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Abstract: This paper presents an extension of the Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) method with objective criteria weights for Group Decision Making (GDM) with
Interval Numbers (INs). The proposed method is an alternative to popular and often used methods
that aggregate the decision matrices provided by the decision makers (DMs) into a single group
matrix, which is the basis for determining objective criteria weights and ranking the alternatives.
It does not use an aggregation operator, but a transformation of the decision matrices into criteria
matrices, in the case of determining objective criteria weights, and into alternative matrices, in the
case of the ranking of alternatives. This ensures that all the decision makers’ evaluations are taken
into account instead of their certain average. The numerical example shows the ease of use of the
proposed method, which can be implemented into common data analysis software such as Excel.

Keywords: interval numbers; MCGDM; TOPSIS; entropy; objective weights

1. Introduction

Recent years show that Multiple Criteria Decision Making (MCDM) methods are
increasingly used to solve real decision-making problems concerning various aspects
of human life [1–3]. The main application areas for these methods are supply chain
management [4], logistics [5], engineering [6], technology [7], and many others. The
complexity and diversity of MCDM problems have resulted in the development of a variety
of methods to solve them [2]. One group of these methods are methods based on reference
points. Historically, the first method which belongs to this group is the Hellwig method [8].
It uses a single reference point, called a “pattern”. It is an artificial solution that maximizes
benefit criteria and minimizes cost criteria. The computed synthetic indicator “proximity”
of the alternatives to the “pattern” allows for their linear ordering and the identification
of the best one. However, the most recognized and regularly used method in this group
is TOPSIS, developed by Hwang and Yoon [9]. It uses two artificial solutions called the
Positive Ideal Solution (PIS) and the Negative Ideal Solution (NIS). The PIS is equivalent
to the “pattern” in Hellwig’s method. In turn, the NIS minimizes the benefit criteria and
maximizes the cost criteria. Taking into account the separation of the alternatives from the
PIS and NIS, the Relative Closeness Coefficients (RCCs) to the PIS are calculated, which
allows for the ranking of the alternatives.

The applications of the TOPSIS method are very diverse. Apart from the main ap-
plications of MCDM mentioned above, it is used in more and more new areas, such as
flow control in a manufacturing system [10], the selection of sustainable acid rain control
options [11], the selection of the best employees using decision support systems in internal
control [12], credit risk evaluations for strategic partners [13], the investigation of aggre-
gated social influence [14], the selection of stocks before the formation of a portfolio based
on a company’s financial performance [15], the identification of the best wind turbines for
different locations [16], the ranking of the developmental performance of nations [17], the
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evaluation of the quality of institutions in the European Union countries [18], the evaluation
of technologies improving the quality of life of elderly people [19], and many others.

In real-life problems, it may be difficult to measure data accurately or present the
preferences of the DMs by real numbers; it may also happen that DMs use linguistic
variables, in which case we can use another format of data. In such situations, MCDM
methods, including TOPSIS, should be extended from real numbers to the new type of
data. In the literature, we can find a number of extensions of the TOPSIS method for
different types of data: fuzzy numbers [20], ordered fuzzy numbers [21], hesitant fuzzy
sets [22], intuitionistic fuzzy sets [23], hesitant Pythagorean fuzzy sets [24], interval-valued
fuzzy sets [25], interval neutrosophic sets [26], and others. This shows that researchers are
developing new ways of presenting data to allow DMs to formulate their preferences more
effectively. We can say that the choice of a data presentation method is an MCDM problem.

In this paper we use INs. An extension of the TOPSIS method to MCDM problems
with INs was developed by Jahanshahloo et al. [27]. A limitation of this approach is the
definitions of the PIS and NIS. These reference points are represented by real numbers
selected from the lower and upper endpoints of the INs in the decision matrix, rather
than by INs themselves. This can lead to incorrect results [28]. In the literature, various
methods for determining the PIS and NIS for INs have been proposed. In [29,30], they are
represented by real numbers instead of intervals, as in [27]. In [31,32], the PIS is defined as
an interval whose endpoints are the maximum values from the lower and upper endpoints
of the intervals, respectively, while for the NIS we take the minimum values of these
endpoints. In [33], the PIS is the average of intervals, while for the NIS, the lower endpoints
are the minimum of the lower endpoints of the intervals and the upper endpoints are the
maximum of the upper endpoints of the intervals, respectively. The main limitation of
these methods is that the determined elements of the PIS and NIS may not be elements of
the decision matrix. Dymova et al. [28] presented a method of comparing INs to determine
the minimum and maximum elements from the decision matrix. It is based on determining
the distance between the midpoints of the INs being compared. In the proposed approach,
we will use an analogous method of comparing INs, as proposed by Hu and Wang [34].

An important step in MCDM methods, including the TOPSIS method, is the de-
termination of criteria weights. These describe the importance of each criterion in the
decision-making process and have a key influence on the final result. We usually use sub-
jective or objective weights in solving MCDM problems. Subjective weights are determined
by the DM or an expert, using their knowledge, experience, skills, etc. In situations where
we cannot obtain the appropriate weights or the cost of obtaining them is too high, we can
use objective weights. These are determined by using mathematical methods based on
the decision matrix. One of the popular methods for determining objective weights is the
entropy method [9]. It assigns a higher weight to the given criterion, regarding which the
evaluations of alternatives are more diversified. Hosseinzadeh Lotfi and Fallahnejad [35]
proposed an extension of the entropy method to data in the form of INs. As a result, we
can obtain objective criteria weights, also in the form of INs.

