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Abstract: Block compressed sensing (BCS) is a promising technology for image sampling and
compression for resource-constrained applications, but it needs to balance the sampling rate and
quantization bit-depth for a bit-rate constraint. In this paper, we summarize the commonly used
CS quantization frameworks into a unified framework, and a new bit-rate model and a model of
the optimal bit-depth are proposed for the unified CS framework. The proposed bit-rate model
reveals the relationship between the bit-rate, sampling rate, and bit-depth based on the information
entropy of generalized Gaussian distribution. The optimal bit-depth model can predict the optimal
bit-depth of CS measurements at a given bit-rate. Then, we propose a general algorithm for choosing
sampling rate and bit-depth based on the proposed models. Experimental results show that the
proposed algorithm achieves near-optimal rate-distortion performance for the uniform quantization
framework and predictive quantization framework in BCS.

Keywords: data acquisition; compressed sensing; rate-distortion; optimal bit-depth; bit-rate; quantization

1. Introduction

Compressed sensing (CS) is a signal acquisition framework [1–3] that acquires the
signal’s measurements by linear projection at the sub-Nyquist rate. Unlike traditional
image coding methods with high computational complexity, the CS-based image coding
methods are suitable for resource-constrained application scenarios through simultaneous
data acquisition and compression [4–7].

When CS is applied to an image, the large measurement matrix will cause enormous
computation and memory space for the codec. Gan [8] has proposed a block compressed
sensing (BCS) method to decrease the measurement matrix’s size for images. BCS uses the
same measurement matrix to measure the image block’s raster scan vector, significantly
reducing the sensor’s calculation and transmission cost [9]. BCS processes each image
block independently and supports parallel encoding, which can quickly obtain the image
measurements. However, the real-valued CS measurements need to be combined with
quantization and entropy encoder to output bitstreams for transmission or storage [10].

Although the uniform scalar quantization (SQ) is the most straightforward solution for
quantizing CS measurements, it is inefficient in rate-distortion performance [6,11]. There-
fore, some researchers have proposed different quantization schemes of CS measurements
to enhance the rate-distortion performance. For example, Mun et al. [12] have combined the
differential pulse-code modulation (DPCM) with uniform scalar quantization (DPCM-plus-
SQ) for BCS measurements. The CS-based imaging system with DPCM-plus-SQ and the
smoothed projected Landweber (SPL) reconstruction can compete with JPEG in some cases.
Wang et al. [13] have proposed a progressive quantization framework of CS measurements,
which is slightly better than JPEG in rate-distortion performance. Chen et al. [14] have
proposed a progressive non-uniform quantization framework of CS measurements using
partial Hadamard matrix together with patch-based recovery algorithm, which can reach
the rate-distortion performance of CCSDS-IDC (consultative committee for space data
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systems-image data compression standard). Chen et al. [15] have proposed a multi-layer
residual coding framework for CS measurements, which combines prediction with the
uniform SQ at the encoder. The framework predicts the CS measurements by using the
reconstructed image of the encoded CS measurements and then uses the uniform SQ to
quantify the residuals between the predicted measurement and the actual measurement,
which can obtain a better rate-distortion performance than JPEG2000. Some other quan-
tization schemes are also used for CS measurements [16–19], but they are rarely used for
CS-based image coding because of their complexity.

In a CS-based image coding system, the bit-rate and reconstruction distortion depend
on the CS sampling rate and quantization bit-depth, which have competition at a given
bit-budget [20]. Therefore, the encoder needs to assign a CS sampling rate and a bit-depth
by rate-distortion optimization (RDO).

Some researchers have discussed the optimization problem of CS sampling rate and
bit-depth. Chen et al. [21] have proposed a bit-rate model and a relative distortion model
to assign CS sampling rate and bit-depth for the CS-based coding system with uniform
SQ. Jiang et al. [22] have presented a new Lagrange multiplier method to set quantization
step size and number of measurements, whereas they do not consider the complexity.
Liu et al. [23] have introduced a distortion model of compressed video sampling to opti-
mize the sampling rate and bit-depth. The model’s parameters need to be predicted from
video features, which is not suitable for images. However, the above works only apply to
uniform SQ scheme. To the knowledge of authors, little attention has been paid to optimize
the CS sampling rate and bit-depth for other quantization schemes in BCS.

The purpose of this study is to propose an efficient RDO algorithm to assign the CS
sampling rate and bit-depth for the most frequently used quantization schemes in BCS.
The RDO algorithm should be designed with low complexity due to the simple coding
process of CS. In this paper, we propose a bit-rate model and an optimal bit-depth model
to avoid the high complexity of calculating rate-distortion cost. Firstly, we use generalized
Gaussian distribution to describe the distribution of objects encoded by entropy encoder
and then build a bit-rate model. Secondly, we find that there is a logarithmic relationship
between the optimal quantized bit-depth and the bit-rate. Then, we propose an optimal
bit-depth model and use a feed-forward neural network to train the model parameters.
Finally, we introduce a general method for optimizing the CS sampling rate and bit-depth
with the proposed models.

The remainder of this paper is structured as follows. We describe the problem of RDO
in a CS-based imaging system in Section 2. Sections 3 and 4 discuss the proposed bit-rate
model and the optimal bit-depth model. We propose an algorithm to assign CS sampling
rate and bit-depth in Section 5. The experiment results and conclusions are drawn in
Sections 6 and 7.

2. Problem Statement

CS theory states that a sparse signal can be recovered through its measurements
obtained by linear random projection. Many natural images have a sparse representation
in a wavelet transform domain or discrete cosine transform domain [24,25], so they can be
acquired by CS. Suppose x ∈ RN×1 denotes a raster-scanned vector of an image block. The
CS measurements vector y ∈ RM×1 of x can be acquired by the following expression:

y = Φx, (1)

where Φ ∈ RM×N(M� N) is a measurement matrix, and the sampling rate or measure-
ment rate is m = M/N.

Since CS measurements are real, they need to be discretized by the quantization before
entropy encoding. Based on the most commonly used quantization schemes of CS measure-
ments, the CS sampling model with quantization can be unified into the following expression:

yQ = Qb[ f (y)] = Qb[ f (Φx)], (2)
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where yQ is the quantized measurement vector, and it also stands for the input of entropy
encoder. Qb : R→ Q denotes a uniform SQ operation for b-bit (applied element-wise in
(2)), which maps f (y) to the discrete alphabet Q with |Q| = 2b. In this paper, we define
Qb[ f (y)] = f (y)

∆ , where ∆ = fmax(y)− fmin(y)
2b is the uniform quantization step size, fmax(y)

and fmin(y) represent the maximum and minimum of f (y), respectively. f (·) represents
a reversible transform, which is used to change the distribution type of y. When the CS
measurements are quantized by uniform SQ, f (·) is an identity transformation. When
the CS measurements are quantized by A-law or µ-Law non-uniform quantization, f (·)
is the law function [26]. When the CS measurements are quantized by prediction with
uniform SQ, f (·) is the prediction function [12,17]. For example, in the DPCM-plus-SQ
framework, f (y(j)) = y(j+1) − y(j), where y(j) represents the measurement vector of the j-th
image block. The progressive quantization methods [13,14] are also prediction frameworks
combined with uniform SQ. In the progressive quantization method, the CS measurements
are divided into a basic layer and refinement layer for transmission after uniform SQ
quantization with B bit. In the basic layer, all B significant bits of the quantization indexes
are transmitted, so the prediction function is equivalent to the identity transformation.
In the refinement layer, the least B1 < B significant bits of the quantization index are
transmitted, so the dropped highest B-B1 bit is equivalent to the predicted value, and the
retained B1 least significant bits are equivalent to the prediction residual.

