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Abstract: “No free lunch” results state the impossibility of obtaining meaningful bounds on the error
of a learning algorithm without prior assumptions and modelling, which is more or less realistic for
a given problem. Some models are “expensive” (strong assumptions, such as sub-Gaussian tails),
others are “cheap” (simply finite variance). As it is well known, the more you pay, the more you
get: in other words, the most expensive models yield the more interesting bounds. Recent advances
in robust statistics have investigated procedures to obtain tight bounds while keeping the cost of
assumptions minimal. The present paper explores and exhibits what the limits are for obtaining tight
probably approximately correct (PAC)-Bayes bounds in a robust setting for cheap models.

Keywords: statistical learning theory; PAC-Bayes theory; no free lunch theorems

1. Introduction

For the sake of clarity, we focus on the supervised learning problem. We collect
a sequence of input–output pairs (Xi, Yi)

N
i=1 ∈ (X × Y)N , which we assume to be N

independent realisations of a random variable drawn from a distribution P on X ×Y . The
overarching goal in statistics and machine learning is to select a hypothesis f over a space
F which, given a new input x in X , delivers an output f (x) in Y , hopefully close (in a
certain sense) to the unknown true output y. The quality of f is assessed through a loss
function ` which characterises the discrepancy between the true output y and its prediction
f (x), and we define a global notion of risk as

R( f ) = E(X,Y)∼P[`( f (X), Y)].

The aim of machine learning is to find a good (in the sense of a low risk) hypothesis
f ∈ F . In the generalised Bayes setting, the learning algorithm does not output a single
hypothesis but rather a distribution ρ over the hypotheses space F and the associated
bounds are called PAC-Bayesian bounds (see [1] for a survey of the topic).

As many probabilistic bounds stated in the statistics and machine learning literature,
PAC-Bayesian bounds (where PAC stands for probably approximately correct—see [2])
commonly requires strong assumptions to hold, such as sub-Gaussian behaviour of some
random variables. These assumptions can be misleading when dealing with true data
as they do not take into account some practical situations, such as outlier contamination.
Many efforts have been made recently to keep tight generalisation bounds valid with a
few set of assumptions about the underlying distribution: this is known as robust learning
[see [3] for a survey of the topic].

In this work we explore the possibility to establish a connection between recent tech-
niques introduced by robust machine learning and PAC-Bayesian generalisation bounds.
The result of our work is negative as we were not able to prove a PAC-Bayes bound in a

Entropy 2021, 23, 1529. https://doi.org/10.3390/e23111529 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-1237-7430
https://orcid.org/0000-0002-6130-090X
https://doi.org/10.3390/e23111529
https://doi.org/10.3390/e23111529
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23111529
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23111529?type=check_update&version=2


Entropy 2021, 23, 1529 2 of 13

robust statistics setting. However, we found it useful to write down our findings in order
to give the interested reader a review of material involved in both robust statistics and
PAC-Bayes theory and present the fundamental issues we faced as we believe it to be useful
to the community.

Organisation of the paper. We introduce an elementary example and set a basic
notation to illustrate the problem of robustness in Section 2, before providing an overview
of recent advances in robust statistics in Section 3, and briefly introduce the field of PAC-
Bayes learning in Section 4. We then propose in Section 5 a detailed study of the structural
limits which do not allow for PAC-Bayes bounds which are simultaneously tight without
requiring strong assumptions. The paper closes with a discussion in Section 6.

2. About the “No Free Lunch” Results

A class of results in statistics is known as “no free lunch” statements [see [4], Chapter
7]. The “no free lunch” results typically state that if one does not consider the restrictions
on the modelling of the data-generating process, one cannot obtain meaningful deviation
bounds in a non-asymptotic regime. The well-known trade-off is that the more restrictive
the assumptions, the tighter the bounds. Let us illustrate this classical phenomenon by a
simple example.

Assume that we have a dataset consisting in N real observations x1, . . . , xN ∈ R
and consider they are independent, identically distributed (iid) realisations of a random
variable X. Our goal is to estimate the mean of X and build a confidence interval for this
estimate. As a start, let us focus on the empirical mean, denoted by x̄ = 1

N ∑N
i=1 xi. As

“no free lunch” results state, we have to consider a class of distributions to which the
data-generating distribution P belongs.

