liu estimators [19] have
been implemented to deal with this problem, but the widely used technique is ridge
estimation [20]. The ridge estimator overcomes the weakness of the least squares estimator
with a smaller mean squared error. To overcome and combat multicollinearity, ref. [21]
propose pretest and Stein-type ridge regression estimators for linear and partially linear
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models. Furthermore, ref. [22] also develop shrinkage estimation based on Liu regression
to overcome multicollinearity in linear models.

Our primary focus is on the estimation and prediction problem for linear mixed effect
models when there are many potential predictors that have a weak or no influence on the
response of interest. This method simultaneously controls overfitting using general least
square estimation with a roughness penalty. We propose pretest and shrinkage estimation
strategies using the ridge estimation technique as a base estimator and numerically com-
pare their performance with the LASSO and adaptive LASSO estimators. Our proposed
estimation strategy is applied to both high-dimensional and low-dimensional data.

The rest of this article is organized as follows. In Section 2, we present the linear mixed
effect model and the proposed estimation techniques. We introduce the full and sub-model
estimators based on ridge estimation. Thereafter, we construct the pretest and shrinkage
ridge estimators. Section 3 provides the asymptotic bias and risk of these estimators.
A Monte Carlo simulation is used to evaluate the performance of the estimators including
a comparison with the lasso-type estimators, and the results are reported in Section 4.
Section 5 presents a demonstration of the proposed methodology on a high-dimensional
resting-state effective brain connectivity and genetic data. We also illustrate the proposed
estimation methods in an application to a low-dimensional Amsterdam growth and health
study. Section 6 presents a discussion with recommendations.

2. Model and Estimation Strategies

In this section, we present the linear mixed effect model and the proposed estima-
tion strategies.

2.1. Linear Mixed Model

Suppose that we have a sample of N subjects. For the ith subject, we collect the
response variable yij for the jth time, where i = 1 . . . , n; j = 1 . . . , ni and N = ∑n

i=1 ni.
Let Yi = (yi1, . . . yini )

′ denotes the ni × 1 vector of responses from the ith subject. Let
Xi = (xi1, . . . , xini )

′ and Zi = (zi1, . . . , zini )
′ be ni× p and ni×q known fixed-effects and

random-effect design matrix for the ith subject of full rank p and q, respectively. The linear
mixed effect model [1] for a vector of repeated responses Yi on the ith subject is assumed to
have the form

Yi = Xiβ + Ziai + εi, (1)

where β = (β1, . . . , βp)′ is the p × 1 vector of unknown fixed-effect parameters or regres-
sion coefficients, ai is the q × 1 vector of unobservable random effects for the ith subject,
assumed to come from a multivariate normal distribution with zero mean and a covariance
matrix G, where G is an unknown q× q covariance matrix and εi denotes ni×1 vector of
error terms assumed to be normally distributed with zero mean, covariance matrix σ2Ini .
Further, εi are assumed to be independent of the random effects ai.

The marginal distribution for the response yi is normal with mean Xiβ and covariance
matrix Cov(Y i) = Ziσ

2
i ZT

i + σ2 In. By stacking the vectors, the mixed model can be can be
expressed as Y = Xβ +Za+ ε. From the Equation (1), the distribution of the model follows

Y ∼ Nn(Xβ, V), where E(Y) = Xβ with covariance, V =
n
∑

i=1
Ziσ

2
i ZT

i + σ2In.

2.2. Ridge Full Model and Sub-Model Estimator

The generalized least square estimator (GLS) is defined as β̂
GLS

= (XTV−1X)−1XTV−1Y
and the ridge full model estimator can be obtained by introducing a penalized regression

so that β̂ = arg minβ

{
(Y− Xβ)TV−1(Y− Xβ) + kβT β

}
and

β̂
Ridge

= (XTV−1X + kI)−1XTV−1Y, where β̂
Ridge

is the ridge full model estimator

and k ∈ [0, ∞) is the tuning parameter. If k = 0, β̂
Ridge

is the GLS estimator and β̂
Ridge

= 0
for k is sufficiently large. We select the value of k using cross validation.
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We let X = (X1, X2), where X1 is an n × p1 sub-matrix containing the non-sparse
predictors and X2 is an n× p2 sub-matrix that contains the sparse predictors. Accordingly,
β = (β1, β2) where β1 and β2 have dimensions p1 and p2, respectively, with p1 + p2 = p,
pi ≥ 0 for i = 1, 2.

A sub-model is defined as Y = Xβ + Za + ε subject to βT β ≤ φ and β2 = 0 which

corresponds to Y = X1β1 + Za + ε subject to β1
T β1 ≤ φ. The sub-model estimator β̂

RSM
1

of β1 has the form β̂
RSM
1 = (XT

1 V−1X1 + kI)−1XT
1 V−1Y. We denote β̂

RFM
1 as the full model

ridge estimator of β1 and given as

β̂
RFM
1 = (XT

1 V−1/2MX2V−1/2X1 + kI)−1XT
1 V−1/2MX2V−1/2Y, where MX2 = I− P =

I−V−1/2X2(X2V−1X2)
−1XT

2 V−1/2.

2.3. Pretest Ridge Estimation Strategy

Generally, the sub-model estimator will be more efficient than the full model estimator
if the information embodied in the imposed linear restrictions is valid, thus β2 is close to
zero. However, if the information is not valid the sub-model estimator is likely to be more
biased and may have a higher risk than the full model estimator. There is, therefore, some
doubt as to whether or not to impose the restrictions on the model’s parameter. It is in
response to this uncertainty that a statistical test may be used to determine the validity of
the proposed restrictions. Accordingly, the procedure to follow in practice is pretest the
validity of the restrictions and if the outcome of the pretest suggests that they are correct
then the model parameters are estimated incorporating the restrictions. If the pretest rejects
the restrictions then the parameters are estimated from the sample information alone. This
motivates the consideration of the pretest estimation strategy for the LMM.

The pretest estimator is a combination of the full model estimator β̂
RFM
1 , and sub-model

estimator β̂
RSM
1 , through an indicator function I(Ln ≤ dn,α), where Ln is an appropriate test

statistic to test H0 : β2 = 0 versus HA : β2 6= 0. Moreover, dn,α is an α level critical value
based on distribution of Ln under Ho. We define test statistics based on the log-likelihood

ratio test as Ln = 2
{
`∗(β̂

RFM | Y)− `∗(β̂
RSM | Y)

}
.

Under H0, the test statistic Ln follows asymptotic chi-square distribution with p2

degrees of freedom. The pretest test ridge estimator β̂
RPT
1 of β1 is then defined by

β̂
RPT
1 = β̂

RFM
1 − (β̂

RFM
1 − β̂

RSM
1 )I(Ln ≤ dn,α), p2 ≥ 1.

2.4. Shrinkage Ridge Estimation Strategy

The pre-test estimator is a discontinuous function of the sub-model β̂
RSM
1 and full

model β̂
RFM
1 , which depends on the hard threshold (dn,α = χ2

p2,α). We address this limita-
tion by defining the shrinkage ridge estimator based on soft thresholding. The shrinkage

ridge estimator (RSE) of β1, denoted as β̂
RSE
1 , is defined as

β̂
RSE
1 = β̂

RSM
1 + (β̂

RFM
1 − β̂

RSM
1 )(1− (p2 − 2)L−1

n ), p2 ≥ 3.

Here, β̂
RSE
1 is the linear combination of the full model β̂

RFM
1 and sub-model β̂

RSM
1 estimates.

If Ln ≤ (p2 − 2), then a relatively large weight is placed on β̂
RSM
1 otherwise, more weight

is on β̂
RFM
1 . A setback with β̂

RSE
1 is that it is not a convex combination of β̂

RFM
1 and β̂

RSM
1 .

This can cause over-shrinkage, which gives the estimator opposite sign of β̂
RFM
1 . This

could happen if (p2 − 2)L−1
n is larger than one. To counter this, we use the positive-part

shrinkage ridge estimator (RPS) defined as

β̂
RPS
1 = β̂

RSM
1 + (β̂

RFM
1 − β̂

RSM
1 )(1− (p2 − 2)L−1

n )+, p2 ≥ 3



Entropy 2021, 23, 1348 5 of 24

where (1 − (p2 − 2)L−1
n )+ = max(0, 1 − (p2 − 2)L−1

n ). The RPS estimator will control
possible over-shrinking in the RSE estimator.

