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Abstract: The number of security breaches in the cyberspace is on the rise. This threat is met with
intensive work in the intrusion detection research community. To keep the defensive mechanisms
up to date and relevant, realistic network traffic datasets are needed. The use of flow-based data for
machine-learning-based network intrusion detection is a promising direction for intrusion detection
systems. However, many contemporary benchmark datasets do not contain features that are usable
in the wild. The main contribution of this work is to cover the research gap related to identifying
and investigating valuable features in the NetFlow schema that allow for effective, machine-learning-
based network intrusion detection in the real world. To achieve this goal, several feature selection
techniques have been applied on five flow-based network intrusion detection datasets, establishing
an informative flow-based feature set. The authors’ experience with the deployment of this kind of
system shows that to close the research-to-market gap, and to perform actual real-world application
of machine-learning-based intrusion detection, a set of labeled data from the end-user has to be
collected. This research aims at establishing the appropriate, minimal amount of data that is sufficient
to effectively train machine learning algorithms in intrusion detection. The results show that a set of
10 features and a small amount of data is enough for the final model to perform very well.

Keywords: NetFlow; network intrusion detection; network behavior analysis; data quality; feature
selection

1. Introduction

With the list of known network threats expanding every year, researchers and cyber-
security experts are constantly working on new safeguards and new tools of protection.
Cybercriminals keep trying to pull newer and more sophisticated tricks to steal sensitive or
personal data or cause damage to private businesses or government organizations [1,2].

To facilitate the use of machine learning to streamline network intrusion detection,
good quality labeled data need to be collected. This enables the use of highly-accurate
supervized learning techniques. The data-dependent algorithms are only as good as the
data used to train them.

Motivation, Methodology and Main Objectives

One of the prevailing problems of research in the domain of intrusion detection is the
changing characteristics of both network traffic and the contemporary threat landscape.
The pace of changes in the field is tightly connected to the intensity of the cyber-arms-
race. The constant change in the threat landscape causes the benchmark datasets to lose
relevance. The privacy issues and the acquisition costs make the telecom companies
reluctant to provide new, labeled data, which in turn causes a constant, high demand for
new, relevant intrusion detection datasets.
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The motivation and contribution of this paper stems from the realization that there
is a discrepancy between the datasets available to the intrusion detection researchers and
the types of data that are usable in a real-world deployment of real-time ML-based NIDS.
This realization comes directly from the authors’ experience in building ML-based NIDS,
including the detection component for the H2020 SIMARGL project [3–8].

First and foremost, the data need to be in a flow-type format, in contrast to the
packed-based IDS methods, as flow-type network characteristics offer a couple of impor-
tant advantages. Flow type data can describe the activity on the network much more
efficiently [9,10], and the flow-type standards are proper for high-speed networks, as the
aggregations allow for significant cutback in the size of data. Additionally, the standards
such as NetFlow, IPFIX or sFlow are widely adapted and recognizable in the security
community [11,12]. However, not all the fields available in the IPFIX or other flow-based
schemas are of value for intrusion detection. In fact, many fields do not contain any rel-
evant information, or the information is redundant. This is reflected in the benchmark
datasets, where many features have to be filtered out in the feature selection process of
ML-based IDS. While feature selection is a process widely explored in the ML research
community and is an important step in the formulation of any ML model, the reverse of the
feature selection problem can be a major issue: not including important and informative
features in the collected dataset. Having to perform feature selection is also an upfront
computational cost, which has to be paid in the training phase. This is not necessary if a
standard, informative set of flow-based features is established.

On top of that, many fields in the benchmark datasets are unusable from the per-
spective of a real-time NIDS, as they can only be calculated having collected a significant
amount of flows, such as in [13]. Additionally, some widely used benchmark datasets
contain custom-made features: for example, the amount of certain indicators (such as
creating programs or entering certain directories on the host machine) in the actions of
users in the case of benchmark datasets from the KDD family [14]. These kinds of features
are realistically unobtainable in the wild for a number of reasons, starting from the inconve-
nience of providing these characteristics in a real-time scenario and ending with the issues
of privacy.

In a real-world scenario, the deployment of an NIDS requires the collection of a sample
labeled dataset from the target network due to deployment shift [15]. This is a costly and
inconvenient process, so acquisition of the minimum amount of data is common sense.
This paper explores the notion of minimal sets of data required for effective detection.
One more important contribution stems from the fact that establishing a standardized set
of features effective for NIDS helps with the use of transfer learning techniques across
multiple datasets. Based on the popular flow-based data schemas, the research process
presented in this paper addresses a research gap related to the verification of a list of
features that contribute to network intrusion detection. In addition, the research aims
to answer the question of what minimum amount of data is sufficient to effectively and
efficiently train a machine learning model for threat detection. Thus, the main objectives of
the paper are as follows:

1. To establish and verify an optimal set of flow-based features usable for network
intrusion detection,

2. To establish the minimal amount of labeled data necessary to train a machine-learning-
based NIDS for effective deployment,

3. To clear the path for anyone wishing to collect an NIDS dataset.

To validate the findings of the paper, a set of four commonly used machine learning
algorithms is trained using the established flow-based features on five benchmark datasets.

To summarise and clearly state the major contributions, the paper does the following:

1. Establishes a set of effective and usable flow-based features based on five recent
benchmark datasets.

2. Establishes a minimum amount of data that allows the training of an ML classifier in
IDS.
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3. Validates the findings by training a set of different ML models and reports the results.

As illustrated in Figure 1, five steps can be distinguished between network traffic
flowing through a certain point in a network and actually publishing the dataset for the
research community to use. The traffic has to be collected and reliably labeled, then an
adequate and usable set of features needs to be extracted, then the collected dataset should
go through evaluation and validation procedures to check its usefulness for ML procedures,
and then the dataset can be published for the community to use. The work contained in
this paper revolves around improving the feature extraction and selection phase, and the
validation of this work is also provided.