2.1. Expensive and Cheap Models

If there is always a price to pay in order to derive insightful result, there is a variety of
degrees of restrictions. In the remainder of the paper, we will focus on two classical models
corresponding to a different level of demand on the random variables.

A first type of restriction we can make is an “expensive modelling”. For σ > 0, let
Pσ

expensive be the set of all real-valued random variables X satisfying:

log(E[exp{λ(X−E[X])}]) ≤ λ2σ2

2
.

This Pσ
expensive is the class of sub-Gaussian random variables with variance factor

σ2 [see [5] for a complete coverage of the topic]. We call this model “expensive” as this
restriction is often considered unrealistic for real-life datasets and is hard or impossible to
check in practice.

An alternative type of restriction is a “cheap modelling”. For σ > 0, let Pσ
cheap be the

set of real-valued random variables with a finite variance, upper bounded by σ2. We call
this model “cheap” as this is considerably less restrictive than the expensive one and is
much more likely to hold in practice.

2.2. Confidence Interval for the Empirical Mean

Proposition 1 (Confidence intervals). If we assume that X ∈ Pσ
expensive, then for all δ ∈ (0, 1/2),

the following random interval is a confidence interval for the mean of X at level 1− δ:

[
x̄± σ√

N

√
2×

√
2 log

(
1
δ

) ]
. (1)

If we assume that X ∈ Pσ
cheap, then for all δ ∈ (0, 1), the following random interval is a

confidence interval for the mean of X at level 1− δ:
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[
x̄± σ√

N

√
1
δ

]
. (2)

In the case of a cheap model, there is no hope to obtain a significantly tighter confidence interval
with respect to δ if one uses the empirical mean [as proved in [6], Proposition 6.2].

Proof. To establish the first confidence interval (1), we first remark that if X ∈ Pσ
expensive,

then x̄ ∈ Pσ/
√

N
expensive and E[x̄] = E[X]. So, applying Theorem 2.1 of [5] to x̄−E[X] we obtain,

for all a > 0 :

P(|x̄−E[X]| > a) = P(x̄−E[X] > a) + P(x̄−E[X] < −a)
≤ 2 max(P(x̄−E[X] > a),P(x̄−E[X] < −a))

≤ 2 exp
(
−Na2

2σ2

)
.

Setting δ = exp
(
−Na2

2σ2

)
leads to the expected result. The second confidence interval

(2) is obtained through Chebychev’s inequality. E[x̄] = E[X] and as X ∈ Pσ
cheap, Var(x̄) =

Var(X)
N ≤ σ2

N . So for all a > 0

P(|x̄−E[X]| > a) ≤ σ2

Na2 .

Now, setting δ = σ2

Na2 we get

P
(
|x̄−E[X]| > σ√

N

√
1
δ

)
≤ δ.

Note that the dependence in δ is fairly different in both confidence intervals defined
in (1) and (2): for fixed σ2 and N, the

√
2 ×

√
2 log(1/δ) regime (following the lunch

metaphor, the “good lunch”) is much more favourable than the 1/
√

δ regime (the “bad
lunch”). We illustrate this in Figure 1, where we plot

√
2×

√
2 log(1/δ) and 1/

√
δ as a

function of δ ∈ (0, 1/2). We remark that for small values of δ, corresponding to a higher
confidence level, the interval (1) will be much tighter than (2).
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Figure 1.
√

2×
√

2 log(1/δ) and 1/
√

δ with respect to δ.

The key idea of MoM estimators is to achieve a compromise between the unbiased85

but non-robust empirical mean and the biased but robust median. As before, let us86

consider a sample of N real numbers x1, . . . , xN , assumed to be an iid sequence drawn87

from a distribution P. Let K ≤ N be a positive integer and assume for simplicity that K88

is a divisor of N. To compute the MoM estimator, the first step consists in dividing the89

sample (x1, . . . , xN) into K non-overlapping blocks B1, . . . , BK, each of length N/K. For90

each block we then compute the empirical mean91

x̄Bi =
K
N ∑

j∈Bi

xj.