3. Asymptotic Results

In this section, we derive the asymptotic distributional bias and risk of the estimators
considered in Section 2. We examine the properties of the estimators for increasing n and
as β2 approaches the null vector under the sequence of local alternatives defined as

Kn : β2 = β2(n) =
κ√
n

, (2)

where κ = (κ1, κ2 . . . , κp2)
′ ∈ Rp2 is a fixed vector. The vector κ√

n is a measure of how far
local alternatives Kn differ from the subspace information β2 = 0. In order to evaluate the
performance of the estimators, we define the asymptotic distributional bias of the estimator
β̂
∗
1 as

ADB(β̂
∗
1) = lim

n→∞
E
{√

n(β̂
∗
1 − β1)

}
,

In order to compute the risk functions, we first compute the asymptotic covariance of the
estimators. The asymptotic covariance of an estimator β̂

∗
1 is expressed as

Cov(β̂
∗
1) = lim

n→∞
E
{

n(β̂
∗
1 − β1)(β̂

∗
1 − β1)

T}.

Following the asymptotic covariance matrix, we define the asymptotic risk of an estimator

β̂
∗
1 as R(β̂∗

1 ) = tr
(

QCov(β̂
∗
1)
)

. Q is a positive definite matrix of weights with dimensions
of p× p. We set Q = I in this study.

Assumption 1. We make the following two regularity conditions to establish the asymptotic
properties of the estimators.

1. 1
n max1≤i≤n xT

i
[
XTV−1X

]−1xi → 0 as n→ ∞, where xT
i is the ith row of X.

2. Bn = n−1[XTV−1X
]−1 → B, for some finite B =

(
B11 B12
B21 B22

)
.

Theorem 1. For k < ∞, If k/
√

n→ λo and B is non-singular, the distribution of the full model
ridge estimator, β̂

RFM
n is √

n(β̂
RFM
n − β)

D→ N (−λoB−1β, B−1),

where D→ denotes convergence in distribution.

Proof. See Theorem 2 in [23].

Proposition 1. Assuming the above assumption 1 together with Theorem 1 hold, under the local
alternatives Kn, we have (

ϕ1
ϕ3

)
D→ N

[(
−µ11.2

δ

)
,
(

B−1
11.2 Φ

Φ Φ

)]
,(

ϕ3
ϕ2

)
D→ N

[(
δ
−γ

)
,
(

Φ 0
0 B−1

11

)]
,

where ϕ1 =
√

n(β̂
RFM
1 − β1), ϕ2 =

√
n(β̂

RSM
1 − β1), ϕ3 =

√
n(β̂

RFM
1 − β̂

RSM
1 ), γ = µ11.2 + δ,

δ = B−1
11 B12κ , Φ = B−1

11 B12B−1
22.1B21B−1

11 , B22.1 = B22 − B21B−1
11 B12, µ = −λoB−1β =

(
µ1
µ2

)
and µ11.2 = µ1 − B12B−1

22 ((β2 − κ)− µ2).
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Proof. See Appendix A

Theorem 2. Under the condition of Theorem 1 and the local alternatives Kn, the ADBs of the
proposed estimators are

ADB(β̂
RFM
1 ) = −µ11.2,

ADB(β̂
RSM
1 ) = −µ11.2 − B−1

11 B12δ = −γ,

ADB(β̂
RPT
1 ) = −µ11.2 − δHp2+2(χ

2
p2,α; ∆),

ADB(β̂
RSE
1 ) = −µ11.2 − (p2 − 2)δE(χ−2

p2+2(∆)),

ADB(β̂
RPS
1 ) = −µ11.2 − δHp2+2(χ

2
p2−2; ∆)

}
− (p2 − 2)δE

{
χ−2

p2+2(∆)I(χ
−2
p2+2 > p2 − 2)

}
,

where ∆ = κTB−1
22.1κ, B22.1 = B22 − B21B−1

11 B12, and Hv(x; ∆) is the cumulative distribution
function of the non-central chi-squared distribution with non-centrality parameter ∆ and v degrees
of freedom, and E(χ−2j

v (∆)) is the expected value of the inverse of a non-central χ2 distribution
with v degrees of freedom and non-centrality parameter ∆,

E(χ−2j
v (∆)) =

∫ ∞

0
x−2jdHv(x, ∆).

Proof. See Appendix B.1

Since the ADBs of the estimators are in non-scalar form, we define the following
asymptotic quadratic bias (AQDB) of β̂

∗
1 by

AQDB(β̂
∗
1) =

(
ADB(β̂

∗
1)

)′
B11.2

(
ADB(β̂

∗
1)

)
,

where B11.2 = B11 − B12B−1
22 B21.

Corollary 1. Suppose Theorem 2 holds. Then, under {Kn}, the AQDBs of the estimators are

AQDB(β̂
RFM
1 ) = µT

11.2B11.2µ11.2,

AQDB(β̂
RSM
1 ) = γTB11.2γ,

AQDB(β̂
RPT
1 ) = µT

11.2B11.2µ11.2 + µT
11.2B11.2δHp2+2(χ

2
p2

; ∆)

+ δTB11.2µ11.2Hp2+2(χ
2
p2

; ∆) + δTB11.2δH2
p2+2(χ

2
p2

; ∆),

AQDB(β̂
RSE
1 ) = µT

11.2B11.2µ11.2 + (p2 − 2)µT
11.2B11.2δE

(
χ−2

p2+2(∆)
)

+ (p2 − 2)δTB11.2µ11.2E
(
χ−2

p2+2(∆)
)
+ (p2 − 2)2δTB11.2δ

(
E
(
χ−2

p2+2(∆)
))2

,

AQDB(β̂
RPS
1 ) = µT

11.2B11.2µ11.2 +
(
δTB11.2µ11.2 + µT

11.2B11.2δ
)[

Hp2+2(p2 − 2; ∆)

+ (p2 − 2)E
{

χ−2
p2+2(∆)I(χ

−2
p2+2(∆) > p2 − 2)

}]
+ δTB11.2δ

[
Hp2+2(p2 − 2; ∆)

+ (p2 − 2)E
{

χ−2
p2+2(∆)I(χ

−2
p2+2(∆) > p2 − 2)

}]2

.

When B11.2 = 0, the AQDB of all estimators are equivalent, and the estimators are
therefore asymptotically unbiased. If we assume that B11.2 6= 0, the results for the bias of
the estimators can be summarized as follows:

1. The AQDB of β̂
RSM
1 is an unbounded function of γTB11.2γ.



Entropy 2021, 23, 1348 7 of 24

2. The AQDB of β̂
RPT
1 starts from µT

11.2B11.2µ11.2 at ∆ = 0, and when ∆ increases, it
increases to the maximum and then decreases to zero.

3. The characteristics of β̂
RSE
1 and β̂

RPS
1 are similar to β̂

RPT
1 . The AQDB of β̂

RSE
1 and β̂

RPS
1

similarly start from µT
11.2B11.2µ11.2 at ∆ = 0, and increase to a point, and then decrease

towards zero, since E
{

χ−2
p2+2(∆)

}
is a non-increasing on of ∆.