Figure 1. The steps required to go from network traffic to publishing of a dataset suitable for ML
methods. The red ellipse indicates the focus of this paper.

Our previous research has focused on analyzing network traffic based on the NetFlow
data format. In [3], we have proposed a new dataset derived from a real-world, in-the-wild
network. The dataset is collected, described and now published. The dataset has 44 features
and contains labeled data. Its use for intrusion detection has been verified and validated
by using the following algorithms: random forest classifier, gradient boosting classifier,
and a neural network. The detection efficiency oscillated around 99%. After the publication
of the dataset, the focus of our work shifted to further improving the quality of the data
collection process, for the next iteration of the dataset. This paper contains the results of
this work.

The paper is structured as follows: in Section 2, a brief overview of existing approaches
both in feature selection and in the way network data are prepared is presented, along
with a review of articles regarding data quality. Sections 3 and 4 describe how the datasets
were collected and present the datasets used in this research article. Section 5 describes
the methodology used with respect to feature selection and verification of the amount of
data needed to effectively train the algorithms. Finally, Section 6 presents the results and
evaluates the impact of the amount of data on the training of ML models. The paper closes
with conclusions and future plans.

2. Related Works

In the 1990s, a group of researchers led by Professor Richard Y. Wang conducted
a study in which they formulated the concept of “data quality”, which equals “fitness
for use” [16]. Within this research, the definition of “data quality dimension” was also
introduced, which referred to a set of attributes that defines the construct of data quality.

Since the 1990s, the evolution of the Internet has caused the approach to the field
of data quality to change dramatically. Li Cai and Yangyong Zhu present the current
challenges in the era of big data in their research [17]. They identified several problems
that arise in this day and age, the first being the variety and complexity of data sources and
types. This phenomenon appears in the literature, e.g., in [18] or [19]. Another challenge is
the huge amount of data coming from all directions and the fact that it is difficult to assess
the quality of these data in a short period of time. Moreover, the change and validity of
these data is very short, which makes data processing even more important nowadays.
In the rest of the paper, the authors proposed the establishment and a hierarchical structure
of a data quality framework and presented a process for assessing the quality of large
amounts of data.
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The authors of [20] provide an extensive analysis and review of currently existing data
quality approaches to big data. At the very beginning, they cite the concepts of big data and
present the life cycle of such data. The initial phase of collection starts with data generation
or retrieval, then one enters the phase of data acquisition to move on to data storage in the
next stage and then to data processing and analytics. The whole process ends with the data
visualization aspect. In the next part of the article, the authors analyze the quality of data
by presenting a wide range of articles that show the problems of maintaining quality in
large datasets. They conclude that there is no complete reference model for data quality
and management in big data.

In addition to the quality of the data itself, the size of the dataset has quite a significant
impact on the machine learning process. The authors of the research paper [21], who base
their research on the medical domain, examine the impact of the size of the learning set
on model quality and performance. For this purpose, they conducted a set of experiments
on six popular machine learning models using medical datasets. To measure the effect of
data volume on model performance, they prepared a set of three subsets of different sizes
and a series of metrics to compare performance. The authors of the paper emphasize that
their study shows that it is not the size that affects the performance of the classifier but the
degree of the dataset that represents the original distribution. Another conclusion from
the research is that for a limited dataset, the AdaBoost and Naïve Bayes classifiers perform
best and the decision tree classifier performs worst.

The authors of [22] used three distributed algorithms—extreme learning machines
(ELM), distributed random forest, and distributed random boosted-trees—to detect botnet
attacks. In the research paper, they presented the concepts and architecture of the system,
which was based on big query data processing. Network data analysis in the form of
NetFlow was used as a use case. The results provided in the conclusion show that this is a
very promising work.

In [23], the authors have addressed the topic of data characterization, namely the
problem associated with the imbalance of infected samples from normal traffic. For this
reason, the authors presented a number of studies regarding data balancing and its impact
on various machine learning algorithms.

The authors of [11] analyze data in the form of NetFlow and IPFIX with respect to
network traffic monitoring. They point out at the very beginning of the paper that these
protocols are used for scaled fast network flow export. The article itself introduces the
reader to the history of these two protocols, and outlines the fundamental differences
between them. An example architecture of a flow monitoring system is presented by
the authors. In addition, a comprehensive comparison of network traffic collection tools
is provided.

A similar analysis is performed by the authors of [24]. They rely on a review of
machine learning and data mining methods used in cyber analytics to support intrusion
detection.

The effect of data volume on machine learning effectiveness has also been examined
in [25], in which researchers use data from Tweets to test algorithms such as decision trees,
naïve Bayes, nearest neighbor and radial basis function network. Based on the results,
the developers suggest that increasing the data size improves performance but the effect of
this improvement decreases as the sizes of the datasets increase. They also note that it is
more important to add additional samples to small datasets than to larger ones. The best
classifier proved to be naïve Bayes, which was also the fastest in the training process and
achieved good results on the smallest datasets.

A slightly different area is explored by the authors of [26]. They focus on investigating
the optimal size of the number of features in the random forest algorithm. The authors’
conclusions emphasize that the hypothesis is true and that there is no functional relationship
between the optimal size and the characteristics of the datasets being checked. They confirm
this after using the out-of-bag error method and SearchSize using random forest.
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This work is mainly concerned with good quality network data based on NetFlow
and selecting the optimal number of features and set size with respect to intrusion detection.
There are many research articles that base the detection of undesirable events in computer
networks by verifying NetFlow data.

In [27], the authors use NetFlow-based network traffic. K-means and genetic algo-
rithms were compared and tested. These two approaches were used to find the undesirable
parts of the network traffic. Ultimately, the results that were obtained in this paper prove
that the genetic algorithm is better suited to calculate the so-called survival curves.