The MoM estimator is defined as the median of those means:

MoMK(x1 . . . , xN) = median
{

x̄B1 , . . . , x̄BK

}
.

This estimator has the following nice property.92

Proposition 2 ([7], Proposition 12). Assume P ∈ Pσ
cheap, for δ = exp

(
−K

8

)
,

[
MOMK ±

σ√
N
× 4

√
2 log

(
1
δ

)]
(3)

is a confidence interval for the mean of X at the level 1− δ.93

This property is quite encouraging as for a cheap model we obtain a confidence94

interval similar, up to a numerical constant, to the best one (1) in Section 2. However95

we also spot here an important limitation. The confidence interval (3) for MoM is only96

valid for the particular error threshold δ = exp(−K/8), which depends on the number97

of blocs K (a parameter for the estimator MoMK). The estimator must be changed each98

time we want to evaluate a different confidence level.99

An ever more limiting feature is that the error threshold δ is constrained and cannot100

be set arbitrarily small, as in (1) or (2). Obviously, the number of blocks cannot exceed101

the sample size N, and the error threshold reaches its lowest tolerable value exp(−N/8).102

In other words, the interval defined in (3) can have confidence at most 1− exp(−N/8).103

Is this strong limitation specific to MoM estimators? No, say Devroye et al. [8,104

Theorem 3.2 and following remark]. This limitation is universal: over the class Pσ
cheap,105

there is no estimator x̂ of the mean such that there exists a constant L > 1 such that106
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So, while it is clear that the best confidence interval requires more stringent assump-
tions, there have been attempts at relaxing those assumptions—or in other words, keeping
equally good lunches at a cheaper cost.

3. Robust Statistics

Robust statistics address the following question: can we obtain tight bounds with
minimal assumptions—or in other words, can we get a good cheap lunch? In the mean
estimation case hinted in Section 2, the question becomes the following: if P ∈ Pσ

cheap, can

we build a confidence interval at level 1− δ with a size proportional to σ√
N

√
2 log(1/δ)?

As mentioned above, there is no hope to achieve this goal with the empirical mean.
Different alternative estimators have thus been considered in robust statistics, such as
M-estimators [6] or median-of-means (MoM) estimators [see [7] for a recent survey, and
references therein].

The key idea of MoM estimators is to achieve a compromise between the unbiased but
non-robust empirical mean and the biased but robust median. As before, let us consider
a sample of N real numbers x1, . . . , xN , assumed to be an iid sequence drawn from a
distribution P. Let K ≤ N be a positive integer and assume for simplicity that K is a
divisor of N. To compute the MoM estimator, the first step consists of dividing the sample
(x1, . . . , xN) into K non-overlapping blocks B1, . . . , BK, each of length N/K. For each block,
we then compute the empirical mean

x̄Bi =
K
N ∑

j∈Bi

xj.

The MoM estimator is defined as the median of those means:

MoMK(x1 . . . , xN) = median
{

x̄B1 , . . . , x̄BK

}
.

This estimator has the following nice property.

Proposition 2 ([7], Proposition 12). Assume P ∈ Pσ
cheap, for δ = exp

(
−K

8

)
,

[
MOMK ±

σ√
N
× 4

√
2 log

(
1
δ

)]
(3)

is a confidence interval for the mean of X at the level 1− δ.

This property is quite encouraging, as for a cheap model we obtain a confidence
interval similar, up to a numerical constant, to the best one (1) in Section 2. However, we
also spot here an important limitation. The confidence interval (3) for MoM is only valid
for the particular error threshold δ = exp(−K/8), which depends on the number of blocks
K (a parameter for the estimator MoMK). The estimator must be changed each time we
want to evaluate a different confidence level.

An ever more limiting feature is that the error threshold δ is constrained and cannot
be set arbitrarily small, as in (1) or (2). Obviously, the number of blocks cannot exceed the
sample size N, and the error threshold reaches its lowest tolerable value exp(−N/8). In
other words, the interval defined in (3) can have confidence at most 1− exp(−N/8).

Is this strong limitation specific to MoM estimators? No, say [8], [Theorem 3.2 and
following remark]. This limitation is universal; over the class Pσ

cheap, there is no estimator
x̂ of the mean such that there exists a constant L > 1 such that

[
x̂± σ√

N
× L

√
2 log

(
1
δ

)]
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is a confidence interval at level 1− δ for δ lower than e−O(N).
To sum up, a good and cheap lunch is possible, with the limitation that the bound is

no longer valid for all confidence levels.