Because of the increasing complexity of decision-making problems, they are often
analyzed by a group of DMs, which leads to the development of so-called Multiple Criteria
Group Decision Making (MCGDM). In such situations, each member of the group defines
an individual decision matrix. A common technique is to determine the aggregate (group)
matrix from the individual matrices using a selected aggregation operator. This matrix
is the basis for determining objective criteria weights and ranking the alternatives. One
of the most popular aggregation operators is the arithmetic mean. Note, however, that
this may not reflect the preferences or judgments of DMs [36]. To better explain this
limitation, we present two simple numerical examples. We consider a group of two
decision makers {DM1, DM2} who evaluate three alternatives {A1, A2, A3} with respect
to two benefit criteria {C1, C2} using the following scale: {1, 2, 3, 4, 5}. Their evaluations of
the alternatives with respect to the criteria are in the form of individual decision matrices
X1 and X2; by XART we denote the aggregation results using the arithmetic mean.
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Example 1. The ratings of the alternatives with respect to the criteria provided by the DMs are:

X1 =

DM1 C1 C2
A1
A2
A3

 1 1
2 2
4 3

 , X2 =

DM2 C1 C2
A1
A2
A3

 3 3
2 2
1 1

 .

Let us note that regardless of whether the ratings of the alternatives with respect to a criterion are in
the form “1 and 3”, “2 and 2”, or “3 and 1”, the aggregation results are the same and equal to “2”.
The aggregation results are:

XAGG =

C1 C2
A1
A2
A3

 2 2
2 2

2.5 2

 .

Based on matrix XAGG, and using the entropy method, we can calculate the criteria weights,
obtaining the following vector:

wAGG = (1, 0) .

This means that criterion C2 has no influence on the ranking of the alternatives and can be omitted.
On the other hand, using the proposed approach to the matrices X1 and X2, we obtain the following
vector of criteria weights:

w = (0.5921, 0.4079) .

Example 2. The ratings of the alternatives with respect to the criteria provided by the DMs are:

X1 =

DM1 C1 C2
A1
A2
A3

 5 1
3 2
1 3

 , X2 =

DM2 C1 C2
A1
A2
A3

 1 3
3 2
5 1

 .

The aggregation results are:

XAGG =

C1 C2
A1
A2
A3

 3 2
3 2
3 2

 .

Matrix XAGG shows that all three alternatives{A1, A2, A3} are equivalent (i.e., they have the same
aggregate rating) and we cannot calculate the vector of criteria weights using the entropy method.
However, if we use the proposed approach, we obtain the following vector of criteria weights:

w = (0.6497, 0.3503) .

From Examples 1 and 2, we can conclude that such an averaged result does not reflect
the discrepancies between the individual decisions (the preferences of the DMs) and the
fact that using such averaged information may lead to an incorrect final decision.The
aim of this paper is to present a new approach for GDM using the TOPSIS method and
objective criteria weights with INs. The first main contribution of this paper is a method
for determining the objective criteria weights for GDM without aggregating individual
decision matrices. The method involves transforming the individual decision matrices
into criteria matrices and using the interval entropy and the interval TOPSIS methods to
determine the objective criteria weights. In this method, unlike in the method proposed by
Hosseinzadeh Lotfi and Fallahnejad [35], as the final result, we receive the weights in the
form of real numbers. The second main contribution of this paper is the TOPSIS method for
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GDM, also without the aggregation of individual decision matrices. This method involves
transforming the decision matrices into matrices of alternatives and then using a new
interval TOPSIS method for the ranking of alternatives.

The remainder of the paper consists of the following sections. Section 2 presents basic
information about INs and a description of the classical TOPSIS method and the classical
entropy method. The main section of the paper, i.e., Section 3, presents the algorithm of the
proposed method in detail. Next, the proposed method is used in a numerical example and
compared with other, similar approaches which are based on the aggregation of individual
matrices. The paper ends with the conclusions.

2. Preliminaries

In the following, we present some basic information about INs, the classical TOPSIS
method, and the entropy method of determining criteria weights.

2.1. Interval Numbers

Definition 1. As proposed by [37]: The closed IN, denoted by [a, a], is the set of real numbers
given by:

[a, a] = {x ∈ R : a ≤ x ≤ a} . (1)

Throughout this paper, INs will be used in the interval TOPSIS and interval entropy
methods, so we assume that they are positive INs, i.e., a > 0.

Definition 2. As proposed by [37]: Let [a, a] and
[
b, b
]

be two positive INs, and λ > 0 be a real
number. Then:

[a, a] =
[
b, b
]

i f a = b and a = b,

[a, a] +
[
b, b
]
=
[

a + b, a + b
]
,

[a, a]−
[
b, b
]
=
[

a− b, a− b
]
,

[a, a] ·
[
b, b
]
=
[

a · b, a · b
]
,

[a, a]/
[
b, b
]
=
[

a/b, a/b
]
,

λ·[a, a] = [λ · a, λ · a] .

The TOPSIS method requires the determination of the minimum and maximum
elements. To compare INs, we apply the method developed by Hu and Wang [34]. It is
based on a different description of INs than Equation (1) used in Definition 1.