The CS-based image coding system is composed of CS sampling, quantization, and
entropy encoder [15]. The bitstream of the encoded image is used for transmission or
storage. The decoder restores the bitstream to an image through the corresponding entropy
decoder, dequantization, and CS reconstruction algorithm. Figure 1 shows the flow chart
of the CS-based imaging system [10].
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The average number of bits per pixel [21] of the encoded image can be calculated by
the following expression:

R = mL, (3)

where L is the average codeword length of the quantized CS measurements yQ after
entropy encoding.

There is a positive correlation between average codeword length and quantization
bit-depth. When the bit-rate is constrained, sampling rate and quantization bit-depth have
a competitive relationship with each other. We can minimize the distortion to optimize the
sampling rate and bit-depth for a given bit-rate Rgoal , i.e.,

argmin
m,b

D(m, b, X) s.t. R(m, b, X) ≤ Rgoal , (4)

where R(m, b, X) and D(m, b, X), respectively, represent bit-rate and distortion of the image
X at the sampling rate m and the bit-depth b. The bit-rate R(m, b, X) is the average number
of bits per pixel of the encoded image, which can be obtained according to (3). Distortion
refers to the dissimilarity between the reconstructed image X̂ and the original image X. The
distortion measures mainly include the mean square error (MSE), the peak signal-to-noise
ratio (PSNR), and the structural similarity index measure (SSIM) [27]. The PSNR between
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the reconstructed image X̂ and the original image X is used as a measure of distortion in
our paper. The mathematical definition of PSNR is PSNR = 10× log10

(
2552/MSE(X, X̂)

)
,

where MSE(X, X̂) is the mean square error between the reconstructed image X̂ and the
original image X. The calculation of distortion and bit rate depends on the original image
and decoded image, and the cost of obtaining decoded image is very expensive.

To avoid calculating the bit-rates and distortions, we first propose a new bit-rate model
and an optimal bit-depth model. Then, we propose a general method to optimize the
sampling rate and bit-depth for CS-based image coding. Figure 2 is the CS-based encoding
system with RDO [21,23]. Our CS framework contains two CS processes. The first one is
partial sampling, which aims to extract image features by a few CS measurements for RDO.
The second one is to increase the number of CS measurements to achieve optimal sampling
and compression by using the sampling rate optimized by RDO.
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3. Bit-Rate Model

Based on (3), the bit-rate R depends on the average codeword length of the quantized
CS measurements yQ after entropy encoding. The average codeword length can be approxi-
mated by information entropy of yQ before entropy encoding [28]. The information entropy
is closely related to the distribution characteristics of the CS measurements, so we extract
the distribution characteristics from the CS measurements of the first sampling to estimate
the information entropy. However, the information entropy is only the lower boundary
of the average codeword length. There is an error between the average codeword length
and the information entropy estimated by a few measurements. Therefore, we modify the
coefficients of the information entropy estimation model by fitting the offline data of the
average codeword length and then take it as the average codeword length model.

3.1. Generalized Gaussian Distribution Model of the Quantized CS Measurements

According to (2), the quantized CS measurements can be considered to be obtained by
f (·) and Qb[·]. Qb[·] does not change the distribution type, while f (·) determines how to
change the distribution type of CS measurements. The CS measurements using random
Gaussian matrix obey Gaussian distribution [13]. When the structurally random matrix
(SRM) is used for CS measurement, the CS measurements corresponding to the first row
of SRM are uniformly distributed, and the remaining CS measurements are Laplacian
distributed with zero mean [10]. The distribution of DPCM predictive errors without
conditioning on contexts is very close to a Laplace distribution [29]. The experiments
of [30] show that the prediction errors of DPCM-plus-SQ satisfy the generalized Gaussian
distribution. The Gauss distribution, the uniform distribution, and the Laplace distribution
belong to the generalized Gauss distribution with specific shape parameters. In order to
describe the distribution of CS measurements more generality, we use the generalized
Gauss distribution to describe f (y) and yQ. The generalized Gaussian distribution density
function with zero mean can be expressed as:

px(x|v, σ) = C(β, σ) exp
{
−[α(β, σ)|x|]β

}
, (5)

where α(σ, β) = σ−1
[

Γ(3/β)
Γ(1/β)

] 1
2 , C(σ, β) = βα(σ,β)

2Γ(1/β)
. σ is the standard deviation. β is

the shape parameter, which determines the attenuation rate of the density function.
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Γ(t) =
∫ ∞

0 e−uut−1du. The Laplace distribution and Gaussian distribution correspond
to generalized Gaussian distribution when β = 1 and β = 2, respectively. Based on the
generalized Gaussian distribution, the information entropy [31] of f (y) can be estimated as

H ≈ −
∫ +∞
−∞ p f (x|β, σ) log2

(
p f (x

∣∣∣β, σ)
)

dx

= − log2

[
βα(β,σf )

2Γ(1/β)

]
+ 1

β ln 2

= log2

(
2σf

)
− log2

[
β[Γ(3/β)]

1
2

Γ[(1/β)]
3
2

]
+ 1

β ln 2

(6)

where σf and β are the standard deviation and distribution shape parameters of f (y),
respectively. In Equation (2), yQ is the discretization of f (y) quantized by the quantization
step size ∆, so the information entropy [31] of yQ can be estimated by:

HQ ' H − log2 ∆

= log2

(
2σf

)
− log2

[
β[Γ(3/β)]

1
2

Γ[(1/β)]
3
2

]
+ 1

β ln 2 − log2 ∆
(7)

3.2. Average Codeword Length Estimation Model

In Equation (7), σf and β are keys to estimating information entropy H. However, σf
and β cannot be calculated directly because the CS measurements are unknown before
the sampling rate and bit-depth are assigned. Since the number of CS measurements
required for a high-quality reconstructed signal must satisfy a lower limit, the number
of CS measurements used for compression will exceed the lower limit regardless of the
goal bit-rate. Therefore, we can acquire a small number of CS measurements by the first
sampling and then extract features for RDO.

The CS measurements with different sampling rates are subsets of the measurement
population for the same image, so a small number of measurements can be used to estimate
the features of measurements with a higher sampling rate. In this paper, m0 represents the
sampling rate of the first sampling.

The entropy-matching method is usually used to estimate the shape parameter of
the generalized Gaussian distribution [31]. To simplify the estimation, we assume that

there is a proportional relationship between − log2

(
β[Γ(3/β)]

1
2 /Γ[(1/β)]

3
2
)
+ 1/(β ln 2)

at different sampling rates for the same bit-depth, i.e.,

− log2

(
β[Γ(3/β)]

1
2 /Γ[(1/β)]

3
2
)
+ 1/(β ln 2)

≈ c
(
− log2

(
β0[Γ(3/β0)]

1
2 /Γ[(1/β0)]

3
2
)
+ 1/(β0 ln 2)

)
≈ c
(

H0 − 1
2 log2

(
2σf0

)
+ log ∆

) (8)

where H0 and β0 represent the information entropy and shape parameter of f (y) at sam-
pling rate m0 and bit-depth b. c is an undetermined parameter.

Combined with the Formula (8), the information entropy of yQ can be estimated by
the following expression:

H ≈ 1
2

log2

(
2σf

)
+ c
(

H0 −
1
2

log2

(
2σf0

)
+ log ∆ f0

)
− log ∆, (9)

where σf0 is the standard deviation of f (y) for measurements obtained by the first partial

sampling, ∆ f0 = fmax(y0)− fmin(y0)
2b , y0 is the measurement vector obtained by the first sampling.