4. PAC-Bayes

We now briefly introduce the generalised Bayesian setting in machine learning, and
the resulting generalisation bounds, the PAC-Bayesian bounds. PAC-Bayes is a sophis-
ticated framework to derive new learning algorithms and obtain (often state-of-the-art)
generalisation bounds, while maintaining probability distributions over hypotheses; as
such, we are interested in studying how PAC-Bayes is compatible with good and cheap
lunches. We refer the reader to [1,9] and the many references therein for recent surveys
on PAC-Bayes including historical notes and main bounds. We focus on classical bounds
from the PAC-Bayes literature, based on the empirical risk as a risk estimator—and we
instantiate those bounds in two regimes matching the “expensive” and “cheap” models
introduced in Section 2.

4.1. Notation

For any f ∈ F , we define the empirical risk RN( f ) as:

RN( f ) =
1
N

N

∑
i=1

`( f (Xi), Yi).

In the following, we consider integrals over the hypotheses space F . To keep the
notation as compact as possible, we will write µ[g] =

∫
gdµ if µ is a measure over F and

g ∈ F a µ-integrable function.

4.2. Generalised Bayes and PAC Bounds

The main advantage of PAC-Bayes over deterministic approaches which output single
hypotheses (through optimisation of a particular criterion such as in model selection, etc.) is
that the distributions allow us to capture uncertainty on hypotheses, and take into account
correlations among possible hypotheses.

Denoting by ρ the posterior distribution, the quantity to control is:

ρ[R] =
∫

F
R( f )dρ( f )

which is an aggregated risk over the classF and represents the expected risk if the predictor
f is drawn from ρ for each new prediction. The distribution ρ is usually data-dependent
and is referred to as a “posterior” distribution (by analogy with Bayesian statistics). We
also fix a reference measure π over F , called the “prior” (for similar reasons). We refer
to [1,10] for in-depth discussions on the choice of the prior: a recent streamline of work has
further investigated the choice of data-dependent priors [11–14].

The generalisation bounds associated to this setting are known as “PAC-Bayesian”
bounds, where PAC stands for probably approximately correct. One important feature
of PAC-Bayes bounds is that they hold true for any prior π and posterior ρ. In practice,
bounds are optimised with respect to ρ and possibly π. In the following, we focus on
establishing bounds for any choice of π and ρ and do not mean to optimise.

4.3. Notion of Divergence

An important notion used in PAC-Bayesian theory is the divergence between two
probability distributions [see [15], for example, for a survey on divergences]. Let E be a
measurable space and µ and ν two probability distributions on E . Let f be a non-negative
convex function defined on R+ such that f (1) = 0, we define the f -divergence between µ
and ν by
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D f (µ, ν) =

{ ∫
f
(

dµ
dν

)
dν if µ� ν,

+∞ otherwise.

Note that we also use the notation f to denote hypotheses elsewhere in the paper, but we
believe the context to always be clear enough to avoid ambiguity.

Applying Jensen inequality, we have thatD f (µ, ν) is always non-negative and equal to
zero if and only if µ = ν. The class of f -divergences includes many celebrated divergences,
such as the Kullback–Leibler (KL) divergence, the reversed KL, the Hellinger distance, the
total variation distance, χ2-divergences, α-divergences, etc. Most PAC-Bayesian generalisa-
tion bounds involve the KL divergence.

A divergence can be thought of as a transport cost between two probability distribu-
tions. This interpretation will be useful for explaining PAC-Bayesian inequalities, where
the divergence plays the role of a complexity term. In the following, we will just use two
types of divergence. The first is the Kullback–Leibler divergence and corresponds to the
choice f (x) = x log x, which we denote it by

KL(µ, ν) =

{ ∫
log
(

dµ
dν

)
dµ if µ� ν,

+∞ otherwise.

The second is linked to Pearson’s χ2-divergence and corresponds to the choice f (x) =
x2 − 1. It is referred to as D2:

D2(µ, ν) =

{ ∫ (dµ
dν

)2
dν − 1 if µ� ν,

+∞ otherwise.