The authors of [28] perform intrusion detection in network traffic. However, the pro-
posed method is based on identifying anomalous end-user nodes and their network traffic
patterns. The authors point out that frequently changing IP addresses make their method
ineffective. It can be concluded that when identifying anomalies, IP addresses and ports
should not be used.

The network traffic intrusion detection architecture proposed in [29] is based on the
use of a time series clustering algorithm. The authors show that the algorithm is able to
detect anomalies in live data without any prior knowledge of the data.

In [4,5], the authors focused on presenting the concept of architecture and software,
the task of which was to analyze the traffic in real-time from the data provided by the
stream. The authors use the scalable Apache Kafka environment, Apache Spark and the
Elasticsearch database for this purpose. For efficient intrusion detection, network flows in
the data stream are grouped by source IP address into one-minute time windows.

The authors of [30] propose a moderate architecture of a convolutional neural network
(CNN) to facilitate a decrease in the resources consumed by computations in large-scale
intrusion samples, attempting to better the classification metrics.

In [31], the researchers present two approaches grounded in wavelets to effectively
mine and analyze network security log databases. Using wavelets allows the extraction
of adequate frequency components. The authors conclude that using wavelet transforms
grants the ability to de-noise the data, which in turn permits faster querying.

The authors of [32] introduce multiscale Hebbian learning to tackle the challenge of
inadequately labeled data in network intrusion detection. The experiment conducted on the
UNSW-NB15 dataset shows that the approach can spot overlapping classification bound-
aries.

A mixed wavelet-based neural network model for cyber security situation prediction
is evaluated in [33]. The approach shows significant improvements over the state-of-the-art.

In [34], a comprehensive survey of machine learning and deep learning approaches
to intrusion detection can be found. The study taxonomizes the IDS systems by detection
method and source of data, then lists the common learning algorithms employed for IDS,
including both the shallow and deep learning models.

3. Machine Learning over NetFlow Data

In this work, the main focus of the research is on finding a suitable data scheme
to detect intrusions in network traffic in an effective manner. This paper showcases the
process of evaluating flow-based features in the task of network intrusion detection. This
work also establishes the minimum amount of data needed to train the various machine
learning algorithms.

The most popular versions of NetFlow are versions 5 and 9, thus this work will focus
on fields obtainable using this format. The topic of network intrusion detection with the use
of NetFlow is a well established approach in the research community. Multiple papers have
been published proving that it is possible to build a working ML IDS based on flow-based
data [35].

3.1. Collecting Data

Data collection is of crucial importance in the entire process of building a machine
learning model. Providing good quality and sufficient amount of training data allows
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the algorithm to be trained effectively. NetFlow collection can be achieved by tools such
as Nprobe or Ntop [36]. The ability to collect traffic is also possible using a configured
ElasticStack environment. Nprobe [37] is a tool that includes both a probe and a collector.
It grants the ability to export traffic as NetFlow v5/v9/IPFIX. The authors of this tool point
out the following as the main advantages of this software: the full support for IPv4 and
IPv6, and the ability to automatically export to an SQL database and to a Kafka stream,
as well as low CPU and RAM resource consumption.

Nowadays, with the size of network traffic growing at a staggering pace, there is a
need for scalable solutions that can handle the increasing amount of data. In [5], an in-
depth description of the software and its architecture is presented. The detector relies on
collecting data using a NetFlow collector, and the data are transferred directly to the Kafka
stream. The data are then processed by the solution, which performs intrusion detection,
and the result along with the features of the sample are recorded to the Elasticsearch
database. This solution architecture is highly scalable and tools such as Apache Kafka
guarantee redundancy.

3.2. Datasets

Five datasets were selected for testing on NetFlow-based collections. They repre-
sent recent network traffic and therefore they reflect relatively current network behavior.
The authors of [38] converted five popular datasets to a strict NetFlow format. A detailed
description of the individual features available within the sets can be found in Table 1.
The datasets provide 33 numeric parameters and four text parameters.

• UNSW-NB15 [39]—The dataset was created in 2015, with the IXIA PerfectStorm tool.
Using this software, clean traffic and various types of network anomalies were gener-
ated. Approximately 100 GB of data stored as PCAP files was collected and thanks to
the developers at The Cyber Range Lab of the Australian Centre for Cyber Security
(ACCS), the collection has been made public as part of further research into improving
network security. The structure of the collection originally contained 49 features and
encompassed 2,218,761 samples of clean traffic, which is about 87.35% of the whole
collection. The rest, i.e., 321,283 network frames, is made up of executed attacks.

• BoT-IoT [40]—Developers in Australia (ACCS) also created this dataset in 2018. In this
case, a network flow taking place in a real network environment was recorded. This
collection estimates about 69 GB of data in PCAP format and contains 42 features.
The diversity of traffic in this collection is very uneven as it contains only 477 frames
and there are 3,668,045 flows of the infected traffic. This results in normal traffic of
only 0.01%.

• ToN-IoT [41]—this data collection is very similar to the BoT-IoT collection, as it also
contains very many attacks and very little normal traffic. The collection comes from
the IoT network, more precisely from service telemetry data, and was recorded in
2020. The number of infected frames equals 21,542,641 samples while normal traffic is
only 796,380 flows. This represents a percentage of 96.44% for the infected samples
and 3.56% for normal traffic, respectively.

• CSE-CIC-IDS2018 [42]—in 2018, another dataset made available through a collabora-
tion between two organizations: Communications Security Establishment (CSE) and
the Canadian Institute for Cybersecurity (CIC), was released. This is a very realistic
set, as the scenario was designed using the infrastructure of five large organizations
and server rooms. Normal traffic was generated by human users and several dif-
ferent machines were used to attack these networks. The whole collection contains
73 features and consists of a large amount of data amounting to 16,232,943 flows.
The attacks in this collection represent 2,748,235 samples and the normal traffic repre-
sents 13,484,708 flows.