Theorem 3. Suppose Theorem 1 holds and under the local alternatives Kn, the covariance matrices
of the estimators are

Cov(β̂RFM
1 ) = B−1

11.2 + µ11.2µT
11.2,

Cov(β̂RSM
1 ) = B−1

11 + γγT,

Cov(β̂RPT
1 ) = B−1

11.2 + µ11.2µT
11.2 + 2µT

11.2δHp2+2(χ
2
p2

; ∆)−ΦHp2+2(χ
2
p2

; ∆)

+ δδT[2Hp2+2(χ
2
p2

; ∆)−Hp2+4(χ
2
p2

; ∆)
]
,

Cov(β̂RSE
1 ) = B−1

11.2 + µ11.2µT
11.2 + 2(p2 − 2)µT

11.2δE
(

χ−2
p2+2(∆)

)
− (p2 − 2)Φ

{
2E
(

χ−2
p2+2(∆)

)
− (p2 − 2)E

(
χ−4

p2+2(∆)
)}

+ (p2 − 2)δδT
{
− 2E

(
χ−2

p2+4(∆)
)
+ 2E(χ−2

p2+2(∆)) + (p2 − 2)E
(

χ−4
p2+4(∆)

)}
,

Cov(β̂
RPS
1 ) = Cov(β̂

RSE
1 ) + 2δµT

11.2E
({

1− (p2 − 2)χ−2
p2+2(∆)

}
I
(

χ2
p2+2(∆) ≤ p2 − 2

))
− 2ΦE

({
1− (p2 − 2)χ−2

p2+2(∆)
}

I
(

χ2
p2+2(∆) ≤ p2 − 2

))
− 2δδTE

(
{1− (p2 − 2)χ−2

p2+4(∆)}I(χ
2
p2+4(∆) ≤ p2 − 2)

)
+ 2δδTE

({
1− (p2 − 2)χ−2

p2+2(∆)
}

I
(

χ2
p2+2(∆) ≤ p2 − 2

))
− (p2 − 2)2ΦE

(
χ−4

p2+2(∆)I
(

χ2
p2+2,α(∆) ≤ p2 − 2

))
− (p2 − 2)2δδTE

(
χ−4

p2+2,α(∆)I
(

χ2
p2+2,α(∆) ≤ p2 − 2

))
+ ΦHp2+2

(
p2 − 2; ∆

)
+ δδTHp2+4

(
p2 − 2; ∆

)
.

Proof. See Appendix B.2.
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Corollary 2. Under the local alternatives (Kn) and from Theorem 3, the risk of the estimators are
obtained as

R
[
β̂

RFM
1

]
= tr

(
QB−1

11.2

)
+ µT

11.2Qµ11.2,

R
[
β̂

RSM
1 ] = tr

(
QB−1

11

)
+ γTQγ,

R
[
β̂

RPT
1
]
= tr

(
QB−1

11.2

)
+ µT

11.2Qµ11.2 + 2µT
11.2QδHp2+2

(
χ2

p2
; ∆
)

− tr
(
QΦ

)
Hp2+2

(
χ2

p2
; ∆
)
+ δQδT

[
2Hp2+2

(
χ2

p2
; ∆
)
−Hp2+4

(
χ2

p2
; ∆
)]

,

R
[
β̂

RSE
1
]
= tr

(
QB−1

11.2

)
+ µT

11.2Qµ11.2 + 2(p2 − 2)µT
11.2QδE

(
χ−2

p2+2(∆)
)

− (p2 − 2)tr(QΦ)
[

E
(

χ−2
p2+2(∆)

)
− (p2 − 2)E

(
χ−4

p2+2(∆)
)]

+ (p2 − 2)δTQδ
[
2E
(

χ−2
p2+2(∆)

)
− 2E

(
χ−2

p2+4(∆)
)
− (p2 − 2)E

(
χ−4

p2+4(∆)
)]

,

R
[
β̂

RPS
1
]
= R

[
β̂

RSE
1
]
+ 2δQµT

11.2E
({

1− (p2 − 2)χ−2
p2+2(∆)

}
I
(

χ2
p2+2(∆) ≤ p2 − 2

))
− 2tr(QΦ)E

({
1− (p2 − 2)χ−2

p2+2(∆)
}

I
(

χ2
p2+2(∆) ≤ p2 − 2

))
− 2δTQδE

(
{1− (p2 − 2)χ−2

p2+4(∆)}I(χ
2
p2+4(∆) ≤ p2 − 2)

)
+ 2δTQδE

({
1− (p2 − 2)χ−2

p2+2(∆)
}

I
(

χ2
p2+2(∆) ≤ p2 − 2

))
− (p2 − 2)2tr(QΦ)E

(
χ−4

p2+2(∆)I
(

χ2
p2+2(∆) ≤ p2 − 2

))
− (p2 − 2)2δTQδE

(
χ−4

p2+2(∆)I
(

χ2
p2+2(∆) ≤ p2 − 2

))
+ tr(QΦ)Hp2+2

(
p2 − 2; ∆

)
+ δTQδHp2+4

(
p2 − 2; ∆

)
.

From Theorem 2, when B12 = 0, the risks of estimators β̂
RSM
1 , β̂

RPT
1 , β̂

RSE
1 , and β̂

RPS
1 are

reduced to common value tr(QB−1
11.2) + µT

11.2Qµ11.2, the risk of β̂
RFM
1 . If B12 6= 0, the results

can be summarized as follows:

1. The risk of β̂
RFM
1 remains constant while the risk of β̂

RSM
1 is an unbounded function

of ∆ since ∆ ∈ [0, ∞).
2. The risk of β̂

RPT
1 increases as ∆ moves away from zero, achieves it maximum and then

decreases towards the risk of the full model estimator.
3. The risk of β̂

RFM
1 is smaller than the risk of β̂

RPT
1 for small values in the neighborhood

of ∆ and for the rest of the parameter space, β̂
RPT
1 outperforms β̂

RFM
1 , thus, R

[
β̂

RFM
1

]
>

R
[
β̂

RPT
1
]
.

4. Comparing the risks of β̂
RSE
1 and β̂

RFM
1 , it can be seen that the estimator β̂

RSE
1 outper-

forms β̂
RFM
1 that is, R

[
β̂

RSE
1
]
≤ R

[
β̂

RFM
1

]
for all ∆ ≥ 0.

4. Simulation Studies

In this section, we conduct a simulation study to assess the performance of the
suggested estimators for finite samples. The criterion for comparing the performance
of any estimator in our study is the mean square error. We simulate the response from the
following LMM model

Y i = Xiβ + Ziai + εi, (3)

where εi ∼ N (0, σ2Ini ) with σ2 = 1. We generate random effect covariate ai from a
multivariate normal distribution with zero mean and covariance matrix G = 0.5I2×2, where
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I2×2 is 2× 2 identity matrix. The design matrix Xi = (xi1, . . . , xini )
′ is generated from a ni-

multivariate normal distribution with mean vector and covariance matrix Σx. Furthermore,
we assume that the off-diagonal elements of the covariance matrix Σx are equal to ρ, which
is the coefficient of correlation between any two predictors, with ρ = 0.3, 0.7, 0.9. The ratio
of the largest eigenvalue to the smallest eigen-value of matrix XTV−1X is calculated as a
condition number index (CNI) [24], which assesses the existence of multicollinearity in the
design matrix. If the CNI is larger than 30, then the model has significant multicollinearity.
Our simulations are based on the linear mixed effects model in Equation (3) with n = 60
and 100 subjects.

We consider a situation when the model is assumed to be sparse. In this study, our
interest lies in testing the hypothesis Ho : β2 = 0, and our goal is to estimate the fixed effect
coefficient β1. We partition the fixed effects coefficients as β = (β′1, β′2)

′ = (β′1, 0p2)
′. The

coefficients β1 and β2 are p1 and p2 dimensional vectors, respectively, with p = p1 + p2.
In order to investigate the behavior of the estimators, we define ∆∗ = ||β − βo||,

where βo = (βT
1 , 0p2)

T and ||.|| is the euclidean norm. We considered ∆∗ values between
0 and 4. If ∆∗ = 0, then we will have β = (1, 1, 1, 1, 0, 0, . . . , 0︸ ︷︷ ︸

p2

)T to generate the response

under null hypothesis. On the other hand, when ∆∗ ≥ 0, say ∆∗ = 4, we will have
β = (1, 1, 1, 1, 4, 0, 0, . . . , 0︸ ︷︷ ︸

p2−1

)T to generate the response under the local alternative hypothesis.

In our simulation study, we consider the number of fixed effect or predictor variables as
(p1, p2) ∈ {(5, 40), (5, 500), (5, 1000)}. Each realization is repeated 5000 times to obtain
consistent results and compute the MSE of suggested estimators with α = 0.05.

Based on the simulated data, we calculate the mean square error (MSE) of all the estimators

as MSE(β̂) = 1
5000 ∑5000

j=1 (β̂− β)T(β̂− β), where β̂ denotes any one of β̂
RSM

, β̂
RPT

, β̂
RSE

and

β̂
RPS

, in the jth repetition. We use the relative mean squared efficiency (RMSE), or the ratio
of MSE for risk performance comparison. The RMSE of an estimator β̂

∗
with respect to the

baseline full model ridge estimator β̂
RFM
1 is defined as RMSE(β̂

RFM
1 : β̂

∗
1) =

MSE(β̂
RFM
1 )

MSE(β̂
∗
1)

,

where β∗1 is one of the suggested estimators under consideration.