To illustrate the behaviour of these two divergences, consider the case where µ and ν
are normal distributions on Rd.

Proposition 3. If E = Rd, µ = N (a, I), and ν = N (0, I) (where I stands for the d× d identity
matrix), we have

{
D2(µ, ν) = e‖a‖

2 − 1,
KL(µ, ν) = 1

2‖a‖2.

Proof. We have:




dµ(x) = 1
(2π)d/2 exp

(
− 1

2 (x− a)T(x− a)
)

dx,

dν(x) = 1
(2π)d/2 exp

(
− 1

2 xTx
)

dx,
dµ
dν (x) = exp

(
− 1

2
[
−2xTa + aTa

])
= exp

(
−‖a‖2/2

)
exp

(
xTa
)
.

Then:

D2(µ, ν) = exp
(
−‖a‖2

) ∫
exp

(
2xTa

) 1
(2π)d/2 exp

(
−1

2
xTx

)
dx− 1

= exp
(
−‖a‖2

) ∫ 1
(2π)d/2 exp

(
−1

2
xTx + 2xTa

)
dx− 1

= exp
(
−‖a‖2

)
exp

(
2‖a‖2

) ∫ 1
(2π)d/2 exp

(
−1

2
(x− 2a)T(x− 2a)

)
dx− 1

= e‖a‖
2 − 1.
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And finally:

KL(µ, ν) =
∫ (
−‖a‖

2

2
+ xTa

)
1

(2π)d/2 exp
(
−1

2
(x− a)T(x− a)

)
dx

= −‖a‖
2

2
+
∫

xTa
1

(2π)d/2 exp
(
−1

2
(x− a)T(x− a)

)
dx

= −‖a‖
2

2
+ ‖a‖2 =

‖a‖2

2
.

We therefore see that the divergenceD2 penalises much more strongly the gap between
the means of both distributions than the Kullback–Leibler divergence.

The following technical lemma involving the Kullback–Leibler divergence and a
change of measure from posterior to prior distribution is pivotal in the PAC-Bayes literature:

Lemma 1 ([5–16], Corollary 4.15). Let g be a measurable function g : F 7→ R such that π[eg]
is finite. Let π and ρ be respectively prior and posterior measures as defined in Section 4.1. The
following inequality holds:

ρ[g] ≤ log π[eg] + KL(ρ, π).

4.4. Expensive PAC-Bayesian Bound

The first PAC-Bayesian bound we present is called “expensive PAC-Bayesian bound”
in the spirit of Section 2: it is obtained under a sub-Gaussian tails assumption. More
precisely, we suppose here that for any f ∈ F , the distribution of the random variable
`( f (X), Y) belongs to Pσ

expensive, which means

logE[exp{λ(`( f (X), Y)− R( f ))}] ≤ λ2σ2

2
, ∀λ ∈ R.

In this setting, we have the following bound, close to the ones obtained by [10].

Proposition 4. Assume that for any f ∈ F , `( f (X), Y) ∈ Pσ
expensive. For any prior π, posterior

ρ, and any δ ∈ (0, 1), the following inequality holds true with a probability greater than 1− δ:

ρ[R] ≤ ρ[RN ] +
σ√
N

√
2
(

log
(

1
δ

)
+ KL(ρ, π)

)
.

Proof. The proof is decomposed in two steps. The first leverages Lemma 1. Let λ be a
positive number and apply Lemma 1 to the function λ(R− RN):

ρ[R] ≤ ρ[RN ] +
1
λ

(
log π

[
eλ(R−RN)

]
+ KL(ρ, π)

)
.

The second step is to control the deviations of log π
[
eλ(R−RN)

]
. With a probability

1− δ, we have, by Markov’s inequality

π
[
eλ(R−RN)

]
≤

E
[
π
[
eλ(R−RN)

]]

δ
.

By Fubini’s theorem, we can exchange the symbols E and π. Using the assumption
Pσ

expensive, we obtain with a probability greater than 1− δ

π
[
eλ(R−RN)

]
≤ exp

{
λ2σ2/2N

}

δ
.
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Now, putting these results together and setting

λ =

√
2N
(

log
(

1
δ

)
+ KL(ρ, π)

)

σ

we obtain the desired bound.