• UQ-NIDS [43]—a dataset that was created by combining the four previously presented
datasets. It represents the advantages of shared datasets, where it is possible to
combine multiple smaller datasets, which leads to a larger and more versatile NIDS
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dataset containing flows from multiple network configurations and different attack
settings. This network dataset contains 11,994,893 flows, of which 9,208,048 (76.77%)
are benign flows and 2,786,845 (23.23%) are attacks.

Table 1. Description of the original features found in the datasets: UNSW-NB15, BoT-IoT, ToN-IoT,
CSE-CIC-IDS2018, UQ-NIDS.

Feature Description

IPV4_SRC_ADDR IPv4 source address
IPV4_DST_ADDR IPv4 destination address
L4_SRC_PORT IPv4 source port number
L4_DST_PORT IPv4 destination port number
PROTOCOL IP protocol identifier byte
L7_PROTO Layer 7 protocol (numeric)
IN_BYTES Incoming number of bytes
OUT_BYTES Outgoing number of bytes
IN_PKTS Incoming number of packets
OUT_PKTS Outgoing number of packets
FLOW_DURATION_MILLISECONDS Flow duration in milliseconds
TCP_FLAGS Cumulative of all TCP flags
CLIENT_TCP_FLAGS Cumulative of all client TCP flags
SERVER_TCP_FLAGS Cumulative of all server TCP flags
DURATION_IN Client to Server stream duration (msec)
DURATION_OUT Client to Server stream duration (msec)
MIN_TTL Min flow TTL
MAX_TTL Max flow TTL
LONGEST_FLOW_PKT Longest packet (bytes) of the flow
SHORTEST_FLOW_PKT Shortest packet (bytes) of the flow
MIN_IP_PKT_LEN Len of the smallest flow IP packet observed
MAX_IP_PKT_LEN Len of the largest flow IP packet observed
SRC_TO_DST_SECOND_BYTES Src to dst Bytes/sec
DST_TO_SRC_SECOND_BYTES Dst to src Bytes/sec
RETRANSMITTED_IN_BYTES No. of r-d TCP flow bytes (src->dst)
RETRANSMITTED_IN_PKTS No. of r-d TCP flow packets (src->dst)
RETRANSMITTED_OUT_BYTES No. of r-d TCP flow bytes (dst->src)
RETRANSMITTED_OUT_PKTS No. of r-d TCP flow packets (dst->src)
SRC_TO_DST_AVG_THROUGHPUT Src to dst average thpt (bps)
DST_TO_SRC_AVG_THROUGHPUT Dst to src average thpt (bps)
NUM_PKTS_UP_TO_128_BYTES Packets whose IP size ≤ 128
NUM_PKTS_128_TO_256_BYTES Packets whose IP size > 128 and ≤256
NUM_PKTS_256_TO_512_BYTES Packets whose IP size > 256 and ≤512
NUM_PKTS_512_TO_1024_BYTES Packets whose IP size > 512 and ≤1024
NUM_PKTS_1024_TO_1514_BYTES Packets whose IP size > 1024 and ≤1514
TCP_WIN_MAX_IN Max TCP Window (src-dst)
TCP_WIN_MAX_OUT Max TCP Window (dst-src)
ICMP_TYPE ICMP Type * 256 + ICMP code
ICMP_IPV4_TYPE ICMP Type
DNS_QUERY_ID DNS query transaction Id
DNS_QUERY_TYPE DNS query type (e.g., 1 = A, 2 = NS.)
DNS_TTL_ANSWER TTL of the first A record (if any)
FTP_COMMAND_RET_CODE FTP client command return code

3.3. Feature Selection

The first stage of the research will be to sift and select features from the NetFlow
datasets and thus establish the most relevant flow-based set of features to feed the ML
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algorithms. Only those features will be extracted that show the best performance in the
intrusion detection process and positively affect the detection metrics of the model. Several
selection techniques will be applied to maintain the validity results and provide the most
relevant set of features.

In a 2020 survey of feature selection techniques [44], the authors describe the different
variants and possibilities to correctly pick features. The authors of [44,45] indicate that
feature reduction leads to reduced complexity, which translates into reduced computation
time. The feature selection techniques that will be used in the following experiments can
be divided into four categories [46–48] :

• Filter methods,
• Wrapper methods,
• Embedded methods,
• Hybrid methods.

The categorical values that are present in the datasets to be subjected to the feature
selection technique must be preprocessed by functions such as ordinal encoder, one hot
encoder, or other methods [49]. The list of features found in the five analyzed datasets in
this paper has several categorical values, such as IP addresses or destination and source
ports. These features are not involved in the research conducted in this article and are
omitted, so only the non-categorical values remain in the dataset, although an overview
of all methodologies that can be used when categorical values are present in the data can
be found in [50]. The rejection of these features is dictated by the fact that IP addresses
and ports change dynamically from network to network and relying on them limits the
capabilities of the algorithm.

The first technique that was used to study the number and effectiveness of features is
LASSO regularization [51,52], which is an embedded method and combines both wrapping
and filtering methods. The term regularization refers to the concept the application of
which is to prevent data overfitting. The way this method works is based on adding
penalties to the parameters to reduce the freedom of the models. There are two main
regularization techniques, namely ridge regression and LASSO regression [52]. In the
LASSO technique, shrinkage is used. This is where the data values are shrunk towards the
center point as the mean. The LASSO regularization technique itself seeks to create simple
models with a reduced list of parameters. This type of regression is used for models that
exhibit high levels of collinearity, or to automate variable selection/parameter elimination.
When the model uses an L1 regularization technique then it is called LASSO regression. If it
uses an L2 regularization technique, then it is called ridge regression. Due to the fact that
this paper will use the L1 approach, a penalty equal to the absolute value of the coefficient
size is added in this technique.