Definition 3. As proposed by [34]: The IN [a, a] is represented in the form:

〈m([a, a]); w([a, a])〉 (2)

where m([a, a]) and w([a, a]) are its mid-point and half-width, respectively, determined as follows:

m([a, a]) =
a + a

2
, (3)

and:
w([a, a]) =

a− a
2

. (4)

Using the representation from Equation (2), Hu and Wang defined the order relation
“≺=” for INs as follows.
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Definition 4. As proposed by [34]: Let [a, a] and
[
b, b
]

be two INs. Then:

[a, a] ≺=

[
b, b
]

i f f


m([a, a]) < m

([
b, b
])

, i f m([a, a]) 6= m
([

b, b
])

w([a, a]) ≥ w
([

b, b
])

, i f m([a, a]) = m
([

b, b
]) . (5)

and:
[a, a] ≺

[
b, b
]

i f f [a, a] ≺=

[
b, b
]

and [a, a] 6=
[
b, b
]
. (6)

2.2. The Classical TOPSIS Method

Suppose an MCDM problem is given. The solution of the problem involves the linear
ordering of the set of possible alternatives {A1, A2, . . . , Am} and the indication of the best
one. The alternatives under consideration are evaluated with respect to a set of criteria
{C1, C2, . . . , Cn} that determine the choice of a solution. An MCDM problem is represented
by a decision matrix X, of the form:

X =


x11 x12
x21 x22

· · · x1n
· · · x2n

...
...

xm1 xm2

. . .
...

· · · xmn

 (7)

where xij for i = 1, 2, . . . , m and j = 1, 2, . . . , n represents the evaluation of the ith alternative
with respect to the jth criterion. In addition, we determine the vector criteria weights
w = (w1, w2, . . . , wn). The classical TOPSIS method developed by Hwang and Yoon
consists of the following steps [9]:

Step 1. The normalization of the decision matrix X and calculation of the matrix Y, of
the form:

Y =


y11 y12
y21 y22

· · · y1n
· · · y2n

...
...

ym1 ym2

. . .
...

· · · ymn

 (8)

using, for j = 1, .., n, the following formula:

yij =
xij√

∑m
i=1 x2

ij

. (9)

Step 2. The calculation of the weighted normalized decision matrix V, of the form:

V =


v11 v12
v21 v22

· · · v1n
· · · v2n

...
...

vm1 vm2

. . .
...

· · · vmn

 (10)

where vij = wj·yij for i = 1, 2, . . . , m and j = 1, 2, . . . , n.
Step 3. Determination of the PIS (A+), of the form:

A+ =
(
v+1 , v+2 , . . . , v+n

)
=

{(
max

i
vij | j ∈ B

)
,
(

min
i

vij | j ∈ C
)}

, (11)
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and of the NIS (A−), of the form:

A− =
(
v−1 , v−2 , . . . , v−n

)
=

{(
min

i
vij | j ∈ B

)
,
(

max
i

vij | j ∈ C
)}

, (12)

where B and C are associated with benefit and cost criteria, respectively.
Step 4. The calculation of the distance of each Ai (i = 1, . . . , m) from the PIS:

d+i =

√
∑n

j=1

(
vij − v+j

)2
, (13)

and from the NIS:

d−i =

√
∑n

j=1

(
vij − v−j

)2
. (14)

Step 5. The calculation of the coefficients RCCi (i = 1, 2, . . . , m) of relative closeness to the
PIS for each alternative Ai (i = 1, . . . , m), using the following formula:

RCCi =
d−i

d+i + d−i
. (15)

Step 6. The ranking of alternatives in descending order, using RCCi, and the determination
of the best one (the one with the highest value of RCCi).

2.3. The Entropy Method

The starting point for determining objective criteria weights by the entropy method is
the decision matrix, Equation (7) (see Section 2.2). It consists of the following steps [9]:

Step 1. The normalization of the decision matrix X and the calculation of the matrix Y, of
the form:

Y =


y11 y12
y21 y22

· · · y1n
· · · y2n

...
...

ym1 ym2

. . .
...

· · · ymn

 (16)

using the following formula for j = 1, .., n:

yij =
xij

∑m
i=1 xij

. (17)

Step 2. The calculation of the vector of entropy e = (e1, e2, . . . , en), using the following
formula for j = 1, . . . , n:

ej = −
1

ln m ∑m
i=1 yij ln yij. (18)

Moreover, when yij = 0 for some i, the value of yij ln yij is taken as 0, which is consistent
with lim

x→0+
x ln x = 0.

Step 3. The calculation of the vector of diversification d = (d1, d2, . . . , dn), using the
following formula for j = 1, . . . , n:

dj = 1− ej. (19)

Step 4. The calculation of the vector of objective criteria weights w = (w1, w2, . . . , wn), where:

wj =
dj

∑n
j=1 dj

. (20)
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3. The Proposed Approach

The proposed extension of the TOPSIS method with objective criteria weights based
on interval data for GDM consists of three major stages:

• The preparation of the data;
• The calculation of the objective criteria weights using the interval entropy method and

the interval TOPSIS method, without the aggregation of individual decision matrices;
• The linear ordering of alternatives using the extended TOPSIS method, based on

interval data, without the aggregation of individual decision matrices.

A flow chart and a graphical scheme of the proposed method are shown in
Figures 1 and 2, respectively.