A PAC-Bayesian inequality is a bound which treats the complexity in the following
manner:

• At first, a global complexity measure is introduced with the change of measure and
is characterised by the divergence term, measuring the price to switch from π (the
reference distribution) to ρ (the posterior distribution on which all inference and
prediction is based);

• Next, the stochastic assumption on the data-generating distribution is used to control

π
[
eλ(R−RN)

]
with high probability.

4.5. Cheap PAC-Bayesian Bounds

4.5.1. Using χ2 Divergence

The vast majority of works in the PAC-Bayesian literature focuses on an expensive
model. The main reason is that it includes the situation where the loss ` is bounded,
a common (yet debatable) assumption in machine learning. The case where `( f (X, Y)
belongs to a cheap model has attracted far less attention; recently, ref. [17] have obtained
the following bound.

Proposition 5 ([17], Theorem 1). Assume that for any f ∈ F , `( f (X), Y) ∈ Pσ
cheap. For any

prior π, posterior ρ, and any δ ∈ (0, 1), the following inequality holds true with a probability
greater than 1− δ

ρ[R] ≤ ρ[RN ] +
σ√
N

√
D2(ρ, π) + 1

δ
.

The proof (see [17]) uses the same elementary ingredients as in the expensive case,
replacing the Kullback–Leibler divergence by D2 and the dependence in δ moves from√

2 log(1/δ) to 1√
δ
. Note the correspondence between these two bounds and the confidence

intervals introduced in Section 2.

4.5.2. Using Huber-Type Losses

With a different approach, ref. [18] obtained asymptotic PAC-Bayesian bounds for
δ-dependent risk estimators based on the empirical mean of Huber-type influence functions.
The author of [18] studied in a slightly more restrictive model than Pcheap, assuming in
addition that the order 3 moment of `( f (X), Y) is bounded for f ∈ H. We rephrase here
Theorem 9 of [18]: with a probability greater than 1− δ,

ρ[R] ≤ ρ[R̂δ,N ] +
1√
N

(
KL(ρ, π) +

log(8πσδ−2)

2
+ σ + π∗N(F )− 1

)
+ o
(

1
N

)
,

where π∗N(F ) is a term depending on the quality of the prior. In Remark 10, the author
notes that assuming only finite moments for `( f (X), Y), it is impossible in practice to

choose a prior such that π∗N(F )√
N

decreases at rate 1/
√

N or faster. Then, the dominant term
necessarily converges at a slower rate than that of Proposition 4. However, this bounds
leads to the definition of a robust PAC-Bayes estimator which proves efficient on simulated
data (see Section 5 of [18]).
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5. A Good Cheap Lunch: Towards a Robust PAC-Bayesian Bound?

If we take a closer look at the aforementioned PAC-Bayesian bounds from a robust
statistics perspective, the following question arises: can we obtain a PAC-Bayesian bound
with a

√
log(1/δ) dependence (possibly up to a numerical constant) in the confidence

level with the cheap model? In this section, we shed light on some structural issues. In the
following, we assume the existence of σ > 0 such that for any f ∈ F , `( f (X), Y) ∈ Pσ

cheap.

5.1. A Necessary Condition

Let R̂ be an estimator of the risk (not necessarily the classical empirical risk). Here is a
prototype of the inequality we are looking for: for any δ ∈ (0, 1), with probability 1− δ

ρ[R] ≤ ρ
[

R̂
]
+

σ√
N

A(ρ, π, δ),

where

A(ρ, π, δ) =
δ→0
O
(√

log(1/δ)

)
.

If we choose ρ = π = δ{ f } (Dirac mass in the single hypothesis f ), the existence of
such a PAC-Bayesian bound valid for all δ implies that

[
R̂( f )± σ√

N
× c
√

log(1/δ)

]

is a confidence interval for the risk R( f ) for any level 1− δ, where c is a constant.
Thus, a necessary condition for a PAC-Bayesian bound to be valid for all of the risk

level δ is to have tight confidence intervals for any f ∈ F .
However, as covered in Section 3, such estimators do not exist over the class Pσ

cheap,
and the possibility to derive a tight confidence interval is limited by the fact that the level δ
must be greater that a positive constant of the form e−O(N).