The choice of the L1 technique in this research was dictated by a key difference
between the L1 and L2 techniques. Namely, LASSO reduces the coefficient of a less
important feature to zero, completely eliminates it from the dataset, which works perfectly
for feature selection. In turn, L2 is mainly used to avoid the over-fitting problem.

Some coefficients may become zero and be eliminated from the model. Larger penal-
ties result in coefficient values closer to zero (ideal for creating simpler models). Because it
is a linear model type, a penalty is imposed on the coefficient that participates in the multi-
plication of each predictor. The mathematical notation of this technique is shown below:

1
2n

n

∑
i=1

(yreal − ypred)
2 + α

p

∑
j=1
| aj | (1)

In Equation (1), it is assumed that the dataset has n instances and p features. The yreal
and ypred parameters define for us the predicted value result and the real value result. The
parameter a is considered a hyperparameter in this formula. The purpose of regression is
to reduce the values of the coefficients to exclude useless features. When a is 0, it reverts to
the original linear regression. If α is too large, it neglects the first part of the cost function
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and the results are unreliable. The LASSO regression concept ultimately leads to the
optimization of the cost function. This is achieved by reducing the absolute value of the
coefficients. This technique is only likely to work if the features are normalized.

Random Forest Importance [53] is another method that was used to compare the
effect of parameters on model quality. Calculating the importance of features found
in a dataset using the random forest technique answers the question of what features
will be appropriate in subsequent classification, as well as regression. In his 2001 paper,
Breiman [54] presented a technique called out-of-bag (OOB) importance score. Its operation
is based on calculating the difference between the original mean error and the randomly
permuted mean error in the OOB samples. All feature values are stochastically changed
for each tree and using this operation using random forest model to predict this permuted
feature and obtain the mean error. If the average error decreases drastically, it means that
the feature is strongly correlated [55].

Another way that shows the importance of a feature is to rank the tree due to the
decrease in impurity (Gini impurity) relative to all trees [56]. According to the principle
of the algorithm, the most impure trees are at the beginning and the least impure trees
are at the end. With this division, a set of most important features can be easily created.
The mathematical formulation of this procedure can be represented as follows. For each
node A for the decision tree, the partitioning is performed after decreasing the impurity of
the node R(A). The impurity of a node is represented by a Gini index. The determination of
the Gini Index can be defined as subtracting the sum of squared probabilities of each class
from one. If the samples of class Z are contained in a subset of A then the impurity Gini(A)
can be defined as seen in Equation (2)

R(Z) = 1−
Z

∑
j=1

(Pj)
2 (2)

where Pj is the relative frequency of class j in Z, or in other words, it is the probability of an
element being classified in another class. After splitting Z into two different nodes Z1 and
Z2 with two different data sizes N1 and N2, the Gini index can be defined with the formula
in Equation (3):

Ginisplit(Z) =
N1

N
Gini(Z1) +

N2

N
Gini(Z2) (3)

The splitting of a given node occurs when Ginisplit(z) is the smallest value. The im-
portance value of feature Xj in a single tree Tk is defined by the formula in Equation (4):

Sk(Xj) = ∑
t∈Tk

∆Ginisplit(t) (4)

Finally, this formula is applied to every tree in the set. In the above Equation (4),
t represents a single node belonging to a single tree Tk, for each node, the Gini split method
is calculated. This is how the best influencing features on the model are selected using the
RF importance method.

The final feature selection method used in this paper is the chi-square method [57]. It
is based on the calculation of chi-square between each feature and the target value.

chi2 = ∑
et∈{0,1}

∑
ec∈{0,1}

(Netec − Eetec)
2

Eetec

(5)

In Equation (5) N is the observed value of w, and E the expected value. et takes the
value of 1 if the document contains the term t, and 0 otherwise. ec takes the value 1 if the
document belongs to class c, and 0 otherwise.
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3.4. The Effect of Training Data Size on the Model

As part of the development of the area of network traffic intrusion detection, the next
objective of this paper was to conduct a study related to finding a sufficient amount of
learning data that can be used to effectively teach machine learning or neural network
algorithms, taking into account the aspect of no loss of efficiency of a given algorithm.
The process of testing such an assumption started by dividing the sets into smaller parts.
Given five different datasets based on the same scheme, nine subsets containing different
numbers of samples were extracted from each of them. To maintain the greatest reliability
between data iterations of testing within each larger subset, data from smaller subsets
were included. The process of the algorithm was shown in the pseudocode format in
Algorithm 1. The preparation of this stage of the research began with loading all five
sets into memory, then within each iteration/set the nine smaller subsets were extracted.
For each subset, four algorithms were trained and their performance was tested on the test
data by generating ROC curve plots and a set of metrics. The ROC curve is a graphical
representation on a graph on the Y axis of a value relating to specificity, and on the X axis
of a value relating to a false-positive rate. The range of values of this curve is represented
from 0 to 1. Values closer to 1 indicate better performance.

Algorithm 1 The process of extracting and splitting a dataset.
Require: datasets[D1, D2, D3, D4, D5]

trainDataset, testDataset = dividing_the_set_in_a_ratio_o f _70_to_30
subDataset = [10, 100, 500, 1000, 2000, 10000, 20000, 30000, N]
tempDataset = []
for each d ∈ trainDataset do

for each size ∈ subDataset do
tempDataset = d[size] + tempDataset
d = d− tempDataset

end for
end for

The final phase of testing was the preparation of a summary set, which contained
a set of metrics with respect to the trained model. In this phase, the standard split of
training to test data was 70 to 30. Several metrics were used to evaluate the performance
and correctness of the model to give a good summary of the results. The models were
evaluated [58,59] using: Accuracy (ACC-Equation: (6)), Precision (Pr-Equation: (7)), Recall
(Re-Equation: (8)), F1-Score (Equation: (9)), Balanced accuracy (BCC-Equation: (10)) [60]
and the Matthews correlation coefficient (MCC-Equation: (11)) [61]. Within the listed
metrics that describe the performance of given algorithms in this study, values such as True
Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN) were needed to
calculate them.