In statistical theory, the statistic s2 = M
M−1 σ2 of the sample variance is an unbiased

estimation of the population’s variance. Since the CS measurements with different sampling
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rates have the same population, we assume that the unbiased variance estimates of CS
measurements at different measurement rates are approximately equal, that is:

M
M− 1

σ2
f ≈

M0

M0 − 1
σ2

f0
, (10)

where M= round(mN2), M0= round(m0N2). The expression (10) can be converted into

σ2
f ≈

(
m0 N2

(m0 N2−1) +
−m0

(m0 N2−1) ×
1
m

)
σ2

f0
. Then, we can obtain the following expression:

H ≈ 1
4 log2

(
σ2

f

)
+ 1

2 log2(2) + c
(

H0 − 1
2 log2

(
2σf0

)
+ log ∆ f0

)
− log ∆

≈ 1
4 log2

(
m0 N2

(m0 N2−1) +
−m0

(m0 N2−1) ×
1
m

)
+ 1

4 log2(σ
2
f0
)

+ 1
2 log2(2) + c

(
H0 − 1

2 log2

(
2σf0

)
+ log ∆ f0

)
− log ∆

(11)

Since −m0
(m0 N2−1) →

−1
N2 is very small, and the range of the sampling rate m is limited;

the range of −m0
(m0 N2−1) ×

1
m is also very limited. Therefore, we use a simple linear function

to estimate it:

log2

(
m0N2

(m0N2 − 1)
+

−m0

(m0N2 − 1)
× 1

m

)
≈ c′

1
m

+ c′′, (12)

where c′ and c′′ are undetermined parameters. Moreover, we substitute the expression of
quantization step into (11) to obtain the following expression:

c log2 ∆ f0 − log2 ∆
= c log2

fmax(y0)− fmin(y0)
2b − log2

fmax(y)− fmin(y)
2b

= (1− c)b + c log2( fmax(y0)− fmin(y0))− log2( fmax(y)− fmin(y))
(13)

We used the maximum fmax(y0) and minimum fmin(y0) of the first sampled CS mea-
surements to predict the maximum fmax(y) and minimum fmin(y) of the CS measurements
with sampling rate m. Therefore,

H ≈ c′ 1
m + c′′ + ( 1

4 −
1
4 c) log2 σ2

f0
+ log2(2)

+cH0 + (1− c)b + (c− 1) log2( fmax(y0)− fmin(y0))
(14)

Based on (14), we replaced (1− c), c′, c, ( 1
4 −

1
4 c), (c− 1) and c′′ + log2(2) with c1, c2,

c3, c4, c5 and c6, respectively, and establish a model for estimating the average codeword
length as follows:

L ≈ c1b +
c2

m
+ c3H0 + c4 log2 σ2

f0
+ c5 log2( fmax(y0)− fmin(y0)) + c6. (15)

To improve the estimation accuracy of the average codeword length, we utilize the
model coefficients c1∼c6 learned from offline data. Combining (3) with (15), we can
establish the bit-rate model, as follows:

R ≈ mL ≈ m[c1b +
c2

m
+ c3H0 + c4 log2 σ2

f0
+ c5 log2( fmax(y0)− fmin(y0)) + c6], (16)

4. Optimal Bit-Depth Model

If we first predict the optimal bit-depth b∗, the sampling rate can be estimated based
on the bit-rate model (16), i.e.,

m∗ ≈
Rgoal − c2

c1b∗ + C
, (17)

where Rgoal is the target bit-rate, C = c3H0 + c4 log2 σ2
f0
+ c5 log2( fmax(y0)− fmin(y0)) + c6

represents the feature of X at bit-depth b∗. In this section, we propose an optimal bit-depth
model, which can directly predict the optimal bit-depth for a given bit-rate.
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4.1. Function Mapping Relationship between Optimal Bit-Depth and Bit-Rate

Chen et al. [15] tested the reconstruction performance of some images at different
quantization bit-depths. They show that low quantization bit-depths can reconstruct high
PSNRs at a low bit-rate, and the high quantization bit-depths can reconstruct high PSNRs
at high bit-rate. However, they only give the fixed selection of quantization bit-depths for
some bit-rates of all images, and do not give a method for selecting the optimal bit-depth.
To find the relationship between the different quantization bit-depths and the PSNRs, we
simulated eight test images, as shown in Figure 3. We obtain the optimal bit-depths of eight
testing images by traversing different sampling rates (m ∈ [0.05, 0.06, . . . , 0.4]) and different
quantization bit-depths (b ∈ [3, 4, . . . , 10]) for CS-based coding systems with uniform SQ
and DPCM-plus-SQ, as shown in Figures 4 and 5.
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Figure 3. Eight testing images. (a) Monarch; (b) Parrots; (c) Barbara; (d) Boats; (e) Cameraman; (f) Foreman; (g) House; (h) Lena.

Entropy 2021, 23, 1354 8 of 23 
 

different quantization bit-depths ( [3,4,...,10]b∈ ) for CS-based coding systems with uni-
form SQ and DPCM-plus-SQ, as shown in Figures 4 and 5. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 3. eight testing images. (a) Monarch; (b) Parrots; (c) Barbara; (d) Boats; (e) Cameraman; (f) Foreman; (g) House; (h) 
Lena. 

Figure 4. The optimal bit-depths of eight images for CS-based coding system with uniform SQ. (a) Monarch; (b) Parrots; 
(c) Barbara; (d) Boats; (e) Cameraman; (f) Foreman; (g) House; (h) Lena. 

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

PS
N

R 
(d

B)

PS
N

R 
(d

B)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Bit-rate (bpp)

19

20

21

22

23

24

25

b = 3
b = 4
b = 5

b = 6

b = 7

b = 8
b = 9
b = 10
The optimal
bit-depths

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Bit-rate (bpp)

18

19

20

21

22

23

24

25

PS
N

R 
(d

B)

b = 3
b = 4
b = 5

b = 6

b = 7

b = 8
b = 9
b = 10
The optimal
bit-depths

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Bit-rate (bpp)

22

23

24

25

26

27

28

29

30

31

32

PS
N

R 
(d

B)

b = 3
b = 4
b = 5

b = 6

b = 7

b = 8
b = 9
b = 10
The optimal
bit-depths

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Bit-rate (bpp)

20

21

22

23

24

25

26

27

28

29

30

b = 3
b = 4
b = 5

b = 6

b = 7

b = 8
b = 9
b = 10
The optimal
bit-depths

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Bit-rate (bpp)

19

20

21

22

23

24

25

26

27

28

b = 3
b = 4
b = 5

b = 6

b = 7

b = 8
b = 9
b = 10
The optimal
bit-depths

Figure 4. The optimal bit-depths of eight images for CS-based coding system with uniform SQ. (a) Monarch; (b) Parrots;
(c) Barbara; (d) Boats; (e) Cameraman; (f) Foreman; (g) House; (h) Lena.
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Figure 5. The optimal bit-depths of eight images for CS-based coding system with DPCM-plus-SQ. (a) Monarch; (b) Parrots;
(c) Barbara; (d) Boats; (e) Cameraman; (f) Foreman; (g) House; (h) Lena.

It can be found from Figures 4 and 5 that the rate-distortion performance of the
DPCM-plus-SQ framework (represents the CS-based coding system with DPCM-plus-SQ)
is better than that of the uniform SQ framework (represents the CS-based coding system
with uniform SQ), which indicates that the quantization scheme has a significant influence
on the rate-distortion performance. However, the current rate-distortion optimization
methods for CS are only suitable for a single uniform SQ framework. As far as we know,
little attention has been paid to study the rate-distortion optimization method suitable for
the prediction framework.