5.2. A δ-Dependent PAC-Bayesian Bound?

As a consequence, there is simply no hope for a robust PAC-Bayesian bound valid
for any error threshold δ, for essentially the same reason which prevents it in the mean
estimation case. The question we address now is the possibility of obtaining a robust
PAC-Bayesian bound, with a dependence of magnitude

√
2 log(1/δ) (possibly up to a

constant), with a possible limitation on the error threshold δ. In the following, we assume
to have an estimator of the risk R̂ and an error threshold δ > 0 such that there exists a
constant C > 0 such that for any f ∈ F ,

[
R̂( f )± σ√

N
× C

√
log(1/δ)

]

is a confidence interval for R( f ) at level 1− δ. MoM is an example of such estimator. Let
us stress that δ is fixed and cannot be used as a free parameter.

As seen above, a PAC-Bayesian bound proof proceeds in two steps:

• First, we use a convexity argument to control the target quantity ρ[R − R̂] by an

upper-bound involving a divergence term and a term of the form g−1
(

π
[

g(R− R̂)
])

where g is a non-negative, increasing, and convex function;
• Second, we control the term π

[
g(R− R̂)

]
in high probability, using Markov’s inequality.

The first step does not require any use of a stochastic model on the data, and is always
valid, regardless of whether we have a cheap or an expensive model. The second step uses
the model and introduce the dependence in the error rate δ on the right-term of the bound:
g−1(1/δ). In the case of the “expensive bound”, we had g = exp, and the dependence was
log(1/δ), the final rate

√
log(1/δ) was obtained by choosing a relevant value for λ.
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Let us follow this scheme to obtain a robust PAC-Bayesian bound. The first step gives

ρ[R] ≤ ρ[R̂] +
1
λ

(
log π

[
eλ(R−R̂)

]
+ KL(ρ, π)

)
.

Our goal is now to control π
[
eλ(R−R̂)

]
in high probability.

5.2.1. The Case π = δ{ f }
Let us start with a very special case, where the prior is a Dirac mass on some hypothesis

f ∈ F . Then
1
λ

log π
[
eλ(R−R̂)

]
= R( f )− R̂( f ).

Using how R̂ is defined, we can bound this quantity in the following way: with
probability 1− δ,

R( f )− R̂( f ) ≤ σ√
N
× C

√
log(1/δ).

Another way to formulate this result is to say that there exists an event A f with a
probability greater than 1− δ such that for all ω ∈ A f , the following holds true:

(R( f )− R̂( f , ω)) ≤ σ√
N
× C

√
2 log(1/δ).

In this example, we can control log π
[
eλ(R−R̂)

]
at the price of a maximal constraint on

the choice of the posterior. Indeed, the only possible choice for ρ for the Kullback–Leibler
KL(ρ, π) to make sense is ρ = π = δ{ f }.

5.2.2. The Case π = αδ{ f1} + (1− α)δ{ f2}
Consider now a somewhat more sophisticated choice of prior which is a mixture of

two Dirac masses in two distinct hypotheses. We do not fix the mixing proportion α and
allow it to move freely between 0 and 1. The goal is to control the quantity

π
[
eλ(R−R̂)

]
= αeλ(R( f1)−R̂( f1)) + (1− α)eλ(R( f2)−R̂( f2)).

More precisely, for all α ∈ (0, 1), we want to find an event Aα on which this quantity
is under control. In view of the prior’s structure, the only way to ensure such a control is to
have Aα ⊂ A f2 ∩A f2 , where A f1 (resp. A f2) is the favourable event for the concentration
of f̂1 (resp. f̂2) around its mean.

By the union bound, we have that with a probability greater than 1− 2δ

1
λ

log π
[
eλ(R−R̂)

]
≤ σ√

N
× C

√
log(1/δ).

We face a double problem here. As above, if we want the final bound to be non-
vacuous, we have to ensure that KL(ρ, π) is finite, which restricts the support for the
posterior to be included in the set { f1, f2}. In addition, the PAC-Bayesian bound holds
with a probability greater than 1− 2δ. . .