Stage 1: The preparation of the data. As in Section 2.2., suppose an MCDM problem for
GDM is given, which consists of a set of possible alternatives {A1, A2, . . . , Am} and a set
of criteria {C1, C2, . . . , Cn}. In this case, the evaluation of alternatives, with respect to the
criteria, is performed by a group of DMs or experts {DM1, DM2, . . . , DMK}. In the process
of GDM, each DMk (k = 1, 2, . . . , K) constructs a matrix, called the individual decision
matrix, of the form:

Xk =

DMk C1 C2 · · · Cn

A1

A2
...

Am


xk

11 xk
12

xk
21 xk

22

· · · xk
1n

· · · xk
2n

...
...

xk
m1 xk

m2

. . .
...

· · · xk
mn


. (21)

In the proposed approach, each element xk
ij for i = 1, 2, . . . , m and j = 1, 2, . . . , n of the

matrix Xk is in the form of an IN, i.e., xk
ij =

[
xk

ij, xk
ij

]
, and represents the evaluation of the

kth DM of the ith alternative with respect to the jth criterion.

Stage 2: The calculation of the objective criteria weights for GDM, without the aggregation
of individual decision matrices. The proposed method of calculation of the objective criteria
weights based on interval entropy and interval TOPSIS consists of the following steps.

Step 1. The normalization, for each decision maker DMk (k = 1, 2, . . . , K), of their individ-
ual decision matrix, as given by Equation (21), and obtaining the matrix Yk, of the form:

Yk =

DMk C1 C2 · · · Cn

A1

A2
...

Am


yk

11 yk
12

yk
21 yk

22

· · · yk
1n

· · · yk
2n

...
...

yk
m1 yk

m2

. . .
...

· · · yk
mn


(22)

using the following formula for j = 1, .., n [35]:

yk
ij =


[

xk
ij

∑m
i=1 xk

ij
,

xk
ij

∑m
i=1 xk

ij

]
if j ∈ B[

1/xk
ij

∑m
i=1 1/xk

ij
,

1/xk
ij

∑m
i=1 1/xk

ij

]
if j ∈ C

. (23)
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Step 2. The construction, for each criterion Cj (j = 1, 2, . . . , n), of the matrix V j, of the form:

V j =

Cj DM1 DM2 · · · DMK

A1

A2
...

Am


y1

1j y2
1j

y1
2j y2

2j

· · · yK
1j

· · · yK
2j

...
...

y1
mj y2

mj

. . .
...

· · · yK
mj


. (24)

Step 3. The calculation, for each criterion Cj (j = 1, 2, . . . , n), of the entropy vector ej, of
the form:

ej =
(

e1
j , e2

j , . . . , eK
j

)
(25)

based on the matrix V j, where ek
j =

[
ek

j , ek
j

]
for k = 1, 2, . . . , K and:

ek
j = min

{
− 1

ln m ∑m
i=1 yk

ij
ln yk

ij
,− 1

ln m ∑m
i=1 yk

ij ln yk
ij

}
, (26)

and:

ek
j = max

{
− 1

ln m ∑m
i=1 yk

ij
ln yk

ij
,− 1

ln m ∑m
i=1 yk

ij ln yk
ij

}
, (27)

and yk
ij

ln yk
ij

or yk
ij ln yk

ij is defined to be 0 if yk
ij
= 0 or yk

ij = 0 [35], respectively.

Step 4. The calculation, for each criterion Cj (j = 1, 2, . . . , n), of the diversification vector
dj, of the form:

dj =
(

d1
j , d2

j , . . . , dK
j

)
(28)

where dk
j = 1− ek

j =
[
1− ek

j , 1− ek
j

]
for k = 1, 2, . . . , K, and the construction of diversifica-

tion matrix D, of the form:

D =

DM1 DM2 · · · DMK

C1

C2
...

Cn


d1

1 d2
1

d1
2 d2

2

· · · dK
1

· · · dK
2

...
...

d1
n d2

n

. . .
...

· · · dK
n


. (29)

Step 5. The determination of the Most Important Criterion (MIC):

C+ =
(
c+1 , c+2 , . . . , c+K

)
(30)

where c+k = max
j

dk
j for k = 1, 2, . . . , K, and of the Least Important Criterion (LIC):

C− =
(
c−1 , c−2 , . . . , c−K

)
(31)

where c−k = [0, 0] for k = 1, 2, . . . , K, based on the matrix D.
Step 6. The calculation of the distance of each diversification vector dj, representing the
weight of criterion Cj (j = 1, 2, . . . , n), from the MIC:

dC+
j =

√
∑K

k=1

[(
dk

j − c+k
)2

+
(

d
k
j − c+k

)2
]

, (32)
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and from the LIC:

dC−
j =

√
∑K

k=1

[(
dk

j − c−k
)2

+
(

d
k
j − c−k

)2
]

. (33)

Step 7. The calculation of the coefficients RCCC
j (j = 1, 2, . . . , n) of relative closeness to the

MIC for each diversification vector dj, using the following formula:

RCCC
j =

dC−
j

dC+

j + dC−
j

. (34)

Step 8. The calculation of the vector of objective criteria weights:

w = (w1, w2, . . . , wn) (35)

where:

wj =
RCCC

j

∑n
j=1 RCCC

j
(36)

for j = 1, 2, . . . , n.

Stage 3: The extended TOPSIS method for GDM without the aggregation of individual
decision matrices.

The developed extended TOPSIS for GDM without the aggregation of individual
decision matrices consists of the following steps.

Step 1. The normalization, for each decision maker DMk (k = 1, 2, . . . , K), of their individ-
ual decision matrix, as given by Equation (21), and obtaining the matrix Yk, of the form

Yk =

DMk C1 C2 · · · Cn
A1

A2
...