Although the optimal bit-depth of different quantization frameworks is different,
Figures 4 and 5 have the following common characteristics: (1) low bit-depths have high
PSNRs at low bit-rates, and high bit-depths have high PSNRs at high bit-rates. (2) The
optimal bit-depth of almost all images is 4 when the bit-rate is around 0.1 bpp. (3) With the
increase of bit-rate, the optimal bit-depth shows a nondecreasing trend. (4) The optimal
bit-depth is the same in a bit-rate range, but the range is different for different images.
There is a functional relationship between the optimal bit-depth and the bit-rate, which can
be expressed as:

bbest =


3 0 < R ≤ r1
4 r1 < R ≤ r2

...
8 r5 < R ≤ r6

, (18)

where r1∼r6 are the endpoints of the bit-rate ranges. It can be found that the bit-rate range
increases with the increases of bbest. The model (18) is equivalent to the following model:

bbest = [g(R)], (19)

where [·] represents the rounding operation, and g(R) represents a continuous function of
the bit-rate. Since the optimal bit-depth increases with the increases of bit-rate, the first-
order derivative of g(R) is required to be no less than 0. The increasing rate of the optimal
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bit-depth becomes slower with the increase of bit-rate, so the second-order derivative of
g(R) is required to be less than 0, that is,

∂g(R)2

∂2R
< 0 &

∂g(R)
∂R

≥ 0, (20)

Based on the above discussion, we set g(R) = k1 ln(R) + k2. The model of the optimal
bit-depth is established as follows:

b̃best = [g(R)] = [k1 ln(R) + k2], (21)

where k1 and k2 are the model parameters, which are learned by a neural network in the
Section 4.2. In order to collect offline data samples of k1 and k2 for the proposed neural
network training, we establish the following optimization problem:

argmin
k1,k2

∑
i

ωi‖b
(i)
best −

[
g(R(i))

]
‖

q

1
+ λ∑

i
‖b(i)best − g(R(i))‖

2

2, (22)

where i is the sample index of the offline data. b(i)best represents the actual value of the
optimal bit depth of the i-th sample. ωi represents the weight, which is the difference
between the PSNR quantized with b(i)best and the PSNR quantized with

[
g(R(i))

]
at the same

bit-rate. In order to obtain the PSNR at the same bit rate, we perform linear interpolation on

the sample data. The regularization term ∑
i
‖b(i)best − g(R(i))‖

2

2 guarantees the uniqueness

of the solution. λ is a constant coefficient, which takes 0.01 in this work. We take q = 10,
which avoids an error of more than 2 bits between the predicted value and the actual value.

In (22), the first item ensures the accuracy of the optimal bit-depth model, and the
second item ensures the uniqueness of the model coefficient. Since it is difficult to deal with
the gradient of the rounding operation, (22) cannot be solved by the traditional gradient-
based optimization method. We use the particle swarm optimization algorithm [32,33] to
optimize the problem (22). The number of particle swarm is 100 and iterated 300 times.
In each iteration, 30 particle swarms in the population are randomly generated in the
[−0.5, 0.5] range of the optimal point.

Figures 6 and 7 show the fitted results of the model (21) for the uniform SQ framework
and DPCM-plus-SQ framework, respectively. It can be seen that the fitted bit-depths are in
good agreement with the actual bit-depths. The errors between the predicted value and
the actual value are only one bit at most. The errors of one bit are mainly concentrated
between the two adjacent optimal bit-depths, which has little difference on the PSNR for
the two bit-depths.

4.2. Model Parameter Estimation Based on Neural Network

It is challenging to design a function for estimating the model parameters accurately.
Therefore, we use a four-layer feed-forward neural network [34,35] to learn the mapping
relationship between the model parameters and image features rather than designing
the function relationship by hand [36,37]. We can imagine that the model (21) would
be beneficial if the model parameters could be predicted based on some content features
derived from the compressed sampled image. As model (21) is closely related to the bit-rate,
we directly use the image features in the proposed bit-rate model as the characteristics
of estimating the parameters. The image features of the proposed bit-rate model are σ0

2,
H0, fmax(y0) fmin(y0). A finite set of real numbers usually needs to be quantized before
calculating the information entropy. The optimal bit-depth of many images is low when the
bit-rate is low, so we choose the information entropy H0,bit=4 with a quantization bit-depth
of 4 as a feature. Since the CS measurement of the image is sampled block by block, we take
the image block as the video frame and design two image features according to the video
features in reference [23]. For example, block difference (BD): the mean (and standard
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deviation) of the difference between the measurements of adjacent blocks, i.e., µBD and
σBD. We also take the mean of measurements y0 as a feature.
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Figure 7. The predicted bit-depths of eight images for the DPCM-plus-SQ framework. (a) Monarch; (b) Parrots; (c) Barbara;
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We designed a network including an input layer of seven neurons and an output layer
of two neurons to estimate the model parameters [k1, k2], as shown in Formula (23) and
Figure 8.

u1 = [σ2
0 , y0, fmax(y0), fmin(y0), µBD, σBD, H0,bit=4]

T

uj = g(Wj−1uj−1 + dj−1) , 2 ≤ j < 4
F = Wj−1uj−1 + dj−1 , j = 4

(23)

where g(v) is the sigmoid activation function, uj is the input variable vector at the j-th
layer, F is the parameters vector [k1, k2]. Wj, dj are the network parameters learned from
offline data. We take the mean square error (MSE) as the loss function.
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5. A General Rate-Distortion Optimization Method for Sampling Rate and Bit-Depth
5.1. Sampling Rate Modification

The model (16) obtains the model parameters by minimizing the mean square error of
all training samples. Although the total error is the smallest, there are still some samples
with significant errors. To prevent excessive errors in predicting sampling rate, we propose
the average codeword length boundary and sampling rate boundary.

5.1.1. Average Codeword Length Boundary

When the optimal bit-depth is determined, the average codeword length usually
decreases with the sampling rate increase. Although the average codeword length of
different images varies with the sampling rate, the variation is finite. Therefore, we design
an average codeword length boundary.

As the information entropy H0 is the input of the optimized sampling rate and is very
close to the average codeword length L0 with the sampling rate m0, we take H0 as the
reference of the average codeword length to estimate variation. The average codeword
length variation is expressed as L− H0. We only take the bit-depth and sampling rate as
factors for influencing the upper and lower bound. According to model (16), we establish
the upper and lower bound model of the average codeword length variation as follows:

Lu − H0 = a1b + a2
m + a3

Ll − H0 = a4b + a5
m + a6

(24)

where Lu and Ll describe the upper and lower bounds of average codeword length, respec-
tively. a1∼a6 are the model coefficients fitted by offline samples.