5.2.3. Limitation

. . . which hints at the fact that this will become 1− Kδ if the support for the prior
contains K distinct hypotheses. If K ≥ 1/δ, the bound becomes vacuous. In particular, we
cannot obtain a relevant bound using this approach in the situation where the cardinal of
F is infinite (which is commonly the case in most PAC-Bayes works).

This limiting fact highlights that to derive PAC-Bayesian bounds, we cannot rely on
the construction of confidence interval for all R( f ) for a fixed error threshold δ. The issue
is that when we want to transfer this local property into a global one (valid for any mixture
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of hypotheses by the prior π), we cannot avoid a worst-case reasoning by the use of the
union bound.

The established bounds in the PAC-Bayesian literature, both in cheap and expensive
models, repeatedly use the fact that when we assume that for any f ∈ F ,

logE
[
eλ(R( f )−`( f (X),Y))

]
≤ λ2σ2

2
, ∀λ ∈ R

or
var(`( f (X), Y)) ≤ σ2,

we make an implicit assumption on the integrability of the tail of the distribution of
`( f (X), Y). This argument is crucial for the second step of the PAC-Bayesian proof because,
by Fubini’s theorem, it allows us to convert a local property (the tail distribution of
each `( f (X), Y)) into a global one (the control of π

[
eλ(R−RN)

]
or π

[
(R− RN))

2] in high
probability).

5.3. Is That the End of the Story?

We have identified a structural limitation to derive a tight PAC-Bayesian bound
in a cheap model. We make the case that we cannot replicate the PAC-Bayesian proof
presented in Section 4. To conclude this section, we want to highlight the fact that, up to
our knowledge, no proof of PAC-Bayesian bounds avoids these two steps (see, for example,
the general presentation in [19]).

What if we try to avoid the change of the measure step and try to control directly
ρ[R]− ρ[R̂] in high probability? We remark that ρ can only be chosen with the information
given by the observation of R̂( f ), where f ∈ F . In particular, we cannot obtain any
information of the concentration of each R̂( f ) around R( f ) as such knowledge requires to
know the true risk. So, it seems that a direct control cannot avoid starting as a “worst-case”
bound:

ρ[R]− ρ[R̂] ≤ sup
f∈F

{
R( f )− R̂( f )

}
.

Then, we have to control sup f∈F
{

R( f )− R̂( f )
}

in high probability (see [20] for a
general presentation on such controls, and [7] for the recent results in the special case where
R̂ is a MoM estimator). However, the obtained bound will take the following prototypic
form:

ρ[R] ≤ ρ[R̂] + complexity term,

where the complexity term does not depend on the distribution ρ. Thus, the optimisation
of the right term leads to choosing ρ as the Dirac mass in arg min

f∈F
R̂( f ).

So, the overall procedure amounts to a slightly modified empirical risk minimisation
(where the empirical mean is replaced with any estimator of the risk), and will not fall into
the category of generalised Bayesian approaches which take into account the uncertainty
on hypotheses. Pretty much all the strengths of PAC-Bayes would then be lost.

6. Conclusions

The present paper contributes a better understanding of the profound structural
reasons why good cheap lunches (tight bounds under minimal assumptions) are not
possible with PAC-Bayes by walking gently through elementary examples.

From a theoretical perspective, PAC-Bayesian bounds requires too strong assumptions
to adapt robust statistics results (where almost good lunches can be obtained for cheap
models—with the limitation that the confidence level is constrained). The second step of
the proof we have shown requires us to transform a local hypothesis, a control of some
moments of `( f (X), Y), into a global one, valid for all mixture of hypotheses by the prior
π. As covered above, this transformation seems impossible.
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To close on a more positive note after this negative result, let us stress that even if
the conciliation of PAC-Bayes and robust statistics appears challenging, we believe that
the recent ideas from robust statistics could be used in practical algorithms inspired by
PAC-Bayes. In particular, we leave as an avenue for future work the empirical study of
PAC-Bayesian posteriors (such as the Gibbs measure defined as ρ ∝ exp(−γR̂)π for any
inverse temperature γ > 0) where the risk estimator is not the empirical mean (as in most
PAC-Bayes works) but rather a robust estimator, such as MoM.
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