4.1. Simulation Results

In this subsection, we present the results from our simulation study. We report the
results for n = 60, 100 and p1 = 5 with different values of correlation coefficient ρ are shown
in Table 1. Furthermore, we plot the RMSEs against ∆∗ in Figures 1 and 2. The findings can
be summarized as follows:

1. When ∆∗ = 0, the sub-model RSM outperforms all other estimators. As ∆∗ = 0 moves
from zero, the RMSE of the sub-model decreases and goes to zero.

2. The pretest ridge estimator RPT outperforms shrinkage ridge and positive Stein ridge
estimators in the case of ∆∗ = 0. However, for large number of sparse predictors p2
while keeping p1 and n fixed, RPT is less efficient than RPS and RSE. In the case of
∆∗ being larger than zero, the RMSE of RPT decreases, and it remains below 1 for
immediate values of ∆∗, after that the RMSE of RPT increases and approaches one for
larger values of ∆∗.

3. RPS performs better than RSE in the entire parameter space induced by ∆∗ as pre-
sented in Tables 1 and 2. Similarly, both shrinkage estimators RPS and RSE outper-
forms the full ridge model estimator irrespective of the corrected sub-model selected.
This is consistent with the asymptotic theory presented in Section 3.

4. ∆∗ which measures the degree of deviation from the Assumption 1 on the parameter
space, it is clear that one cannot go wrong with the use of shrinkage estimators
even if the selected sub-model is wrongly specified. As evident from Tables 1 and 2,
Figures 1 and 2, if the selected sub-model is correct, that is, ∆∗ = 0, then the shrinkage
estimators are relatively efficient compared with the ridge full model estimator. On the
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other hand, if the sub-model is misspecified, the gain slowly diminishes. However,
in terms of risk, the shrinkage estimators are at least as good as the full ridge model
estimator. Therefore, the use of shrinkage estimators makes sense in application when
a sub-model cannot be correctly specified.

5. The RMSE of the ridge-type estimators are an increasing function of the amount of
multicollinearity. This indicates that the ridge-type estimators perform better than
the classical estimator in the presence of multicollinearity among predictor variables.

Figure 1. RMSE of estimators as a function of the non-centrality parameter ∆ when n = 60, and p1 = 5.
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Figure 2. RMSE of estimators as a function of the non-centrality parameter ∆ when n = 100, and p1 = 5.
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Table 1. RMSEs of RSM, RPT, RSE, and RPS estimators with respect to β̂
RFM
1 when ∆ ≥ 0 for p1 = 5

and n = 60.

ρ p2 ∆ CNI RSM RPT RSE RPS

0.3 40 0 361 2.61 2.07 1.94 1.96
1 1.05 1.07 1.20 1.25
2 0.25 0.95 1.04 1.05
3 0.12 0.98 0.99 1.00
4 0.08 1.00 1.00 1.00

500 0 613 4.48 3.29 3.48 1.96
1 1.26 1.12 1.26 1.29
2 0.41 0.97 1.08 1.09
3 0.18 0.99 1.00 1.00
4 0.13 1.00 1.00 1.00

1000 0 693 5.36 4.53 4.67 4.71
1 1.53 1.21 1.35 1.39
2 0.49 1.01 1.13 1.14
3 0.28 0.99 0.99 0.99
4 0.10 1.00 1.00 1.00

0.7 40 0 1352 3.18 2.33 2.17 2.18
1 1.04 1.11 1.20 1.23
2 0.42 1.03 1.04 1.04
3 0.23 0.98 0.99 1.00
4 0.14 1.00 1.00 1.00

500 0 1789 4.48 2.76 2.94 3.02
1 1.08 1.43 1.52 1.53
2 0.67 1.03 1.07 1.06
3 0.35 0.98 1.00 1.00
4 0.19 1.00 1.00 1.00

1000 0 2134 6.82 5.24 5.30 3.02
1 1.16 1.32 1.42 1.53
2 0.75 1.10 1.15 1.16
3 0.39 0.99 1.00 1.00
4 0.11 1.00 1.00 1.00
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Table 2. RMSEs of RSM, RPT, RSE, and RPS estimators with respect to β̂
RFM
1 when ∆ ≥ 0 for p1 = 5,

and n = 100.

ρ p2 ∆ CNI RSM RPT RSE RPS

0.3 40 0 150 2.38 2.09 1.88 1.90
1 0.89 1.01 1.05 1.08
2 0.21 0.94 1.01 1.02
3 0.06 0.94 0.99 1.00
4 0.02 1.00 1.00 1.00

500 0 340 4.15 2.65 2.99 3.17
1 0.87 1.08 1.18 1.21
2 0.14 0.96 1.03 1.05
3 0.06 0.99 0.99 1.00
4 0.03 1.00 1.00 1.00

1000 0 536 4.30 2.75 3.02 3.08
1 0.96 1.09 1.13 1.15
2 0.21 0.8 1.03 1.03
3 0.09 1.00 1.00 1.00
4 0.04 1.00 1.00 1.00

0.7 40 0 997 3.27 2.15 2.09 2.11
1 0.85 1.02 1.09 1.10
2 0.21 0.98 1.02 1.02
3 0.06 0.99 0.99 0.99
4 0.01 1.00 1.00 1.00

500 0 1589 4.13 2.22 2.35 2.39
1 1.04 1.19 1.21 1.20
2 0.30 0.97 1.05 1.05
3 0.14 1.00 1.00 1.00
4 0.08 1.00 1.00 1.00

1000 0 1751 5.17 3.71 4.03 4.09
1 1.01 1.15 1.24 1.25
2 0.39 1.04 1.07 1.06
3 0.16 0.99 1.00 1.00
4 0.11 1.00 1.00 1.00

4.2. Comparison with LASSO-Type Estimators

We compare our listed estimators with the LASSO and adaptive LASSO estimators.
A 10-fold cross-validation is used for selecting the optimal value of the penalty parameters
that minimizes the mean square errors for the LASSO-type estimators. The results for
ρ = 0.3, 0.7, 0.9, n = 60, 100, p1 = 10 and p2 = 50, 500, 1000, 2000 are presented in Table 3.
We observe the following from Table 3.

1. The performance of the sub-model estimator is the best among all estimators.
2. The pretest ridge estimator performs better than the other estimators. However,

for larger values of sparse predictors p2 the shrinkage estimators outperform the
pretest estimator.

3. The performance of the LASSO and aLASSO estimators are comparable when ρ is
small. The pretest and shrinkage estimators remain stable for a given value of ρ.

4. For a large number of sparse predictors p2, the shrinkage and pretest ridge estimators
outperforms the lasso-type estimators. This indicates the superiority of the shrinkage
estimators over the LASSO-type estimators. Therefore shrinkage estimators are
preferable when there is multicollinearity in our predictor variables.
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Table 3. RMSEs of estimators with respect to β̂
RFM
1 when ∆ = 0 for p1 = 10.

n ρ p2 CNI RSM RPT RSE RPS LASSO aLASSO

60 0.3 50 35.64 3.31 2.25 1.82 1.95 1.23 1.28
500 452.76 4.13 3.71 2.61 3.01 1.47 1.52

1000 1265.34 5.02 4.28 4.61 4.78 1.96 2.15
2000 4567.56 7.13 5.10 6.18 6.39 2.70 3.06

0.7 50 61.34 3.52 3.05 2.51 2.55 1.14 1.21
500 743.17 4.49 3.65 3.41 3.50 1.36 1.58

1000 2350.89 5.84 4.11 4.32 4.61 1.68 1.95
2000 6908.39 8.10 5.31 6.24 6.29 1.84 2.02

0.9 50 120.21 4.21 3.61 3.34 3.35 1.10 1.05
500 950.98 4.82 3.3.8 3.72 3.73 1.21 1.16

1000 5892.51 6.35 4.10 5.01 5.13 1.42 1.31
2000 8352.73 8.51 4.63 5.24 5.38 1.61 1.35

100 0.3 50 31.21 2.91 2.54 2.12 2.23 1.32 1.36
500 356.64 3.75 3.31 2.84 2.92 1.54 1.61

1000 975.32 4.25 2.53 3.42 3.61 1.92 2.06
2000 2764.84 5.61 4.25 4.91 5.08 2.31 2.46

0.7 50 52.79 3.18 2.61 2.30 2.37 1.28 1.53
500 578.43 4.28 3.05 3.52 3.59 1.46 2.07

1000 1281.66 5.10 3.26 3.78 3.82 1.84 2.52
2000 3498.30 6.12 3.01 4.26 4.33 2.27 2.41

0.9 50 79.41 4.11 3.41 3.21 3.28 1.28 1.21
500 681.43 4.35 3.55 3.41 3.50 1.43 1.51

1000 1470.32 5.82 3.18 4.01 4.14 1.72 1.79
2000 4105.90 7.04 4.57 5.22 5.32 1.87 1.96

5. Real Data Application

We consider two real data analyses using Amsterdam Growth and Health Data and a
genetic and brain network connectivity edge weight data to illustrate the performance of
the proposed estimators.