According to (17), we first estimate the sampling rate as

m(1) = (Rgoal − c3)/(c1b∗ + C) (25)
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The corresponding average codeword length is L = Rgoal/m(1). Then, we calculate
the upper Lu = a1b∗ + a2/m + a3 + H0 and the lower bound Ll = a4b∗ + a5/m + a6 + H0
based on (24). L > Lu means that the sampling rate is too low; we should increase the
sampling rate. So, we take the bit-rate model as R = mLu, the sampling rate is updated
to mu = (Rgoal − a2)/(H0 + a1b∗ + a3); if L < Ll , we take the bit-rate model as R = mLl ,
the sampling rate is updated to ml = (Rgoal − a5)/(H0 + a4b∗ + a6). It is summarized
as follows:

m(2) =


mu i f L > Lu
ml i f L < Ll
m(1) otherwise

(26)

5.1.2. Sampling Rate Boundary

The average codeword length boundary uses the information entropy of partial
measurements to restrict the estimated value of the average codeword length, so as to
modify a sampling rate that is too large or too small. To modify the sampling rate more
directly, we establish a linear boundary model of the sampling rate for different bit-depths
as follows:

mu′ = a7R + a8
ml ′ = a9R + a10

(27)

where R is the bit-rate, a7∼a10 are the model coefficients fitted by offline samples. When the
assigned sampling rate exceeds the boundaries in (27), it will be modified by the following
expression:

m∗ =

{
mu′ i f m(2) > mu′
ml ′ i f m(2) < ml ′

(28)

5.2. Rate-Distortion Optimization Algorithm

Based on the proposed bit-rate model and the optimal bit-depth model, we propose an
algorithm to assign the bit-depth and sampling rate for a given target bit-rate Rgoal , as follows.

(1) Partial sampling.
The partial CS measurements are sampled with the sampling rate m0.
(2) Features extraction.
σ2

0 , y0, fmax(y0), fmin(y0), µBD, σBD, H0,bit=4 of partial measurements are calculated.
(3) The optimal bit-depth prediction.
The optimal bit-depth is predicted by bbest = [k1 ln(R) + k2], where the model param-

eters are estimated by the trained network.
(4) Features extraction.
The partial measurements are quantized with bit-depth b∗, and then the information

entropy H0 is calculated.
(5) The optimal sampling rate prediction.
The optimal sampling rate is estimated by Formula (25).
(6) Sampling rate modification
The sampling rate is updated according to the Formulas (26) and (28).
(7) CS sampling
The original image is acquired to obtain the remaining CS measurements by the

supplementary sampling rate m = m∗ −m0.
(8) Quantization and entropy encoding.
All measurements are quantized and then coded by arithmetic coding.

5.3. Computational Complexity Analysis

The extra calculation of the sampling rate and quantization bit-depth optimization
comes from three processes, namely feature extraction, the optimal bit-depth prediction,
and the sampling rate estimation.

In feature extraction, the extra calculation mainly comes from σ2
0 , y0, fmax(y0), fmin(y0),

µBD, σBD, H0,bit=4 of the measurements with sampling rate m0. The number of measure-
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ments is m0 × N2. We assume that the calculation of one subtraction is equivalent to that
of one addition. The calculation of y0 needs m0 × N2 − 1 additions and one multiplication.
The calculation of σ2

0 needs m0 × N2 × 2− 1 additions and m0 × N2+1 multiplications.
fmax(y0) and fmin(y0) need

(
m0 × N2−1

)
× 2 judgment operations. The calculation of

block errors needs m0× (N2− B2) additions. µBD needs m0× (N2− B2)− 1 additions and
one multiplication. σBD needs m0 × (N2 − B2)× 2− 1 additions and m0 × (N2 − B2)+1
multiplications. The extra calculation of H0,bit=4 comes from quantization with bit-depth
4, which requires m0 × N2 multiplications. The remaining calculation of H0,bit=4 mainly
comes from counting the number of symbols and calculating the entropy. The calcula-
tion of counting the number of symbols requires m0 × N2 judgments, m0 × N2 additions.
As the maximum number of symbols is 24+1 + 1 = 33, the calculation of entropy needs
66 multiplications, 33 logarithms, and 33 additions at the most.

In the optimal bit-depth prediction, the calculation mainly comes from the neural
network model. There are seven neurons in the input layer, two neurons in the output
layer, four neurons in the first hidden layer, and three neurons in the second hidden layer.
When the activation function is not considered, the calculation of the network includes
7 × 4 + 4 × 3 + 3 × 2 = 46 multiplications and 6 × 4 + 4 + 3 × 3 + 3 + 2 × 2 + 2 = 46
additions. In the sampling rate estimation, the amount of calculation mainly comes from
the calculation of (25) and (26).

Compared with the computations of the CS measurements, a fixed number of opera-
tions can be ignored. The extra calculation includes m0 × N2 × 8 additions, m0 × N2× 3
multiplications, and m0 × N2× 3 judgments. Assuming that two additions are needed for
one judgment operation, the total amount of additional computation requires m0×N2× 14
additions and m0 × N2 × 3 multiplications.

The computations of all CS measurements requires m× N2 × B2 multiplications and
m× N2 × (B2 − 1) additions. B is the size of the image block, which is at least 16. When
B = 16, the optimization process needs to increase 3/B2 × (m0/m) ≤ 3/256 ≈ 1.17% mul-
tiplications and 14/(B 2 − 1)× (m0/m) ≤ 14/255 ≈ 5.49% additions. In computer opera-
tions, the amount of calculation of addition is at least ten times faster than multiplication.
The computations of rate-distortion optimization will not exceed 2% of the computations of
the partial measurements. Furthermore, with the increase of image block size or sampling
rate m, the percentage of computation in the optimization process will be further reduced.

6. Experimental Results

The proposed method is tested on some images for the DPCM-plus-SQ framework
and uniform SQ framework, respectively. The model parameters are obtained by offline
training some images of the BSDS500 database [38]. Several images, including eight images
(shown in Figure 3), and the BSD68 dataset [39], are tested in our simulations. We take
100 images randomly selected from the BSDS500 database as the training set and the BSD68
dataset (68 images) as the test set. Since the size of the images varies, the images were
cropped to a size of 256× 256 from the center. All the numerical experiments are performed
via MATLAB (R2018b) on a Windows 10 (64 bit) platform with an Intel Core i5-8300H 2.30
GHz processor and 16 GB of RAM.

6.1. Model Parameters Estimation

To obtain the model parameters of the proposed bit-rate model and the optimal
bit-depth model, we take 100 images from the BSDS500 database [38] to collect training
samples. The training data adopts the way of traversing bit-depths and sampling rates.
The bit-depths include {3, 4, . . . , 10}; the set of sampling rate includes 37 samples in
{0.04, 0.05, . . . , 0.4} and 7 samples in {3/256, 4/256, . . . , 9/256}. If the average codeword
length compressed by entropy encoding is greater than the quantized bit-depth, we take the
average codeword length equal to the quantized bit-depth. One image collects 352 samples
of the average codeword length and PSNR. The image block size adopts the optimal size
of the corresponding quantization method, in which the DPCM quantization framework
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uses 16×16 blocks and uniform quantization uses 32 × 32 blocks. The orthogonal random
Gaussian matrix is used for BCS sampling in this work. The entropy encoder adopts
arithmetic coding [40]. In the decoder, the SPL-DWT algorithm [41] is used for image
reconstruction. We take the first partial sampling rate m0 = 0.05.

We use the least-square method to fit the model (15). Table 1 shows the trained
parameters for DPCM-plus-SQ framework and uniform SQ framework. To quantify the
accuracy of the fitting, we calculate the mean square error (MSE) and Pearson correlation
coefficient (PCC) [42] between the actual value and predicted value. The closer the PCC is
to 1, the better the fit of the model. The closer the MSE is to 0, the better the fit of the model.
For the DPCM-plus-SQ framework, the MSE and PCC are 0.022 and 0.995, respectively. For
the uniform SQ framework, the MSE and PCC are 0.027 and 0.996, respectively. Table 1
shows that the proposed model (15) can well describe the relationship between average
codeword length L and bit-depth, sampling rate, and image features. The results show
that model (15) can well describe the relationship between the average codeword length,
sampling rate, and bit-depth.

Table 1. Parameters of the fitted model (15).