Am


yk

11 yk
12

yk
21 yk

22

· · · yk
1n

· · · yk
2n

...
...

yk
m1 yk

m2

. . .
...

· · · yk
mn

 (37)

using the following formula for j = 1, . . . , n [38]:

yk
ij =


[

xk
ij

∑m
i=1 xk

ij
,

xk
ij

∑m
i=1 xk

ij

]
if j ∈ B[

1/xk
ij

∑m
i=1 1/xk

ij
,

1/xk
ij

∑m
i=1 1/xk

ij

]
if j ∈ C

. (38)

Remark 1. Note that the normalization method, Equation (38), used above does not provide the
property that the normalized elements yk

ij belong to the interval [0, 1]. If we require this property to

be satisfied, the elements of the matrix Yk can be recalculated using the following formula [38]:

zk
ij =


yk

ij√
∑m

i=1

[(
yk

ij

)2
+
(

yk
ij

)2
] ,

yk
ij√

∑m
i=1

[(
yk

ij

)2
+
(

yk
ij

)2
]
. (39)
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As the final result, we obtain normalized decision matrices Zk (k = 1, 2, . . . , K):

Zk =

DMk C1 C2 · · · Cn
A1

A2
...

Am


zk

11 zk
12

zk
21 zk

22

· · · zk
1n

· · · zk
2n

...
...

zk
m1 zk

m2

. . .
...

· · · zk
mn

 (40)

Step 2. The calculation of the weighted normalized individual matrices Vk (k = 1, 2, . . . , K):

Vk =

DMk C1 C2 · · · Cn
A1

A2
...

Am


vk

11 vk
12

vk
21 vk

22

· · · vk
1n

· · · vk
2n

...
...

vk
m1 vk

m2

. . .
...

· · · vk
mn

 (41)

where:
vk

ij = wjzk
ij =

[
wjzk

ij, wjzk
ij

]
(42)

and wj (j = 1, 2, . . . , n) are the objective criteria weights obtained in Stage 2.
Step 3. The construction, for each alternative Ai (i = 1, 2, . . . , m), of the matrix Ai:

Ai =

Ai C1 C2 · · · Cn
DM1

DM2
...

DMK


v1

i1 v1
i2

v2
i1 v2

i2

· · · v1
in

· · · v2
in

...
...

vK
i1 vK

i2

. . .
...

· · · vK
in

 . (43)

Step 4. The determination of the PIS (A+):

A+ =

C1 C2 · · · Cn

DM1

DM2
...

DMK


v1+

1 v1+
2

v2+
1 v2+

2

· · · v1+
k

· · · v2+
n

...
...

vK+
1 vK+

2

. . .
...

· · · vK+
n

 (44)

where vk+
j = max

i
vk

ij for j = 1, 2, . . . , n and k = 1, 2, . . . , K and of NIS (A−):

A− =

C1 C2 · · · Cn

DM1

DM2
...

DMK


v1−

1 v1−
2

v2−
1 v2−

2

· · · v1−
k

· · · v2−
n

...
...

vK−
1 vK−

2

. . .
...

· · · vK−
n

 (45)

where vk−
j = min

i
vk

ij for j = 1, 2, . . . , n and k = 1, 2, . . . , K.
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Step 5. The calculation of the distance of each matrix Ai, representing the alternative Ai
(i = 1, . . . , m), from the PIS:

dA+
i =

√
∑K

k=1 ∑n
j=1

[(
vk

ij − vk+
j

)2
+
(

vk
ij − vk+

j

)2
]

, (46)

and from the NIS:

dA−
i =

√
∑K

k=1 ∑n
j=1

[(
vk

ij − vk−
j

)2
+
(

vk
ij − vk−

j

)2
]

. (47)

Step 6. The calculation of the coefficients RCCA
i (i = 1, 2, . . . , m) of relative closeness to

the PIS for each alternative Ai (i = 1, . . . , m), using the following formula:

RCCA
i =

dA−
i

dA−
i + dA+

i

. (48)

Step 7. The ranking of alternatives in descending order, using RCCA
i , and the determination

of the best one.

4. A Numerical Example and Results

The approach proposed in Section 3 will now be illustrated with a numerical example,
taken from [38], related to the evaluation of the authorities of a university in China. The
set of alternatives {A1, A2, A3} consists of the president and two vice presidents, who are
evaluated by teams of teachers, DM1, researchers, DM2, and undergraduates, DM3. The
DMs evaluate the presidents with respect to leadership, C1, performance, C2, and style
of work, C3, using a point scale from 0 to 100. The team ratings are represented by INs,
where the lower end is the minimum and the upper end is the maximum ratings among
the group members. The individual decision matrices are presented in Table 1.

Table 1. Individual decision matrices.