5.1. Amsterdam Growth and Health Data (AGHD)

The AGHD data is obtained from the Amsterdam Growth and Health Study [25].
The goal of this study is to investigate the relationship between lifestyle and health in
adolescence into young adulthood. The response variable Y is the total serum cholesterol
measured over six time points. There are five covariates: X1 is the baseline fitness level
measured as the maximum oxygen uptake on a treadmill, X2 is the amount of body fat
estimated by the sum of the thickness of four skinfolds, X3 is a smoking indicator (0 = no,
1 = yes), X4 is the gender (1 = female, 2 = male), and time measurement as X5 and subject
specific random effects.

A total of 147 subjects participated in the study where all variables were measured at
ni = 6 time occasions. In order to apply the proposed methods, firstly, we apply a variable
selection based on AIC procedure to select the sub-model. For the AGHD data, we fit a
linear mixed model with all the five covariates for both fixed and subject specific random
effects by two stage selection procedure for the purpose of choosing both the random and
fixed effects. The analysis found X2 and X5 to be significant covariates for prediction of the
response variable serum cholestrol and the other variables are ignored since they are not
significantly important. Based on this information, a sub-model is chosen to be X2 and X5
and the full model includes all the covariates. We construct the shrinkage estimators from
the full-model and sub-model. In terms of null hypothesis, the restriction can be written as
β2 = (β1, β3, β4) = (0, 0, 0) with p = 5, p1 = 2 and p2 = 3.

To evaluate the performance of the estimators, we obtain the mean square prediction
error (MSPE) using bootstrap samples. We draw 1000 bootstrap samples of the 147 subjects
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from the data matrix {(Yij, Xij), i = 1, 2, . . . , 147; j = 1, 2, . . . , 6}. We then calculate the
relative prediction error (RPE) of β∗1 with respect to βRFM

1 , the full model estimator. The RPE
is defined as

RPE(β̂
RFM
1 : β̂

∗
1) =

MSPE(β̂
∗
1)

MSPE(β̂
RFM
1 )

=
(Y− X1β̂

∗
1)
′(Y− X1β̂

∗
1)

(Y− X1β̂
RFM
1 )′(Y− X1β̂

RFM
1 )

,

where β∗1 is one of the listed estimators. If RPE < 1, then β̂
∗
1 outperforms β̂

RFM
1 .

Table 4 reports the estimates, standard error of the non-sparse predictors and RPEs of
the estimators with respect to the full model. As expected, the sub-model ridge estimator

β̂
RSM
1 has the minimum RPE because it is computed when the sub-model is correct, that is,

∆∗ = 0. It is evident by the RPE values in Table 4 that the shrinkage estimators are superior
to the LASSO-type estimators. Furthermore, the positive shrinkage is more efficient than
the shrinkage ridge estimator.

Table 4. Estimate, standard error for the active predictors and RPEs of estimators with respect to
full-model estimator for the Amsterdam Growth and Health Study data.

RFM RSM RPT RSE RPS LASSO aLASSO

Estimate(β2 ) 0.381 0.395 0.392 0.389 0.390 0.624 0.611
Standard
error 0.104 0.102 0.100 0.009 0.008 0.081 0.079

Estimate (β5) 0.137 0.125 0.131 0.130 0.133 0.101 0.105
Standard
error 0.012 0.010 0.009 0.011 0.010 0.013 0.012

RPE 1.000 0.723 0.841 0.838 0.831 0.986 0.973

5.2. Resting-State Effective Brain Connectivity and Genetic Data

This data comprises longitudinal resting-state functional magnetic resonance imaging
(rs-fMRI) effective brain connectivity network and genetic study [26] data obtained from
a sample of 111 subjects with a total of 319 rs-fMRI scans from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database. The 111 subjects comprise 36 cognitively normal
(CN), 63 mild cognitive impairment (MCI) and 12 Alzheimer’s Disease (AD) subjects.
The response is a network connection between regions of interest estimated from an rs-
fMRI scan within the Default Mode Network (DMN), and we observe a longitudinal
sequence of such connections for each subject with the number of repeated measurements.
The DMN consists of a set of brain regions that tend to be active in resting-state, when a
subject is mind wandering with no intended task. For this data analysis, we consider the
network edge weight from the left intraparietal cortex to posterior cingulate cortex (LIPC
→ PCC) as our response. The genetic data are single nucleotide polymorphism (SNPs)
from non-sex chromosomes, i.e., chromosome 1 to chromosome 22. SNPs with minor allele
frequency less than 5% are removed as are SNPs with a Hardy–Weinberg equilibrium
p-value lower than 10−6 or a missing rate greater than 5%. After preprocessing we are left
with 1,220,955 SNPs and the longitudinal rs-fMRI effective connectivity network using
the 111 subjects with rs-fMRI data. The response is network edge weight. There are SNPs
which are the fixed effects and subject specific random effects.

In order to apply the proposed methods, we use a genome- wide association study
(GWAS) for screening the genetic data to 100 SNPs. We implement a second screening by
applying multinomial logistic regression to identify a smaller subset of the 100 SNPs that
are potentially associated with disease (CN/MCI/AD). This yields a subset of top 10 SNPs.
This showed the top 10 SNPs are the most important predictors and the other 90 SNPs
are ignored as not significant. We now have two models, which are the full model with
all 100 SNPs and sub-model with 10 SNPs selected. Finally, we construct the pretest and
shrinkage estimators from the full-model and sub-model.
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We draw 1000 bootstrap samples with replacements from the corresponding data
matrix {(Yij, Xij), i = 1, . . . , 111; j = 1, . . . , ni}. We report the RPE of the estimators based
on the bootstrap simulation with respect to the full model ridge estimator in Table 5. We
observe that the RPE of the sub-model, pretest, shrinkage and positive shrinkage ridge
estimators outperforms the full model estimator. Clearly, the sub-model ridge estimator has
the smallest RPE since it’s computed when the candidate sub-model is correct, i.e., ∆ = 0.
Both shrinkage ridge estimators outperform the pretest ridge estimator. Particularly,
the positive shrinkage performed better than the shrinkage estimator. The performance
of both shrinkage and pretest ridge estimators are better than the LASSO-type estimators.
Thus, the data analysis is in line with our simulation and theoretical findings.

Table 5. RPEs of estimators.

RFM RSM RPT RSE RPS LASSO aLASSO

RPE 1.000 0.802 0.947 0.932 0.928 1.051 1.190

6. Conclusions

In this paper, we present efficient estimation strategies for the linear mixed effect
model when there exists multicollinearity among predictor variables for high-dimensional
data application. We considered the estimation of fixed effects parameters in the linear
mixed model when some of the predictors may have a very weak influence on the response
of interest. We introduced pretest and shrinkage estimation in our model using the ridge
estimation as the reference estimator. In addition, we established the asymptotic properties
of the pretest and shrinkage ridge estimators. Our theoretical findings demonstrate that
the shrinkage ridge estimators outperform the full model ridge estimator and perform
relatively better than the sub-model estimator in a wide range of the parameter space.

Additionally, a Monte Carlo simulation was conducted to investigate and assess the
finite sample behavior of proposed estimators when the model is sparse (restrictions on
parameters hold). As expected, the sub-model ridge estimator outshines all other estimators
when the restrictions hold. However, when this assumption is violated, the shrinkage
and pretest ridge estimators outperform the sub-model estimator. Furthermore, when the
number of sparse predictors are extremely large relative to the sample size, the shrinkage
estimators outperform the pretest ridge estimator. These numerical results are consistent
with our asymptotic result. We also assess the relative performance of the LASSO-type
estimators with our ridge-type estimators. We observe that the performance of pretest and
shrinkage ridge estimators are superior to the LASSO-type estimators when predictors are
highly correlated. For our real data application, the shrinkage ridge estimators are superior
with the smallest relative prediction error compared to the LASSO-type estimators.