Quantization
Framework c1 c2 c3 c4 c5 c6 PCC MSE

DPCM-plus-
SQ −3.0927 × 10−1 1.9128 × 10−2 −1.6845 × 10−1 1.6592 × 10−1 1.3467 −1.1718 0.995 0.022

uniform SQ −2.0660 × 10−1 6.5594 × 10−3 −2.0673 × 10−1 2.3831 × 10−1 1.2761 −1.9910 0.996 0.027

The optimal bit-depth model depends on the model parameters estimated by the pro-
posed neural network. The samples of the model parameters are obtained by solving the
problem (22) and then are used to train the neural network. Due to the random initialization
of neural network parameters, the prediction performances of the different trained networks
are different. The best network from several trained networks is chosen to estimate the pa-
rameters of the proposed optimal bit-depth model. Table 2 shows the prediction performance
of the optimal bit-depth model in the training set image and test set.

Table 2. Performances of the training set and test set for the optimal bit-depth model.

Quantization Framework DPCM-Plus-SQ Uniform SQ

Data Training Set Test Set Training Set Test Set

Accuracy (%) 80.7 70.7 76.5 70.4
Percentage of one-bit error (%) 19.3 29.0 23.5 29.3

Sum (above) (%) 100 99.7 100 99.7

As shown in Table 2, for DPCM-plus-SQ framework, 80.7% and 70.7% are the accu-
racies of predicting the optimal bit-depth in the training set (BSDS500) and the test set
(BSD68), respectively. For uniform SQ framework, 76.5% and 70.4% are the accuracies of
predicting the optimal bit-depth in the training set (BSDS500) and the test set (BSD68),
respectively. In the training set, the differences between the optimal bit-depth and the
predicted bit-depth are no more than one bit. In the test set, 99.7% of the samples have
a difference of no more than one bit between the optimal bit-depth and the predicted
bit-depth. In most cases, the influence of 1-bit error on PSNR is limited, so it is effective to
utilize a neural network to learn the optimal bit-depth model parameters.

In the training set, 100 images have 100 the average codeword length curves. We take
the upper five curves and the lower five curves as the training samples of the model (24).
The parameters are fitted offline by the least square method. We obtain a1 = −8.4564× 10−3,
a2 = 1.8272× 10−2, a3 =−1.5871×10−1, a4 =−6.7478×10−2, a5 = 1.4306× 10−2, a6 =−1.8052
× 10−1 for the DPCM-plus-SQ framework, and a1 = 4.5857 × 10−2, a2 = 8.1957 × 10−3,
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a3 = −2.1012× 10−1, a4 = 1.0226× 10−1, a5 = 1.6633× 10−3, a6 = −9.0052× 10−1 for the
uniform SQ framework.

In the training set, we take the maximum and minimum sampling rate corresponding
to the given bit-rates as the training sample of the model (27). The parameters are obtained
by the least-square method. Through experiments, we found that the optimized sampling
rates beyond the boundary are mainly near the low bit-rate of 0.1–0.3, and the correspond-
ing optimal bit-depths are mostly 4 bit or 5 bit. So, we impose boundary constraints on
the sampling rates when the optimal bit-depths are 4 and 5. The parameters are fitted
offline by the least square method. For DPCM-plus-SQ framework with bit-depth of 4,
we obtain a7 = 4.9164× 10−1, a8 = −7.1258× 10−3. For DPCM-plus-SQ framework with
bit-depth 5, we obtain a7 = 3.4874× 10−1, a8 = −6.1371× 10−3. For uniform SQ framework
with bit-depth 4, we obtain a7 = 3.3181× 10−1, a8 = −1.3050× 10−3. For uniform SQ
framework with bit-depth 5, we obtain a7 = 2.3433× 10−1, a8 = 2.3347× 10−3.

6.2. Rate-Distortion Optimization Performance

To verify the accuracy of the bit-rate model, we tested the BSD68 dataset and eight
images in Figure 3, respectively. We first use the proposed algorithm to assign the sampling
rate and bit-depth for target bit-rates, including 0.1, . . . 1 bit per pixel (bpp). Then, we
calculate actual bit-rates and PSNRs of the reconstructed image for the estimated sampling
rate and bit-depth. Tables 3 and 4 show the optimized bit-rate of BSD68 for the uniform SQ
framework and DPCM-plus-SQ framework, respectively. The absolute error percentage
denotes the percentage of the absolute error in the target bit-rate, where the absolute error
is the absolute of the difference between target bit-rate and actual bit-rate.

Table 3. Comparison of actual bit-rates with target bit-rates for the uniform SQ framework.

Image Target Bit-Rate (bpp) 0.1 0.2 0.3 0.4 0.5

BSD68 test set

Actual
bit-rate

Maximum 0.110 0.218 0.327 0.427 0.523
Minimum 0.087 0.181 0.268 0.368 0.467
Average 0.099 0.203 0.305 0.406 0.503

Average of absolute error
percentage (%) 3.23 2.91 2.29 2.33 1.78

Image Target Bit-Rate (bpp) 0.6 0.7 0.8 0.9 1

BSD68 test set

Actual
bit-rate

Maximum 0.619 0.727 0.831 0.934 1.037
Minimum 0.565 0.664 0.771 0.831 0.916
Average 0.603 0.706 0.805 0.901 0.999

Average of absolute error
percentage (%) 1.67 1.87 1.65 1.86 1.86

Table 4. Comparison of actual bit-rates with target bit-rates for the DPCM-plus-SQ framework.

Image Target Bit-Rate (bpp) 0.1 0.2 0.3 0.4 0.5

BSD68 test set

Actual
bit-rate

Maximum 0.108 0.219 0.319 0.424 0.533
Minimum 0.090 0.187 0.274 0.366 0.457
Average 0.101 0.200 0.299 0.399 0.499

Average of absolute error
percentage (%) 3.17 2.75 2.30 2.09 2.03

Image Target Bit-Rate (bpp) 0.6 0.7 0.8 0.9 1

BSD68 test set

Actual
bit-rate

Maximum 0.636 0.741 0.848 0.954 1.063
Minimum 0.548 0.646 0.737 0.829 0.922
Average 0.597 0.695 0.793 0.891 0.989

Average of absolute error
percentage (%) 2.18 2.23 2.20 2.33 2.26
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As shown in Table 3, the bit-rate average absolute error percentages of BSD68 are
between 1.65% and 3.23%, which indicates that the proposed bit-rate model is useful for
uniform SQ. As shown in Table 4, the bit-rate average absolute error percentages of BSD68
are between 2.09% and 3.17%, which indicates that the proposed bit-rate model is useful
for DPCM-plus-SQ.

Tables 5 and 6 show the actual bit-rate of the eight testing images for uniform SQ and
DPCM-plus-SQ, respectively. The results exhibit that actual bit-rates are very close to the
target bit-rates.

Table 5. The actual bit-rates of eight images for the uniform SQ framework.

Target Bit-Rate
(bpp)

Actual Bit-Rate (bpp)

Monarch Parrots Barbara Boats Cameraman Foreman House Lena

0.1 0.102 0.102 0.098 0.106 0.101 0.096 0.105 0.100
0.2 0.203 0.207 0.204 0.207 0.204 0.208 0.204 0.205
0.3 0.305 0.305 0.307 0.317 0.312 0.308 0.310 0.307
0.4 0.408 0.402 0.412 0.416 0.419 0.415 0.414 0.412
0.5 0.493 0.506 0.504 0.513 0.518 0.512 0.511 0.507
0.6 0.590 0.606 0.606 0.615 0.623 0.609 0.612 0.609
0.7 0.694 0.713 0.713 0.725 0.731 0.712 0.720 0.705
0.8 0.790 0.800 0.802 0.827 0.837 0.812 0.817 0.805
0.9 0.884 0.905 0.905 0.918 0.897 0.917 0.923 0.910
1.0 0.981 1.003 1.003 1.019 1.030 1.017 1.024 1.007

Table 6. The actual bit-rates of eight images for the DPCM-plus-SQ framework.