C1 C2 C3

DM1

A1 [60, 90] [72, 86] [85, 92]

A2 [77, 81] [69, 93] [83, 88]

A3 [80, 96] [59, 87] [68, 85]

DM2

A1 [77, 83] [68, 86] [82, 90]

A2 [93, 98] [76, 86] [65, 87]

A3 [79, 85] [72, 92] [81, 97]

DM3

A1 [85, 86] [76, 86] [80, 97]

A2 [79, 87] [75, 89] [81, 93]

A3 [62, 82] [84, 89] [78, 82]

The first main step of the proposed approach is to determine the objective criteria
weights, as described in Stage 2 of Section 3. The individual decision matrices are normal-
ized (see Table 2) and then transformed into matrices of criteria (see Table 3). Next, for each
criterion matrix, the entropy and diversification vectors are determined (see Tables 4 and 5).
Using the diversification vectors, we construct a diversification matrix, which is the basis
for calculating the objective criteria weights using the interval TOPSIS method. Table 6
presents reference points—in this case, the MIC and LIC. After calculating the distance
of each row of the diversification matrix from the MIC and LIC, the RCCs are calculated
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(see Table 7). These coefficients, after normalization, are the objective criteria weights (see
Table 7 and Figure 3). In our example, we obtain the following vector:

w = (0.3049, 0.4372, 0.2579).

Table 2. Normalized individual decision matrices for the calculation of criteria weights.

C1 C2 C3

DM1

A1 [0.2247, 0.3371] [0.2707, 0.3233] [0.3208, 0.3472]

A2 [0.2884, 0.3034] [0.2594, 0.3496] [0.3132, 0.3321]

A3 [0.2996, 0.3596] [0.2218, 0.3271] [0.2566, 0.3208]

DM2

A1 [0.2895, 0.3120] [0.2576, 0.3258] [0.2993, 0.3285]

A2 [0.3496, 0.3684] [0.2879, 0.3258] [0.2372, 0.3175]

A3 [0.2970, 0.3195] [0.2727, 0.3485] [0.2956, 0.3540]

DM3

A1 [0.3333, 0.3373] [0.2879, 0.3258] [0.2941, 0.3566]

A2 [0.3098, 0.3412] [0.2841, 0.3371] [0.2978, 0.3419]

A3 [0.2431, 0.3216] [0.3182, 0.3371] [0.2868, 0.3015]

Table 3. Matrices for each criterion.

DM1 DM2 DM3

C1

A1 [0.2247, 0.3371] [0.2895, 0.3120] [0.3333, 0.3373]

A2 [0.2884, 0.3034] [0.3496, 0.3684] [0.3098, 0.3412]

A3 [0.2996, 0.3596] [0.2970, 0.3195] [0.2431, 0.3216]

C2

A1 [0.2707, 0.3233] [0.2576, 0.3258] [0.2879, 0.3258]

A2 [0.2594, 0.3496] [0.2879, 0.3258] [0.2841, 0.3371]

A3 [0.2218, 0.3271] [0.2727, 0.3485] [0.3182, 0.3371]

C3

A1 [0.3208, 0.3472] [0.2993, 0.3285] [0.2941, 0.3566]

A2 [0.3132, 0.3321] [0.2372, 0.3175] [0.2978, 0.3419]

A3 [0.2566, 0.3208] [0.2956, 0.3540] [0.2868, 0.3015]

Table 4. Vectors of entropy.

e1 ([0.9605, 0.9978], [0.9893, 0.9975], [0.9767, 0.9997])

e2 ([0.9446, 0.9995], [0.9669, 0.9995], [0.9834, 0.9999])

e3 ([0.9807, 0.9995], [0.9672, 0.9990], [0.9820, 0.9977])

Table 5. Vectors of diversification.

d1 ([0.0022, 0.0395], [0.0025, 0.0107], [0.0003, 0.0233])

d2 ([0.0005, 0.0554], [0.0005, 0.0331], [0.0001, 0.0166])

d3 ([0.0005, 0.0193], [0.0010, 0.0328], [0.0023, 0.0180])

Table 6. MIC and LIC.

C+ ([0.0005, 0.0554], [0.0010, 0.0328], [0.0003, 0.0233])

C− ([0, 0], [0, 0], [0, 0])
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Table 7. Objective criteria weights.

dC+
j dC−

j RRCC
j wj

C1 0.0272 0.0472 0.6340 0.3049

C2 0.0067 0.0666 0.9091 0.4372

C3 0.0365 0.0422 0.5362 0.2579
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The second main step of the proposed approach is to use an extension of the TOPSIS
method for GDM without the aggregation of individual matrices, as described in Stage 3
of Section 3. The individual decision matrices (see Table 1) are normalized (see Table 8)
using Equation (38) and then Equation (39). Using objective criteria weights (see Table 7),
we calculate the weighted normalized decision matrices (see Table 9). These matrices are
the basis for constructing the matrix for each alternative (see Table 10) of the form (43).
Now, we apply the extended TOPSIS method for the matrices of alternatives for ranking
the alternatives. Table 11 presents reference points—in this case, the PIS and NIS. Finally,
the distances of the alternatives from the PIS and NIS and the RCCs are calculated (see
Table 12). Based on these coefficients, the ranking of the alternatives is as follows:

A3 ≺ A1 ≺ A2

where “ ≺ ” means “inferior to” (see Table 12 and Figure 4). It means that the highest rating
is given to the vice president, A2. The symbol J in Table 12 represents the normalized RCCs.

Table 8. Normalized individual decision matrices for the TOPSIS method.