In summary, the results of the data analyses strongly confirm the findings of the
simulation study and suggest the use of the shrinkage ridge estimation strategy when no
prior information about the parameter subspace is available. The results of our simulation
study and real data application are consistent with available results in [27–29].

In our future work, we will focus on other penalty estimators like the Elastic-Net,
the minimax concave penalty (MCP), and the smoothly clipped absolute deviation method
(SCAD) as estimation strategy in LMM for high-dimensional data. These estimators will
be assessed and compared with the proposed ridge-type estimators. Another interesting
extension will be integrating two sub-models by incorporating ridge-type estimation
strategies in the linear mixed effect models. The goal is to improve the estimation accuracy
of the non-sparse set of the fixed effects parameters by combining an over-fitted model
estimator with an under-fitted one [27,29]. This approach will include combining two
sub-models produced by two different variable selection techniques from the LMM [28].
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Appendix A

Proof of Proposition 1. The asymptotic relationship between the sub-model and full model

estimators of β1, we use the argument and equation: Ŷ = Y− X2β̂
RFM
2 , where

β̂
RFM
1 = arg min

β1

{
(Ŷ− X1β1)

TV−1(Ŷ− X1β1) + λ||β1||
2
}

=
[
XT

1 V−1X1 + λIp1

]−1XT
1 V−1Ŷ

=
[
XT

1 V−1X1 + λIp1

]−1XT
1 V−1Y−

[
XT

1 V−1X1 + λIp1

]−1XT
1 V−1X2β̂

RFM
2

= β̂
RSM
1 −

[
X1V−1X1 + λIp1

]−1XT
1 V−1X2β̂

RFM
2

= β̂
RSM
1 − B−1

11 B12β̂
RFM
2

From Theorem 1, we partition
√

n(β̂
RFM − β) as

√
n(β̂

RFM − β) =
(√

n(β̂
RFM
1 − β1),√

n(β̂
RFM
2 − β2)

)
. We obtain

√
n(β̂

RFM
1 − β1)

D→ Np1(−µ11.2, B−1
11.2), where B−1

11.2 = B11 −
B12B−1

22 B21. We have shown that β̂
RSM
1 = β̂

RFM
1 + B−1

11 B12β̂
RFM
2 . Using this expression and

under the local alternative {Kn}, we obtain the following expressions

ϕ2 =
√

n
(

β̂
RSM
1 − β1

)
=
√

n
(

β̂
RFM
1 + B−1

11 B12β̂
RFM
2 − β1

)
= ϕ1 + B−1

11 B12
√

nβ̂
RFM
2 ,

ϕ3 =
√

n(β̂
RFM
1 − β̂

RSM
1 )

=
√

n
(

β̂
RFM
1 − β1

)
−
√

n
(

β̂
RSM
1 − β1

)
= ϕ1 − ϕ2.

https://pubmed.ncbi.nlm.nih.gov/22434862/
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Since ϕ2 and ϕ3 are linear functions of ϕ1, as n→ ∞, they are also asymptotically normally
distributed. Their mean vectors and covariance matrices are as follows:

E(ϕ1) = E
(√

n
(

β̂
RFM
1 − β1

))
= −µ11.2

E(ϕ2) = E
(

ϕ1 + B−1
11 B12

√
nβ̂

RFM
2

)
= E(ϕ1) + B−1

11 B12
√

nE(β̂
RFM
2 )

= −µ11.2 + B−1
11 B12κ = −(µ11.2 − δ) = −γ

E(ϕ3) = E(ϕ1 − ϕ2) = −µ11.2 − (−(µ11.2 − δ)) = δ

Var(ϕ1) = B−1
22.1

Var(ϕ2) = Var
(

ϕ1 + B−1
11 B12

√
nβ̂

RFM
2

)
= Var(ϕ1) + B−1

11 B12B−1
22.1B21B−1

11

+ 2Cov
[√

n(β̂
RFM
1 − β1),

√
n(β̂

RFM
2 − β2)

]
(B−1

11 B12)
T

= B−1
22.1 − B−1

11 B12B−1
22.1B21B−1

11 = B−1
11

Var(ϕ3) = Var
(√

n
(

β̂
RFM
1 − β̂

RSM
1

))
= Var

(√
n
(

β̂
RFM
1 − β̂

RFM
1 − B−1

11 B12β̂
RFM
2

))
= B−1

11 B12Var
[√

nβ̂
RFM
2

]
(B−1

11 B12)
T

= B−1
11 B12B−1

22.1B21B−1
11 = Φ

Cov(ϕ1, ϕ3) = Cov
[√

n
(

β̂
RFM
1 − β1

)
,
√

n
(

β̂
RFM
1 − β̂

RSM
1

)]
= Var

(√
n
(

β̂
RFM
1 − β1

))
− Cov

[√
n
(

β̂
RFM
1 − β1

)
,
√

n
(

β̂
RSM
1 − β1

)]
= Var(ϕ1)− Cov

[√
n
(

β̂
RFM
1 − β1

)
,
√

n
(

β̂
RFM
1 − β1

)
+
√

nB−1
11 B12β̂

RFM
2

]
= B−1

11 B12B−1
22.1B21B−1

11 = Φ

Cov(ϕ2, ϕ3) = Cov
[√

n
(

β̂
RSM
1 − β1

)
,
√

n
(

β̂
RFM
1 − β̂

RSM
1

)]
= Cov

[√
n
(

β̂
RSM
1 − β1

)
,
√

n
(

β̂
RFM
1 − β1

)]
−Var

(√
n
(

β̂
RSM
1 − β1

))
= B−1

11.2 − B−1
11 B12B−1

22.1B21B−1
11 − B−1

11

= B−1
11.2 −

(
B−1

11.2 − B−1
11
)
− B−1

11 = 0

Therefore, the asymptotic distributions of the vectors ϕ2 and ϕ3 are obtained as follows:

ϕ2 =
√

n(β̂
RSM
1 − β1)

D→ Np1(−γ, B−1
11 )

ϕ3 =
√

n(β̂
RFM
1 − β̂

RSM
1 )

D→ Np1(δ, Φ)



Entropy 2021, 23, 1348 19 of 24

Appendix B

We next introduce the lemmas given in [30] to aid with the proof of the bias and
covariance of the estimators.

Lemma A1. Let V = (V1, V2, . . . Vp)T be a p-dimensional normal vector distributed asNp(µv, Σp),
then for a measurable function Ψ, we have

E
[
VΨ(VTV)

]
= µvE

[
Ψχ2

p+2(∆)
]

E
[
VVTΨ(VTV)

]
= ΣpE

[
Ψχ2

p+2(∆)
]
+ µvµT

v E
[
Ψχ2

p+4(∆)
]

where χ2
k(∆) is a non-central chi-square distribution with k degrees of freedom and non-centrality

parameter ∆.

Appendix B.1

Proof of Theorem 2.

ADB(β̂
RFM
1 ) = E

{
lim

n→∞

√
n(β̂

RFM
1 − β1)

}
= −µ11.2.

ADB(β̂
RSM
1 ) = E

{
lim

n→∞

√
n(β̂

RSM
1 − β1)

}
= E

{
lim

n→∞

√
n(β̂

RFM
1 − B−1

11 B12β̂
RFM
2 − β1)

}
= E

{
lim

n→∞

√
n(β̂RFM

1 − β1)
}
− E

{
lim

n→∞

√
n(B−1

11 B12β̂RFM
2 )

}
= −µ11.2 − E

{
lim

n→∞

√
n(B−1

11 B12β̂RFM
2 )

}
= −µ11.2 − B−1

11 B12κ = −(µ11.2 + δ) = −γ.

Using Lemma 1,

ADB(β̂RPT
1 ) = E

{
lim

n→∞

√
n(β̂RPT

1 − β1)
}

= E
{

lim
n→∞

√
n(β̂RFM

1 − (β̂RFM
1 − β̂RSM

1 )I(Ln ≤ dn,α)− β1)
}

= E
{

lim
n→∞

√
n(β̂RFM

1 − β1)
}
− E

{
lim

n→∞

√
n(β̂RFM

1 − β̂RSM
1 )I(Ln ≤ dn,α)

}
= −µ11.2 − E

{
lim

n→∞

√
n(β̂RFM

1 − β̂RSM
1 )I(Ln ≤ dn,α))

}
= −µ11.2 − δHp2+2(χ

2
p2

; ∆).