Target Bit-Rate
(bpp)

Actual Bit-Rate (bpp)

Monarch Parrots Barbara Boats Cameraman Foreman House Lena

0.1 0.102 0.098 0.099 0.103 0.101 0.095 0.098 0.102
0.2 0.197 0.189 0.201 0.210 0.201 0.202 0.190 0.187
0.3 0.303 0.292 0.295 0.308 0.302 0.296 0.291 0.289
0.4 0.404 0.392 0.387 0.410 0.404 0.398 0.407 0.380
0.5 0.504 0.487 0.490 0.511 0.500 0.494 0.505 0.477
0.6 0.603 0.578 0.593 0.611 0.596 0.598 0.610 0.569
0.7 0.705 0.671 0.691 0.703 0.695 0.706 0.703 0.668
0.8 0.799 0.756 0.779 0.811 0.794 0.792 0.804 0.759
0.9 0.899 0.864 0.881 0.902 0.896 0.895 0.898 0.848
1.0 1.014 0.957 0.969 0.993 0.989 0.996 1.004 0.940

To test the validity of the optimal bit-depth model, we compare the predicted optimal
bit-depth with the best bit-depths by traversing different bit-depths and different sampling
rates, as shown in Tables 7 and 8.

Table 7. Performance of the optimal bit-depth model for the uniform SQ framework.

Image Target Bit-Rate (bpp) 0.1 0.2 0.3 0.4 0.5

BSD68
test set

Optimal percentage (%) 91.18 64.71 77.94 77.94 64.71
One-bit error percentage (%) 8.82 35.29 22.06 22.06 35.29

Sum of the above (%) 100 100 100 100 100
Average PSNR error (dB) −0.04 −0.13 −0.12 −0.06 −0.08

Image Target Bit-Rate (bpp) 0.6 0.7 0.8 0.9 1

BSD68
test set

Optimal percentage (%) 63.24 54.41 60.29 57.35 64.71
One-bit error percentage (%) 36.76 45.59 39.71 41.18 33.82

Sum of the above (%) 100 100 100 98.53 98.53
Average PSNR error (dB) −0.09 −0.10 −0.08 −0.11 −0.07
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Table 8. Performance of the optimal bit-depth model for the DPCM-plus-SQ framework.

Image Target Bit-Rate (bpp) 0.1 0.2 0.3 0.4 0.5

BSD68
test set

Optimal percentage (%) 82.35 58.82 79.41 79.41 76.47
One-bit error percentage (%) 17.65 41.18 20.59 20.59 23.53

Sum of the above (%) 100 100 100 100 100
Average PSNR error (dB) −0.29 −0.21 −0.16 −0.06 −0.07

Image Target Bit-Rate (bpp) 0.6 0.7 0.8 0.9 1

BSD68
test set

Optimal percentage (%) 64.71 70.59 60.29 55.88 63.24
One-bit error percentage (%) 35.29 29.41 38.24 42.65 35.29

Sum of the above (%) 100 100 98.53 98.53 98.53
Average PSNR error (dB) −0.07 −0.09 −0.11 −0.14 −0.11

In Tables 7 and 8, the optimal percentage shows the percentage of images whose
predicted bit-depth is consistent with the actual best bit-depth. The one-bit error percentage
is the percentage of images with the one-bit error between the predicted bit-depth and
the actual best bit-depth. We encode and decode the images according to the predicted
parameters (sampling rate and bit-depth) and calculate the bit-rate and PSNR. The PSNR
error is the PSNR minus the maximum PSNR, where the PSNRs are obtained by the nearest
interpolation method for a bit-rate.

In Table 7, the sum of optimal bit-depth and one-bit error bit-depth obtain a percentage
of between 98.53% and 100% for the SQ framework. When the target bit-rates are 0.1~0.8
bpp, the sum of the optimal bit-depth and one-bit error bit-depth percentage is 100%.
When the target bit-rates are 0.9 and 1 bpp, the sum of optimal bit-depth and one-bit error
bit-depth percentage is 98.53%. As the difference of PSNR between different bit-depths is
small at the high target bit-rates, there is an error in estimating the bit-depth. Although
only 54.41% to 91.18% of the predicted bit-depths are consistent with the optimal bit-depth,
the average PSNR errors are between 0.04 dB and 0.013 dB, which shows that the error of
predicted bit-depth has little influence on the reconstruction performance.

In Table 8, the sum of optimal bit-depth and one-bit error bit-depth obtain a percentage
of between 98.53% and 100% for the DPCM-plus-SQ framework. When the target bit-rates
are 0.1~0.7 bpp, the sum of optimal bit-depth and one-bit error bit-depth obtain a percentage
of 100%. When the target bit-rates are 0.8~1 bpp, the sum of optimal bit-depth and one-bit
error bit-depth obtains a percentage of 98.53%. Although only 55.88% to 82.35% of the
predicted bit-depths are consistent with the optimal bit-depth, the average PSNR errors are
between 0.07 dB and 0.029 dB, which shows that the error of predicted bit-depth has little
influence on the reconstruction performance.

To demonstrate the performance of the proposed method in detail, we give the op-
timized rate-distortion curves of the eight testing images, as shown in Figures 9 and 10.
We first encode the image for the bit-rates according to the optimized sampling rates and
bit-depths, then calculate the PSNRs of the reconstructed image to obtain the rate-distortion
curve. All bit-rates and PSNRs obtained by traversing different sampling rates and bit-
depths are also shown in Figures 9 and 10. As far as we know, the optimization of sampling
rate and bit-depth in the CS-based coding system is mainly focused on the uniform SQ
framework, so we compared the proposed method with the latest methods [21] for the
uniform SQ framework, as shown in Figure 9.
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Figure 9 shows the proposed algorithm’s rate-distortion curves of the eight test images
encoded by the CS-based coding system with uniform SQ. The rate-distortion curve of
the proposed algorithm is very close to the optimal rate-distortion curve. The PSNRs of
the proposed algorithm are slightly worse than the optimal PSNRs only at a few bit-rates.
When the bit-rate is 0.3 bpp for Monarch, the predicted optimal bit-depth is 5 bit, while the
actual optimal bit-depth is 4 bit. The PSNR of the proposed algorithm is 0.52 dB less than
the optimal PSNR at bit-rate of 0.3 bpp. When the bit-rate is 0.3 and 0.8 bpp for Parrots,
the predicted optimal bit-depth is 4 and 6, while the actual optimal bit-depth is 5 bit. The
PSNRs of the proposed algorithm are about 0.25 and 0.3 dB less than the optimal PSNR
at bit-rate of 0.3 and 0.8 bpp. When the bit-rate is 0.3 and 0.9 bpp for Cameraman, the
predicted optimal bit-depth is 5 and 6, while the actual optimal bit-depth is 4 and 5. The
PSNRs of the proposed algorithm are about 0.48 and 0.12 dB less than the optimal PSNR at
bit-rate of 0.3 and 0.9 bpp. When the bit-rate is 0.4 bpp for Foreman, the predicted optimal
bit-depth is 5 bit, while the actual optimal bit-depth is 6 bit. The PSNR of the proposed
algorithm is 0.41 dB less than the optimal PSNR at bit-rate of 0.4 bpp. The optimal bit-depth
model mainly causes these deviations, whereas the maximum deviation is 1 bit.