C1 C2 C3

DM1

A1 [0.1572, 0.2902] [0.1876, 0.2980] [0.2260, 0.2747]

A2 [0.2018, 0.2611] [0.1798, 0.3223] [0.2207, 0.2628]

A3 [0.2096, 0.3095] [0.1537, 0.3015] [0.1808, 0.2538]

DM2

A1 [0.2045, 0.2354] [0.1803, 0.2787] [0.2098, 0.2768]

A2 [0.2470, 0.2780] [0.2015, 0.2787] [0.1663, 0.2676]

A3 [0.2098, 0.2411] [0.1909, 0.2982] [0.2073, 0.2983]

DM3

A1 [0.2348, 0.2681] [0.2029, 0.2579] [0.2071, 0.2858]

A2 [0.2183, 0.2712] [0.2002, 0.2669] [0.2097, 0.2740]

A3 [0.1713, 0.2556] [0.2242, 0.2669] [0.2019, 0.2416]
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Table 9. Weighted normalized individual decision matrices for the TOPSIS method.

C1 C2 C3

DM1

A1 [0.0479, 0.0885] [0.0820, 0.1303] [0.0583, 0.0708]

A2 [0.0615, 0.0796] [0.0786, 0.1409] [0.0569, 0.0678]

A3 [0.0639, 0.0944] [0.0672, 0.1318] [0.0466, 0.0655]

DM2

A1 [0.0623, 0.0718] [0.0788, 0.1219] [0.0541, 0.0714]

A2 [0.0753, 0.0848] [0.0881, 0.1219] [0.0429, 0.0690]

A3 [0.0640, 0.0735] [0.0835, 0.1304] [0.0535, 0.0769]

DM3

A1 [0.0716, 0.0817] [0.0887, 0.1128] [0.0534, 0.0737]

A2 [0.0666, 0.0827] [0.0875, 0.1167] [0.0541, 0.0707]

A3 [0.0522, 0.0779] [0.0980, 0.1167] [0.0521, 0.0623]

Table 10. Matrices of alternatives.

C1 C2 C3

A1

DM1 [0.0479, 0.0885] [0.0820, 0.1303] [0.0583, 0.0708]

DM2 [0.0623, 0.0718] [0.0788, 0.1219] [0.0541, 0.0714]

DM3 [0.0716, 0.0817] [0.0887, 0.1128] [0.0534, 0.0737]

A2

DM1 [0.0615, 0.0796] [0.0786, 0.1409] [0.0569, 0.0678]

DM2 [0.0753, 0.0848] [0.0881, 0.1219] [0.0429, 0.0690]

DM3 [0.0666, 0.0827] [0.0875, 0.1167] [0.0541, 0.0707]

A3

DM1 [0.0639, 0.0944] [0.0672, 0.1318] [0.0466, 0.0655]

DM2 [0.0640, 0.0735] [0.0835, 0.1304] [0.0535, 0.0769]

DM3 [0.0522, 0.0779] [0.0980, 0.1167] [0.0521, 0.0623]

Table 11. PIS and NIS.

C1 C2 C3

A+

DM1 [0.0639, 0.0944] [0.0786, 0.1409] [0.0583, 0.0708]

DM2 [0.0753, 0.0848] [0.0835, 0.1304] [0.0535, 0.0769]

DM3 [0.0716, 0.0817] [0.0980, 0.1167] [0.0534, 0.0737]

A−
DM1 [0.0479, 0.0885] [0.0672, 0.1318] [0.0466, 0.0655]

DM2 [0.0623, 0.0718] [0.0788, 0.1219] [0.0429, 0.0690]

DM3 [0.0522, 0.0779] [0.0887, 0.1128] [0.0521, 0.0623]

Table 12. The ranking of the alternatives—R.

dA+
j dA−

j RCCA
j R J

A1 0.0313 0.0322 0.5076 2 0.3322

A2 0.0255 0.0364 0.5884 1 0.3851

A3 0.0340 0.0258 0.4318 3 0.2826



Entropy 2021, 23, 1460 17 of 20

Entropy 2021, 23, x FOR PEER REVIEW 16 of 19 
 

 

𝐷𝑀ଶ [0.0753, 0.0848] [0.0835, 0.1304] [0.0535, 0.0769] 𝐷𝑀ଷ [0.0716, 0.0817] [0.0980, 0.1167] [0.0534, 0.0737] 𝐴ି 
𝐷𝑀ଵ [0.0479, 0.0885] [0.0672, 0.1318] [0.0466, 0.0655] 𝐷𝑀ଶ [0.0623, 0.0718] [0.0788, 0.1219] [0.0429, 0.0690] 𝐷𝑀ଷ [0.0522, 0.0779] [0.0887, 0.1128] [0.0521, 0.0623] 

Table 12. The ranking of the alternatives—𝑅. 

 𝒅𝒋𝑨ା 𝒅𝒋𝑨ି 𝑹𝑪𝑪𝒋𝑨 𝑹 𝑱 𝐴ଵ 0.0313 0.0322 0.5076 2 0.3322 𝐴ଶ 0.0255 0.0364 0.5884 1 0.3851 𝐴ଷ 0.0340 0.0258 0.4318 3 0.2826 

 

Figure 4. The ranking of the alternatives. 