Presented below are the individual formulas that were considered in the process of
evaluating the performance of the algorithm.

Accuracy =
TP + TN

TP + FP + FN + TN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 = 2 ∗ Recall ∗ Precision
Recall + Precision

(9)

BCC =
TP

TP+FN + TN
TN+FP

2
(10)
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MCC =
TN ∗ TP− FN ∗ FP√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(11)

3.5. Classification Models

To validate the effectiveness of the established set of features, four different widely
used ML algorithms were trained and tested. The algorithms were chosen to cover dif-
ferent paradigms of machine learning: AdaBoost for tree-based based algorithms, ANN
for gradient-based algorithms, naïve Bayes for Bayes theorem-based algorithms. The ran-
dom forest was included, as in our experience it is a good fit for flow-based IDS. The
performance of the four algorithms was tested for optimal dataset size and network traffic
intrusion detection.

The first reported algorithm in the set is random forest. As the name suggests, this
algorithm consists of multiple decision trees that form a forest. This tree-based algorithm
has been utilized in many IDS and research papers; some examples of its use and effec-
tiveness can be found, e.g., in [62–64]. The model is trained using bagging (bootstrap
aggregation) techniques. The outcome of the algorithm is determined by the average scores
from each tree. The random forest eliminates the limitations of the decision tree algorithm.
It reduces the overfitting to the datasets and increases precision [65]. Entropy is worth
mentioning within this algorithm. Entropy [66–68] is a measure of disorder or, in other
words, uncertainty. It is expressed by the Formula (12):

E(x) =
c

∑
i=1
−p(xi) log2 p(xi) (12)

In this formula, p(xi) expresses the measure of the probability of the frequency of
the occurrence of element/class “i” in the data. When using machine learning algorithms,
the goal of the data scientist is to reduce the disorder. The metric for reducing this disorder
is expressed by the following Formula (13):

IG(Y, X) = E(Y)− E(Y|X) (13)

The operation of this metric is to subtract the entropy of Y from a given X from the
entropy of Y itself, given the additional information X has about Y. This process is called
information amplification. As there is more uncertainty reduction, more information about
Y is obtained from X. Entropy as a metric is involved in the decision tree process. During the
construction of decision trees, data partitioning is calculated using information gain (IG).
IG is a measure that defines how much “information” a feature gives us about a class.
The attribute with the highest information gain will be split first in the tree construction
process. The number of trees hyperparameter was set to 100.

The second algorithm used for intrusion detection in this paper is the adaptive boost-
ing classifier (AdaBoost). The algorithm itself has its effectiveness proven in the scientific
literature on intrusion detection [69–71]. The technique involves adding an element of
boosting and adaptively adjusting the weights when a misclassification is made. In this
process, weak weights are converted to strong weights. Boosting is used to reduce bias
as well as variance for supervized learning. The algorithm used in this research had the
learning rate set to 1 and the N_components hyperparameter to 100.

The third model used in the intrusion detection study was based on a neural network.
A simple neural network was designed, which consisted of two hidden layers and two
dropout layers. The first hidden layer contains 32 neurons and the second layer contains
16 neurons, the two abandonment layers were set to 0.01, while the activation layer in
the hidden layers was set to the Rectified Linear Unit (ReLU). The last layer contained
the number of neurons equal to the number of classes and used a softmax activation
function. The loss function was set to the “categorical_crossentropy” method while the
chosen optimization algorithm was adaptive momentum [72]. Early stopping stopped the
learning process at 16 epochs, and the batch size was set to 20.
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The final algorithm used in our study is naïve Bayes. This classifier is based on Bayes’
Theorem with the assumption of independence of predictors. It states that the presence of
a feature in a class is not dependent on any other feature. The naïve Bayes model is easy to
build and is particularly useful for very large datasets [73]. The default hyperparameters
were used for this classifier.

All types of models that have been selected for this research have characteristics
that make them promising for an in-the-wild application of IDS. The artificial neural
network model was used because of the fact that ANNs continue to learn even when other
methods reach their full potential. Using more data for training this algorithm can improve
the detection performance results. While there are a myriad of ANN-based algorithms
that could be applied here—convolutional neural networks, recurrent neural networks,
etc.—there already exists plenty of research that deals with the specifics of certain deep
neural network paradigms in IDS. The focus of the use of ANNs in this paper is only on
validation of the feature set and the minimal amount of data. The second model to be
discussed is the AdaBoost. This algorithm is fast, easy to use and does not require extensive
tuning of hyperparameters. Random forest has proven itself in many network attack
studies and its performance has always been high and the results satisfactory; the authors
found promising results of using this algorithm in previous work [3–5]. The last chosen
algorithm is the naïve Bayes classifier. Its performance is based on a strong assumption of
independence, and in a literal sense, it refers to the statement that the probability of one
attribute does not affect the probability of another. One of the most important aspects of
why this algorithm was selected for validation of this research is that it can perform better
than other algorithms in situations with little training data.

In summary, parameter tuning was applied for each model to obtain the best possible
results. For this purpose, the GridSearch technique was used. The effects of parameter
tuning for each model can be observed in Table 2. The table contains two columns that
represent the name of the parameter and its final value. A 10-fold cross validation was
used during the GridSearch process.

Table 2. The final result of tuning hyperparameters by using the GridSearch technique.