ADB(β̂RSE
1 ) = E

{
lim

n→∞

√
n(β̂RSE

1 − β1)
}

= E
{

lim
n→∞

√
n(β̂RFM

1 − (β̂RFM
1 − β̂RSM

1 )(p2 − 2)L−1
n − β1)

}
= E

{
lim

n→∞

√
n(β̂RFM

1 − β1)
}
− E

{
lim

n→∞

√
n(β̂RFM

1 − β̂RSM
1 )(p2 − 2)L−1

n
}

= −µ11.2 − E
{

lim
n→∞

√
n(β̂RFM

1 − β̂RSM
1 )(p2 − 2)L−1

n
}

= −µ11.2 − (p2 − 2)δE(χ−2
p2+2(∆)).



Entropy 2021, 23, 1348 20 of 24

ADB(β̂RPS
1 ) = E

{
lim

n→∞

√
n(β̂RPS

1 − β1)
}

= E
{

lim
n→∞

√
n(β̂RSM

1 + (β̂RFM
1 − β̂RSM

1 )(1− (p2 − 2)L−1
n )I(Ln > p2 − 2)− β1)

}
= E

{√
n
[
β̂

RSM
1 + (β̂RFM

1 − β̂RSM
1 )(1− I(Ln ≤ p2 − 2))

− (β̂RFM
1 − β̂RSM

1 )(p2 − 2)L−1
n I(Ln > p2 − 2)− β1

]}
= E

{
lim

n→∞

√
n(β̂RFM

1 − β1)
}
− E

{
lim

n→∞

√
n(β̂RFM

1 − β̂RSM
1 )(p2 − 2)I(Ln ≤ p2 − 2)

}
− E

{
lim

n→∞

√
n(β̂RFM

1 − β̂RSM
1 )(p2 − 2)L−1

n I(Ln > p2 − 2)

= −µ11.2 − δHp2+2(χ
2
p2−2; ∆)

}
− (p2 − 2)δE

{
χ−2

p2+2(∆)I(χ
−2
p2+2 > p2 − 2)

}
.

Appendix B.2

In order to compute the risk functions, we first compute the asymptotic covariance of
the estimators. The asymptotic covariance of an estimator β̂

∗
1 is expressed as

Cov(β̂
∗
1) = lim

n→∞
E
{

n(β̂
∗
1 − β1)(β̂

∗
1 − β1)

T}.

Proof of Theorem 3. We first start by computing the asymptotic covariance of the estima-
tor β̂RFM

1 as:

Cov(β̂RFM
1 ) = E{ lim

n→∞

√
n(β̂RFM

1 − β1)
√

n(β̂RFM
1 − β1)

T}

= E(ϕ1ϕT
1 ) = Cov(ϕ1ϕT

1 ) + E(ϕ1)E(ϕT
1 )

= B−1
11.2 + µ11.2µT

11.2.

Furthermore, similarly, the asymptotic covariance of the estimator β̂RSM
1 is obtained as:

Cov(β̂RSM
1 ) = E{ lim

n→∞

√
n(β̂RSM

1 − β1)
√

n(β̂RSM
1 − β1)

T}

= E(ϕ2 ϕT
2 ) = Cov(ϕ2 ϕT

2 ) + E(ϕ2)E(ϕT
2 )

= B−1
11 + γγT.

The asymptotic covariance of the estimator β̂RPT
1 is obtained as:

Cov(β̂RPT
1 ) = E{ lim

n→∞

√
n(β̂RPT

1 − β1)
√

n(β̂RPT
1 − β1)

T}

= E
{

lim
n→∞

n
[(

β̂RFM
1 − β1)− (β̂RFM

1 − β̂RSM
1 )I(Ln ≤ dn,α)

]
[(

β̂RFM
1 − β1)− (β̂RFM

1 − β̂RSM
1 )I(Ln ≤ dn,α)

]T}
= E

{
[ϕ1 − ϕ3 I(Ln ≤ dn,α)][ϕ1 − ϕ3 I(Ln ≤ dn,α)]

T
}

= E
{

ϕ1 ϕT
1 − 2ϕ3 ϕT

1 I(Ln ≤ dn,α) + ϕ3 ϕT
3 I(Ln ≤ dn,α)

}
Thus, we need to find E

{
ϕ1 ϕT

1
}

, E
{

ϕ3 ϕT
1 I(Ln ≤ dn,α)

}
and E

{
ϕ3 ϕT

3 I(Ln ≤ dn,α)
}

. The
first term is E

{
ϕ1 ϕT

1
}
= B−1

11.2 + µ11.2µT
11.2. Using Lemma 1, the third term is computed as:

E
{

ϕ3 ϕT
3 I(Ln ≤ dn,α)

}
= ΦHp2+2(χ

2
p2

; ∆) + δδTHp2+4(χ
2
p2

; ∆).

The second term E
{

ϕ3 ϕT
1 I(Ln ≤ dn,α)

}
can be computed from normal theory as
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E
{

ϕ3 ϕT
1 I(Ln ≤ dn,α)

}
= E

{
E
(

ϕ3 ϕT
1 I(Ln ≤ dn,α)|ϕ3

)}
= E

{
ϕ3E

(
ϕT

1 I(Ln ≤ dn,α)|ϕ3
)}

= E
{

ϕ3[−µ11.2 + (ϕ3 − δ)]T I(Ln ≤ dn,α)
}

= −E
{

ϕ3µ11.2 I(Ln ≤ dn,α)
}
+ E

{
ϕ3(ϕ3 − δ)T I(Ln ≤ dn,α)

}
= −µT

11.2E{ϕ3 I(Ln ≤ dn,α)}+ E{ϕ3 ϕT
3 I(Ln ≤ dn,α)}

− E
{

ϕ3δT I(Ln ≤ dn,α)
}

= −µT
11.2δHp2+2(χ

2
p2

; ∆) +
{

Cov(ϕ3 ϕT
3 )Hp2+2(χ

2
p2

; ∆)

+ E(ϕ3)E(ϕT
3 )Hp2+4(χ

2
p2

; ∆)− δδTHp2+2(χ
2
p2

; ∆)
}

= −µT
11.2δHp2+2(χ

2
p2

; ∆) + ΦHp2+2(χ
2
p2

; ∆) + δδTHp2+4(χ
2
p2

; ∆)

− δδTHp2+2(χ
2
p2

; ∆)

Putting all the terms together and simplifying, we obtain

Cov(β̂RPT
1 )

=µ11.2µT
11.2 + 2µT

11.2δHp2+2(χ
2
p2

; ∆) + B−1
11.2 −ΦHp2+2(χ

2
p2

; ∆)− δδTHp2+4(χ
2
p2

; ∆)

+2δδTHp2+2(χ
2
p2

; ∆)

=B−1
11.2 + µ11.2µT

11.2 + 2µT
11.2δHp2+2(χ

2
p2

; ∆)−ΦHp2+2(χ
2
p2

; ∆)

+ δδT[2Hp2+2(χ
2
p2

; ∆)−Hp2+4(χ
2
p2

; ∆)
]
.

The asymptotic covariance of the estimator β̂RSE
1 can be obtained as

Cov(β̂RSE
1 ) = E{ lim

n→∞

√
n(β̂RSE

1 − β1)
√

n(β̂RSE
1 − β1)

T}

= E
{

lim
n→∞

n
[(

β̂
RFM
1 − β1)− (β̂

RFM
1 − β̂

RSM
1 )(p2 − 2)L−1

n
]

[(
β̂RFM

1 − β1)− (β̂
RFM
1 − β̂

RSM
1 )(p2 − 2)L−1

n
]T}

= E
{
[ϕ1 −ϕ3(p2 − 2)L−1

n ][ϕ1 −ϕ3(p2 − 2)L−1
n ]T

}
= E

{
ϕ1 ϕT

1 − 2(p2 − 2)ϕ3 ϕT
1 L−1

n + (p2 − 2)2 ϕ3 ϕT
3 L−2

n

}
We need to compute E

{
ϕ3 ϕT

3 L−2
n
}

and E
{

ϕ3 ϕT
1 L−1

n
}

. By using Lemma 1, the first term is
obtained as follows:

E
{

ϕ3 ϕT
3 L−2

n
}
= ΦE

(
χ−4

p2+2(∆)
)
+ δδTE

(
χ−4

p2+4(∆)
)
.