5. Comparison of the Proposed Method with Other, Similar Approaches  
In the following, the approach proposed in Section 3 will be compared with other, 

similar approaches. In practice, the most common methods for GDM use a certain oper-
ator to aggregate the individual decision matrices, given by Equation (21), into a group 
matrix 𝑋 of the form Equation (7), which is the starting point for the ranking of alterna-
tives. To compare the results obtained by the proposed method (𝑃𝑀), we use the fol-
lowing operators: 
• 𝐴𝑀—arithmetic mean, defined by: 𝑥௜௝ = ଵ௄ ∑ 𝑥௜௝௞௄௞ୀଵ = ቂଵ௄ ∑ 𝑥௜௝௞ ,௄௞ୀଵ ଵ௄ ∑ 𝑥௜௝௞௄௞ୀଵ ቃ; 
• 𝐺𝑀—geometric mean, defined by: 

𝑥௜௝ = ൫∏ 𝑥௜௝௞௄௞ୀଵ ൯భ಼ = ቆ൫∏ 𝑥௜௝௞௄௞ୀଵ ൯భ಼ , ൫∏ 𝑥௜௝௞௄௞ୀଵ ൯భ಼ ቇ; 

• 𝑊𝑀—weighted mean, defined by: 

𝑥௜௝ = ෍ 𝜆௞𝑥௜௝௞௄
௞ୀଵ = ൭෍ 𝜆௞𝑥௜௝௞௄

௞ୀଵ , ෍ 𝜆௞𝑥௜௝௞௄
௞ୀଵ ൱ 

where 𝜆௞ are weights that determine the importance of the DMs, such that 𝜆௞ ∈ [0,1] 
and ∑ 𝜆௞௄௞ୀଵ = 1. 

In the 𝑊𝑀 method, the vector of DM weights 𝜆 = (0.2661,0.3573,0.3766) is de-
termined by the method proposed by [38]. Next, based on the matrix 𝑋, we determine 
the objective criteria weights using the method proposed by Lotfi and Fallahnejad [35]. In 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

A1 A2 A3

Figure 4. The ranking of the alternatives.

5. Comparison of the Proposed Method with Other, Similar Approaches

In the following, the approach proposed in Section 3 will be compared with other, sim-
ilar approaches. In practice, the most common methods for GDM use a certain operator to
aggregate the individual decision matrices, given by Equation (21), into a group matrix X of
the form Equation (7), which is the starting point for the ranking of alternatives. To compare
the results obtained by the proposed method (PM), we use the following operators:

• AM—arithmetic mean, defined by:

xij =
1
K ∑K

k=1 xk
ij =

[
1
K ∑K

k=1 xk
ij,

1
K ∑K

k=1 xk
ij

]
;

• GM—geometric mean, defined by:

xij =
(
∏K

k=1 xk
ij

) 1
K
=

((
∏K

k=1 xk
ij

) 1
K ,
(
∏K

k=1 xk
ij

) 1
K
)

;

• WM—weighted mean, defined by:

xij =
K

∑
k=1

λkxk
ij =

(
K

∑
k=1

λkxk
ij,

K

∑
k=1

λkxk
ij

)

where λk are weights that determine the importance of the DMs, such that λk ∈ [0, 1]
and ∑K

k=1 λk = 1.

In the WM method, the vector of DM weights λ = (0.2661, 0.3573, 0.3766) is deter-
mined by the method proposed by [38]. Next, based on the matrix X, we determine the
objective criteria weights using the method proposed by Lotfi and Fallahnejad [35]. In
this case, the criteria weights are in the form of INs, so we do not compare them with
the criteria weights obtained by the proposed method described in Stage 2 of Section 3
and presented in Table 7. To obtain the ranking of the alternatives, we use the normaliza-
tion method proposed by Jahanshahloo et al. [27]; the PIS and NIS are determined using
Equations (5) and (6), whereas the distances of the alternatives from the PIS and NIS are
calculated using Equations (46) and (47), where K = 1. Because the analyzed methods
are significantly different, to compare the final results we use the indicator J instead of
the RRCs. Table 13 and Figure 5 present the results obtained. We can notice that all the
analyzed methods indicated alternative A2 as the best one, and the obtained values of the
indicator J are similar. On the other hand, methods that use an aggregation operator give a
different ranking than the proposed method, of the form:

A1 ≺ A3 ≺ A2
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where alternatives A1 and A3 are swapped.

Table 13. Comparison of results.

PM AM GM WM

A1 0.332244 0.291138 0.297903 0.297472

A2 0.385121 0.385427 0.384682 0.385048

A3 0.282635 0.323435 0.317416 0.317480
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6. Conclusions

This paper presents a new extension of the TOPSIS method for GDM, using INs. It
is an alternative to methods based on the aggregation of individual matrices. It uses the
transformation of decision matrices into criteria matrices to determine objective criteria
weights, while it uses alternatives matrices to create rankings of alternatives. The numerical
example shows that the results obtained by the proposed method differ from the results
obtained by the methods based on the aggregation of individual matrices using the arith-
metic mean, geometric mean, and weighted mean (with weights reflecting the importance
assigned to the DMs).

However, it is worth noting that the proposed method has some limitations, as it uses
data in the form of INs. This implies the necessity of extending the proposed method to
other types of imprecise data, which will be the subject of further research. Furthermore,
the proposed method should be extended by taking into account the subjective criteria
weights and the subjective and objective weights of the DMs, to ensure that all key elements
in the decision-making process are taken into account.
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Abbreviations

TOPSIS Technique for Order Preference by Similarity to Ideal Solution
GDM Group Decision Making
IN Interval Number
DM Decision Maker
MCDM Multiple Criteria Decision Making
PIS Positive Ideal Solution
NIS Negative Ideal Solution
RCC Relative Closeness Coefficient
MCGDM Multiple Criteria Group Decision Making
MIC Most Important Criterion
LIC Least Important Criterion
PM Proposed Method
AM Arithmetic Mean
GM Geometric Mean
WM Weighted Mean
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