The proposed algorithm’s rate-distortion curves are very close to the results of [21] on
Barbara, Boats, House, Lena, and are better than [21] on Monarch, Parrots, Cameraman,
Foreman. It can be seen from Figure 9a that the optimal bit-depth is 7 at the bit-rate of
0.7 bpp or 0.8 bpp, the proposed algorithm can accurately predict the optimal bit-depth.
However, the bit-depth predicted by [21] is 6, which is one bit less than the optimal bit-
depth. In Figure 9b, the optimal bit-depth is 4 at the bit-rate of 0.2 bbp, and the optimal
bit-depth is 5 at the bit-rate of 0.6 bpp and 0.7 bbp. Compared with [21], the predicted
bit-depths of the proposed algorithm are more accurate. Some similar situations occur in
Figure 9e,f.



Entropy 2021, 23, 1354 19 of 21
Entropy 2021, 23, 1354 20 of 23 
 

Figure 10. Rate-distortion performance of the proposed algorithm for the DPCM-plus-SQ framework. (a) Monarch; (b) 
Parrots; (c) Barbara; (d) Boats; (e) Cameraman; (f) Foreman; (g) House; (h) Lena. 

Figure 9 shows the proposed algorithm’s rate-distortion curves of the eight test im-
ages encoded by the CS-based coding system with uniform SQ. The rate-distortion curve 
of the proposed algorithm is very close to the optimal rate-distortion curve. The PSNRs of 
the proposed algorithm are slightly worse than the optimal PSNRs only at a few bit-rates. 
When the bit-rate is 0.3 bpp for Monarch, the predicted optimal bit-depth is 5 bit, while 
the actual optimal bit-depth is 4 bit. The PSNR of the proposed algorithm is 0.52 dB less 
than the optimal PSNR at bit-rate of 0.3 bpp. When the bit-rate is 0.3 and 0.8 bpp for Par-
rots, the predicted optimal bit-depth is 4 and 6, while the actual optimal bit-depth is 5 bit. 
The PSNRs of the proposed algorithm are about 0.25 and 0.3 dB less than the optimal 
PSNR at bit-rate of 0.3 and 0.8 bpp. When the bit-rate is 0.3 and 0.9 bpp for Cameraman, 
the predicted optimal bit-depth is 5 and 6, while the actual optimal bit-depth is 4 and 5. 
The PSNRs of the proposed algorithm are about 0.48 and 0.12 dB less than the optimal 
PSNR at bit-rate of 0.3 and 0.9 bpp. When the bit-rate is 0.4 bpp for Foreman, the predicted 
optimal bit-depth is 5 bit, while the actual optimal bit-depth is 6 bit. The PSNR of the 
proposed algorithm is 0.41 dB less than the optimal PSNR at bit-rate of 0.4 bpp. The opti-
mal bit-depth model mainly causes these deviations, whereas the maximum deviation is 
1 bit. 

The proposed algorithm’s rate-distortion curves are very close to the results of [21] 
on Barbara, Boats, House, Lena, and are better than [21] on Monarch, Parrots, Cameraman, 
Foreman. It can be seen from Figure 9a that the optimal bit-depth is 7 at the bit-rate of 0.7 
bpp or 0.8 bpp, the proposed algorithm can accurately predict the optimal bit-depth. How-
ever, the bit-depth predicted by [21] is 6, which is one bit less than the optimal bit-depth. 
In Figure 9b, the optimal bit-depth is 4 at the bit-rate of 0.2 bbp, and the optimal bit-depth 
is 5 at the bit-rate of 0.6 bpp and 0.7 bbp. Compared with [21], the predicted bit-depths of 
the proposed algorithm are more accurate. Some similar situations occur in Figure 9e,f. 

Figure 10 shows the proposed algorithm’s rate-distortion curves of the eight test im-
ages encoded by the CS-based coding system with DPCM-plus-SQ. The rate-distortion 
curve of the proposed algorithm is very close to the optimal rate-distortion curve. The 
PSNRs of the proposed algorithm are slightly worse than the optimal PSNRs only at a few 
bit-rates. When the bit-rate is 0.5 bpp for Parrots, the predicted optimal bit-depth is 6 bit, 

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 10. Rate-distortion performance of the proposed algorithm for the DPCM-plus-SQ framework. (a) Monarch;
(b) Parrots; (c) Barbara; (d) Boats; (e) Cameraman; (f) Foreman; (g) House; (h) Lena.

Figure 10 shows the proposed algorithm’s rate-distortion curves of the eight test
images encoded by the CS-based coding system with DPCM-plus-SQ. The rate-distortion
curve of the proposed algorithm is very close to the optimal rate-distortion curve. The
PSNRs of the proposed algorithm are slightly worse than the optimal PSNRs only at a few
bit-rates. When the bit-rate is 0.5 bpp for Parrots, the predicted optimal bit-depth is 6 bit,
while the actual optimal bit-depth is 5 bit. The PSNR of the proposed algorithm is 0.25 dB
less than the optimal PSNR at bit-rate of 0.5 bpp. When the bit-rate is 0.2 and 0.8 bpp for
the image boats, the predicted optimal bit-depth is 4 and 5 bit, while the actual optimal
bit-depth is 5 and 6. The PSNRs of the proposed algorithm are about 0.5 dB and 0.4 dB
less than the optimal PSNR at bit-rates of 0.2 and 0.8 bpp. When the bit-rate is 0.7 bpp for
Cameraman, the predicted optimal bit-depth is 6 bit, while the actual optimal bit-depth is
5 bit. The PSNR of the proposed algorithm is 0.45 dB less than the optimal PSNR at bit-rate
of 0.7 bpp. When the bit-rate is 0.8 bpp for Foreman, the predicted optimal bit-depth is
6 bit, while the actual optimal bit-depth is 7 bit. The PSNR of the proposed algorithm is
about 0.29 dB less than the optimal PSNR at bit-rate of 0.8 bpp.

From Figures 9 and 10, the prediction deviation of the optimal bit-depth is at most
1 bit, which mainly occurs at the junction between the two optimal bit-depths and has
little effect on PSNR. The rate-distortion curves of the proposed algorithm are almost
the optimal curve for the DPCM-plus-SQ framework and SQ framework. Although the
proposed algorithm’s rate-distortion performance is not optimal at some bit-rates, the gap
is small.

7. Conclusions

The CS-based coding system needs to assign sampling rate and quantization bit-depth
for a given bit-rate before encoding an image. In this work, we first propose a bit-rate
model and an optimal bit-depth model for the CS-based coding system. The proposed
bit-rate model and optimal bit-depth model have simple mathematical forms, and they
have effective parameters based on training off-line data. Then, we propose a general
rate-distortion optimization method to assign sampling rate and quantization bit-depth
based on the bit-rate model and optimal bit-depth model. The proposed method only
needs to extract some features of a small number of measurements, so the computational
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cost is low. Compared with the first sampling calculation of the CS measurements (blocks’
size is 16×16), the addition and multiplication of the optimization process are about 5.94%
and 1.17% of the sampling process, respectively, and the percentage decrease as the block
size increases. The disadvantage of the proposed method is that a large amount of offline
data needs to be collected to train the model parameters, which is usually acceptable. We
test the uniform SQ framework and DPCM-plus-SQ framework, respectively. Experimental
results show that the optimized rate-distortion performance and bit-rate of the proposed
algorithm are very close to the optimal rate-distortion performance and the target bit-rate.
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