Model Parameter Value

Random
Forest

n_estimators 200

max_features auto

max_depth 8

criterion entropy

AdaBoost n_estimators 230

learning_rate 0.05

Naïve
BAYES var_smoothing 10−9

ANN
epochs 16

batch size 20

loss function categorical_crossentropy

4. Experiments and Results

The first stage of research in this paper was to select an appropriate number of features
from five network datasets based on the NetFlow format. Each set was subjected to a
feature selection process. The correlations of features with each other in the dataset were
evaluated. The following values were eliminated from the set due to high correlation with
other features: OUT_PKTS, CLIENT_TCP_FLAGS, MIN_TTL, SHORTEST_FLOW_PKT,
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DST_TO_SRC_SECOND_BYTES. A summary of the exploration of the feature space offered
by the NetFlow schema culminates in Figure 2, showing the feature correlation map.

Figure 2. The correlations of features in the datasets: NF-UNSW-NB15, NF-BoT-IoT, NF-CSE-CIC-
IDS2018, NF-UQ-NIDS, NF-ToN-IoT.

In the next stage of the testing, three separate feature verifications were conducted
for each of the five sets, with the goal of selecting the 10 features that were most useful
for the entire set. For this purpose, the methods used for the tests were: Chi2, random
forest importance, and LASSO L1. The results of these tests for each dataset can be found
in Figures 3–7. From the above results of examining the ability of individual parameters, it
can be clearly concluded that the set of features worth considering is not 33. To achieve
similar results with such a list of anomalies, it is sufficient to select 10 features.
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Figure 3. The top 10 best features determined by using three algorithms: LASSO L1, random forest
Importance, and Chi2 for dataset nf-unsw-nb15.

Figure 4. The top 10 best features determined by using three algorithms: LASSO L1, random forest
importance, and Chi2 for dataset nf-cse-cic-ids.
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Figure 5. The top 10 best features determined by using three algorithms: LASSO L1, random forest
importance, and Chi2 for dataset nf-ton-iot.

Figure 6. The top 10 best features determined by using three algorithms: LASSO L1, random forest
importance, and Chi2 for dataset nf-uq-nids.
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Figure 7. The top 10 best features determined by using three algorithms: LASSO L1, random forest
importance, and Chi2 for dataset nf-bot-iot.

The second stage of the research was conducted to verify the effect of the data volume
on intrusion detection in network traffic. Using five NetFlow datasets further divided into
subsets with appropriate number of samples, the results in the form of a ROC curve plot
were collected. Nine smaller subsets were separated from each of the five sets. The sizes
of these subsets were as follows: 50, 100, 500, 1000, 2000, 10,000, 20,000, 30,000, and the
last subset was equal to 30% of each total dataset. Another important note is that 50% of
each subset consists of infected traffic, and 50% of clean traffic. The first algorithm that was
trained on all the subset datasets used in this paper was random forest. The configuration
of this model was default, so the parameter selection was not modified. The result for all
the datasets and the random forest algorithm is shown in Figure 8.

It appears that for such anomalies, it only takes about 500 samples, i.e., 250 attack and
250 benign traffic samples, to perform detection with the effectiveness similar to much
larger subsets. The second algorithm used to study the size of data needed for learning is
AdaBoost. The data splitting is identical to the previous algorithm and the results for all
the datasets and the AdaBoost algorithm have been shown in Figure 9.

The third model from which the results were collected is naïve Bayes. The performance
of naïve Bayes was not on par with the other methods. The results are presented in
Figure 10.

The efficiency of the neural network on individual datasets is the last test conducted
as part of the research contained in this paper. The neural network was built based on the
configuration that was mentioned in the earlier section “Classification Models”. The entire
list of studies for this set and the ANN can be found in Figure 11.

The research in this paper concludes with a comprehensive summary of the perfor-
mance results of each algorithm on the five network datasets. The results of this summary
can be found in Table 3. A number of metrics were used to correctly evaluate the effective-
ness of a given model to verify the intrusion detection performance. It can be observed
that the AdaBoost and random forest algorithms perform very well in detecting anomalies
in network traffic.
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Figure 8. Comparison of the number of samples and machine learning effects—ROC curve plot for the random forest algorithm.
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Figure 9. Comparison of the number of samples and machine learning effects—ROC curve plot for the AdaBoost algorithm.
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Figure 10. Comparison of the number of samples and machine learning effects—ROC curve plot for the naïve Bayes classifier.
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Figure 11. Comparison of the number of samples and machine learning effects—ROC curve plot for ANN.
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Table 3. A summary of the effectiveness of the algorithms on each dataset using the listed metrics
and established feature set.

Dataset ACC Precision Recall F1 BCC MCC AUC_ROC

Random Forest

UNSW-NB15 1 1 1 1 0.9858 0.9653 0.9653
BoT-IoT 1 1 1 1 0.9989 0.9970 0.9989
CSE-CIC-IDS 1 1 1 1 0.9828 0.9800 0.9828
UQ-NIDS 0.98 0.98 0.98 0.98 0.9837 0.9557 0.9837
ToN-IoT 1 1 1 1 0.9962 0.9933 0.9962

ADABOOST

UNSW-NB15 1 1 0.95 0.97 0.9943 0.9406 0.9943
BoT-IoT 1 1 1 1 0.9828 0.9800 0.9828
CSE-CIC-IDS 0.99 0.99 0.99 0.99 0.9666 0.9574 0.9666
UQ-NIDS 0.95 0.95 0.95 0.95 0.9540 0.8928 0.9540
ToN-IoT 0.94 0.94 0.94 0.94 0.9321 0.8690 0.9321