The second term is computed from normal theory

E
{

ϕ3 ϕT
1 L−1

n

}
= E

{
E
(

ϕ3 ϕT
1 L−1

n |ϕ3
)}

= E
{

ϕ3E
(

ϕT
1 L−1

n |ϕ3
)}

= E
{

ϕ3[−µ11.2 + (ϕ3 − δ)]TL−1
n
}

= −E
{

ϕ3µ11.2L−1
n
}
+ E

{
ϕ3(ϕ3 − δ)TL−1

n
}

= −µT
11.2E{ϕ3L−1

n }+ E{ϕ3 ϕT
3 L−1

n } − E
{

ϕ3δTL−1
n
}
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From above, we can find E
{

ϕ3δTL−1
n
}
= δδTE

(
χ−2

p2+2(∆)
)

and E
{

ϕ3L−1
n
}
= δE

(
χ−2

p2+2(∆)
)
.

Putting these terms together and simplifying, we obtain

Cov(β̂RSE
1 ) = B−1

11.2 + µ11.2µT
11.2 + 2(p2 − 2)µT

11.2δE
(

χ−2
p2+2(∆)

)
− (p2 − 2)Φ

{
2E
(

χ−2
p2+2(∆)

)
− (p2 − 2)E

(
χ−4

p2+2(∆)
)}

+(p2 − 2)δδT
{
− 2E

(
χ−2

p2+4(∆)
)
+ 2E(χ−2

p2+2(∆)) + (p2 − 2)E
(

χ−4
p2+4(∆)

)}
.

Since β̂
RPS
1 = β̂

RSE
1 − (β̂

RFM
1 − β̂

RSM
1 )

{
1− (p2 − 2)L−1

n
}

I(Ln ≤ p2 − 2).

We derive the covariance of the estimator β̂
RPS
1 as follows.

Cov(β̂
RPS
1 ) = E

{
lim

n→∞

√
n(β̂

RPS
1 − β1)

√
n(β̂

RPS
1 − β1)

T
}

= E

{
lim

n→∞

√
n(β̂

RSE
1 − β1)−

√
n(β̂

RFM
1 − β̂

RSM
1 )

{
1− (p2 − 2)L−1

n
}

I(Ln ≤ p2 − 2)

×
[√

n(β̂
RSE
1 − β1)−

√
n(β̂

RFM
1 − β̂

RSM
1 )

{
1− (p2 − 2)L−1

n
}

I(Ln ≤ p2 − 2)
]T
}

= E
{

lim
n→∞

√
n(β̂

RSE
1 − β1)

√
n(β̂

RSE
1 − β1)

T − 2ϕ3
√

n(β̂
RSE
1 − β1)

T{1− (p2 − 2)L−1
n
}

I(Ln ≤ p2 − 2)

+ϕ3ϕT
3
{

1− (p2 − 2)L−1
n
}2I(Ln ≤ p2 − 2)

}
= Cov(β̂

RSE
1 )− 2E

{
lim

n→∞
ϕ3
√

n(β̂
RSE
1 − β1)

T{1− (p2 − 2)L−1
n
}2I(Ln ≤ p2 − 2)

}
+ E

{
lim

n→∞
ϕ3ϕT

3
{

1− (p2 − 2)L−1
n
}2I(Ln ≤ p2 − 2)

}
= Cov(β̂

RSE
1 )− 2E

{
lim

n→∞
ϕ3ϕT

1
{

1− (p2 − 2)L−1
n
}

I(Ln ≤ p2 − 2)
}

+ 2E
{

lim
n→∞

ϕ3ϕT
3 (p2 − 2)L−1

n
{

1− (p2 − 2)L−1
n
}

I(Ln ≤ p2 − 2)
}

+ E
{

lim
n→∞

ϕ3ϕT
3
{

1− (p2 − 2)L−1
n
}2I(Ln ≤ p2 − 2)

}
= Cov(β̂

RSE
1 )− 2E

{
lim

n→∞
ϕ3ϕT

1
{

1− (p2 − 2)L−1
n
}

I(Ln ≤ p2 − 2)
}

− E
{

lim
n→∞

ϕ3ϕT
3 (p2 − 2)2L−2

n I(Ln ≤ p2 − 2)
}
+ E

{
lim

n→∞
ϕ3ϕT

3 I(Ln ≤ p2 − 2)
}

We first compute the last term in the equation above E
{

ϕ3ϕT
3 I(Ln ≤ p2− 2)

}
as E

{
ϕ3ϕT

3 I(Ln ≤

p2 − 2)
}
= ΦHp2+2(p2 − 2; ∆) + δδTHp2+4(p2 − 2; ∆). Using Lemma 1 and from the nor-

mal theory, we find,
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E
{

ϕ3ϕT
1{1− (p2 − 2)L−1

n }I(Ln ≤ p2 − 2)
}

= E
{

E
(
ϕ3ϕT

1{1− (p2 − 2)L−1
n }I(Ln ≤ p2 − 2)|ϕ3

)}
= E

{
ϕ3E

(
ϕT

1{1− (p2 − 2)L−1
n }I(Ln ≤ p2 − 2)|ϕ3

)}
= E

{
ϕ3[µ11.2 + (ϕ3 − δ)]T{1− (p2 − 2)L−1

n }I(Ln ≤ p2 − 2)
}

= −µ11.2E
(

ϕ3
{

1− (p2 − 2)L−1
n
}

I
(
Ln ≤ p2 − 2

))
+ E

(
ϕ3ϕT

3
{

1− (p2 − 2)L−1
n
}

I
(
Ln ≤ p2 − 2

))
− E

(
ϕ3δT{1− (p2 − 2)L−1

n
}

I
(
Ln ≤ p2 − 2

))
= −δµT

11.2E
({

1− (p2 − 2)χ−2
p2+2(∆)

}
I
(

χ−2
p2+2(∆) ≤ p2 − 2

))
+ ΦE

({
1− (p2 − 2)χ−2

p2+2(∆)
}

I
(

χ−2
p2+2(∆) ≤ p2 − 2

))
+ δδTE

({
1− (p2 − 2)χ−2

p2+4(∆)
}

I
(

χ−2
p2+4(∆) ≤ p2 − 2

))
− δδTE

({
1− (p2 − 2)χ−2

p2+4(∆)
}

I
(

χ−2
p2+4(∆) ≤ p2 − 2

))
.

E
{

ϕ3ϕT
3 (p2 − 2)2L−2

n I(Ln ≤ p2 − 2)
}
= (p2 − 2)2ΦE

(
χ−4

p2+2(∆)I
(

χ2
p2+2(∆) ≤ p2 − 2

))
+ (p2 − 2)2δδTE

(
χ−4

p2+2(∆)I
(

χ2
p2+2(∆) ≤ p2 − 2

))
Putting all the terms together, we obtain

Cov(β̂
RPS
1 ) = Cov(β̂

RSE
1 ) + 2δµT

11.2E
({

1− (p2 − 2)χ−2
p2+2(∆)

}
I
(

χ2
p2+2(∆) ≤ p2 − 2

))
− 2ΦE

({
1− (p2 − 2)χ−2

p2+2(∆)
}

I
(

χ2
p2+2(∆) ≤ p2 − 2

))
− 2δδTE

(
{1− (p2 − 2)χ−2

p2+4(∆)}I(χ
2
p2+4(∆) ≤ p2 − 2)

)
+ 2δδTE

({
1− (p2 − 2)χ−2

p2+2(∆)
}

I
(

χ2
p2+2(∆) ≤ p2 − 2

))
− (p2 − 2)2ΦE

(
χ−4

p2+2(∆)I
(

χ2
p2+2,α(∆) ≤ p2 − 2

))
− (p2 − 2)2δδTE

(
χ−4

p2+2(∆)I
(

χ2
p2+2(∆) ≤ p2 − 2

))
+ ΦHp2+2

(
p2 − 2; ∆

)
+ δδTHp2+4

(
p2 − 2; ∆

)
.
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