Naïve BAYES

UNSW-NB15 0.98 0.98 0.98 0.98 0.8706 0.7902 0.8706
BoT-IoT 0.94 0.99 0.94 0.97 0.6275 0.0667 0.6275
CSE-CIC-IDS 0.94 0.94 0.94 0.94 0.8869 0.7303 0.8869
UQ-NIDS 0.82 0.86 0.82 0.83 0.8524 0.6644 0.8524
ToN-IoT 0.64 0.72 0.64 0.64 0.6807 0.3538 0.6807

ANN

UNSW-NB15 1 1 1 1 0.9930 0.9164 0.9930
BoT-IoT 1 1 1 1 0.9034 0.8653 0.9034
CSE-CIC-IDS 0.99 0.99 0.99 0.99 0.9791 0.9755 0.9791
UQ-NIDS 0.97 0.97 0.97 0.97 0.9701 0.9290 0.9701
ToN-IoT 0.98 0.98 0.98 0.98 0.9681 0.9461 0.9681

5. Discussion

The main motivation for the research was to find the minimal set of features and
the minimum size of data for intrusion detection based on the NetFlow scheme. Using
five recent benchmark datasets, in the first step feature selection was performed with
three methods.

The experiments showed that across all the datasets, the methods indicated common
features to be the most informative. The number of selected features that do not cause a
decrease in the machine learning model capability oscillates around 10 out of 33 features
available in the sets. As can be observed in the figures, the importance of features drops
sharply in most instances after just a few values.

The final set of features is provided by the findings coming from the use of the feature
selection methods, which are presented in Figures 3–7. Some features provided higher
importance scores than others depending on the dataset and measuring method. However,
as can be observed from the figures, many of the features are repeated, which means that
these features have the greatest impact on machine learning performance, regardless of the
dataset and selection method. The final list of features was compiled from the results of
feature selection and compared with the results of the correlation coefficient of the features,
and the features that were strongly correlated with one another were removed.
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The following is the list of features extracted from the evaluated datasets using the
feature selection methods. The list is validated as input data by training four different
ML algorithms.

1. FLOW_DURATION_MILLISECONDS
2. TCP_WIN_MAX_IN
3. DURATION_OUT
4. MAX_TTL
5. L7_PROTO
6. SRC_TO_DST_AVG_THROUGHPUT
7. SHORTEST_FLOW_PKT
8. MIN_IP_PKT_LEN
9. TCP_WIN_MAX_OUT
10. OUT_BYTES

In the second round of research, a study was conducted on the effect of data volume
on intrusion detection in network traffic. In the first stage, the available datasets were
divided into smaller sets, four algorithms were trained on them, and the results were
collected in the form of ROC curve plots. Following [74], the future direction is to focus on
the explainability of IDS.

6. Conclusions and Threats to Validity

The important contribution from this study is the conclusion that large amounts
of data are not needed for effective intrusion detection. The algorithms did not show
much more efficiency and effectiveness after exceeding 2000 samples, which included
1000 samples of normal traffic and 1000 samples of infected traffic. Another important
finding comes in the fact that not all the NetFlow fields available as features are informative
features for ML classifiers.

The nature of network traffic changes over time, with new services, new equipment
and novel threats all being reflected in the traffic characteristics. Thus, the datasets used
for network intrusion detection have to convey those changes and the relevant, current
phenomena. The rapid pace of those changes causes the datasets to become obsolete with
the passage of time. This paper serves as a set of general guidelines for the collection of
relevant network intrusion detection datasets adequate for stream processing solutions.
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63. Huč, A.; Šalej, J.; Trebar, M. Analysis of Machine Learning Algorithms for Anomaly Detection on Edge Devices. Sensors 2021, 21,
4946. [CrossRef]

64. Biswas, P.; Samanta, T. Anomaly detection using ensemble random forest in wireless sensor network. Int. J. Inf. Technol. 2021, 13,
2043–2052. [CrossRef]

65. Seifert, S. Application of random forest based approaches to surface-enhanced Raman scattering data. Sci. Rep. 2020, 10, 5436.
[CrossRef]

66. Gulati, P.; Sharma, A.; Gupta, M. Theoretical Study of Decision Tree Algorithms to Identify Pivotal Factors for Performance
Improvement: A Review. Int. J. Comput. Appl. 2016, 141, 19–25. [CrossRef]

67. Yang, N.; Li, T.; Song, J. Construction of Decision Trees based Entropy and Rough Sets under Tolerance Relation. In International
Journal of Computational Intelligence Systems; Atlantis Press: Paris, France, 2007. [CrossRef]

68. Zhang, H.; Zhou, R. The analysis and optimization of decision tree based on ID3 algorithm. In Proceedings of the 2017 9th
International Conference on Modelling, Identification and Control (ICMIC), Kunming, China, 10–12 July 2017; pp. 924–928.
[CrossRef]

69. Mazini, M.; Shirazi, B.; Mahdavi, I. Anomaly network-based intrusion detection system using a reliable hybrid artificial bee
colony and AdaBoost algorithms. J. King Saud Univ.-Comput. Inf. Sci. 2019, 31, 541–553. [CrossRef]

70. Yuan, Y.; Kaklamanos, G.; Hogrefe, D. A Novel Semi-Supervised Adaboost Technique for Network Anomaly Detection. In
Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
Malta, 13–17 November 2016; pp. 111–114. [CrossRef]

71. Li, W.; Li, Q. Using Naive Bayes with AdaBoost to Enhance Network Anomaly Intrusion Detection. In Proceedings of the
2010 Third International Conference on Intelligent Networks and Intelligent Systems, Shenyang, China, 1–3 November 2010;
pp. 486–489. [CrossRef]

72. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
73. Wibawa, A.; Kurniawan, A.; Murti, D.; Adiperkasa, R.P.; Putra, S.; Kurniawan, S.; Nugraha, Y. Naïve Bayes Classifier for Journal

Quartile Classification. Int. J. Recent Contrib. Eng. Sci. IT (IJES) 2019, 7, 91. [CrossRef]
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