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1. Introduction

The theory of differential equations is a doctrine on oscillations and recurrence, which
are basic in science and technique. Oscillations are most preferable in engineering [1], while
recurrence originates in celestial mechanics [2]. The ultimate recurrence is the Poisson
stability [3–5]. Presently, needs for functions with irregular behavior are exceptionally
strong in neuroscience and celestial dynamics, which is still in the developing mode. In the
present research, we have decided to combine periodic dynamics with the phenomenon
of Poisson stability. That is, one of simplest forms of oscillations is amalgamated with the
most sophisticated type of recurrence. We hope that the choice can give a new push for the
nonlinear analysis, which faces challenging problems of the real world and industry. The
present product of the design are modulo periodic Poisson stable functions.

In paper [6], to strengthen the role of recurrence as a chaotic ingredient we have
extended the Poisson stability to the unpredictability property. Thus, the Poincaré chaos
has been determined, and one can say that the unpredictability implies chaos now. The unpre-
dictable point of the Bebutov dynamics is the unpredictable function. In papers [7–15], we
provided a dynamical method, how to construct Poisson stable functions. Deterministic
and stochastic dynamics have been used. Deterministically unpredictable functions have
been constructed as solutions of hybrid systems, consisting of discrete and differential
equations [9,13,14], and randomly they are results of the Bernoulli process inserted into a
linear differential equation [7,10,16]. Unpredictable oscillations in neural networks have
been researched in [7,13,17–19].

In papers [8–10,14] and books [7,13], discussing existence of unpredictable solutions,
we have developed a new method how to approve Poisson stable solutions, since unpre-
dictable functions are a subset of Poisson stable functions, and to verify the unpredictability
one must check, if the Poisson stability is valid. The method is distinctly different than the
comparability method by character of recurrence, which was introduced in [20] and later has
been realized in several articles [21–27]. Unlike papers [7–10,13–19], the present research is
busy with the new type of Poisson stable functions. Correspondingly, it is the first time in
literature, when quasilinear equations with Poisson stable coefficients are under investiga-
tion. Finally, the systems are approved with modulo periodic Poisson stable solutions. The
newly invented method of verification of the Poisson stability joined with the presence of
the periodic components in the recurrence has made possible the extension for the class
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of studied differential equations. In papers [21–24], quasilinear systems are with constant
matrices of coefficients, and in our case, we research systems with periodic and, even
with Poisson stable coefficients. Another significant novelty is the numerical simulation
of the Poisson stable functions and solutions [7,9,13,14]. We believe that altogether, the
present suggestions can shape a new interesting science direction, not only in the theoretical
study of differential equations, but also they provide rich opportunities for applications in
mechanics, electronics, artificial neural networks, neuroscience.

2. Preliminaries

Throughout the paper, R and N will stand for the set of real and natural num-
bers, respectively. Additionally, the norm ‖u‖1 = supt∈R ‖u(t)‖, where ‖u‖ = max

1≤i≤n
|ui|,

u = (u1, . . . , un), ui ∈ R, i = 1, 2, . . . , n, will be used. Correspondingly, for a square matrix

A = {aij}, i, j = 1, 2, . . . , n, the norm ‖A‖ = max
i=1,...,n

n

∑
j=1
|aij| will be used.

Definition 1 ([5]). A continuous and bounded function ψ(t) : R→ Rn is called Poisson stable, if
there exists a sequence tk, which diverges to infinity such that the sequence ψ(t + tk) converges to
ψ(t) uniformly on bounded intervals of R.

The sequence tk in the last definition is said to be Poisson sequence of the function ψ(t).
By Lemma A1 in the Appendix A, for a positive fixed ω there exist a subsequence tkl

of the Poisson sequence tk and a number τω such that tkl
→ τω(mod ω) as l → ∞. We shall

call the number τω as the Poisson shift for the Poisson sequence tk with respect to the ω.
It is not difficult to find that for the fixed ω the set of all Poisson shifts, Tω, is not empty,
and it can consist of several and even infinite number elements. The number κω = in f Tω ,
0 ≤ κω < ω, is said to be the Poisson number for the Poisson sequence tk with respect to the
number ω.

Definition 2. The sum φ(t)+ψ(t) is said to be a modulo periodic Poisson stable (MPPS) function,
if φ(t) is a continuous periodic and ψ(t) is a Poisson stable functions.

We shall call the function φ(t) the periodic component and the function ψ(t) the Poisson
component of the MPPS function in what follows.

Remark 1. Duo to Lemma A3, an MPPS function is a Poisson stable if κω equals zero. Otherwise,
without loss of generality, the sequence φ(t + tk) + ψ(t + tk) converges on all compact subsets of
the real axis to the function φ(t + τω) + ψ(t), where τω is a nonzero Poisson shift for the sequence
tk. Since of the periodicity of the function φ(t), one can accept the last convergence as a special form
of recurrence. In the next section, we shall consider it as a result of Theorem 1.

3. Main Results
3.1. Linear System of Differential Equations

Consider the following system

x′(t) = A(t)x(t) + φ(t) + ψ(t), (1)

where t ∈ R, x ∈ Rn, n ∈ N, φ(t) : R→ Rn and ψ(t) : R→ Rn are continuous functions,
A(t) is a continuous n× n matrix.

We assume that the following conditions are satisfied.

(C1) A(t) is an ω−periodic matrix for a fixed positive ω;
(C2) φ(t) is an ω−periodic function, and ψ(t) is a Poisson stable function with a Poisson

sequence tk;
(C3) the Poisson number κω for the sequence tk is equal to zero.
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According to Definition 2 and condition (C2), the sum φ(t)+ψ(t) is an MPPS function,
i.e., the linear system (1) is with MPPS perturbation.

Let us consider the homogeneous system, associated with (1),

x′(t) = A(t)x(t). (2)

Let X(t), t ∈ R, is the fundamental matrix of the system (2) such that X(0) = I, and I is the
n× n identical matrix. Moreover, X(t, s) is transition matrix of the system (2), which equal
to X(t)X−1(s), and X(t + ω, s + ω) = X(t, s) for all t, s ∈ R.

We assume that the following additional assumption is valid.

(C4) The multipliers of the system (2) in modulus are less than one.

It follows from the last condition that there exist positive numbers K ≥ 1 and α
such that

‖X(t, s)‖ ≤ Ke−α(t−s), (3)

for t ≥ s [28].

Lemma 1. If the inequality (3) is satisfied, then the following estimation is correct

‖X(t + τ, s + τ)− X(t, s)‖ ≤ max
t∈R
‖A(t + τ)− A(t)‖2K2

α2e
e−

α
2 (t−s), (4)

for t ≥ s and arbitrary real number τ.

Proof. Since

dX(t + τ, s + τ)

dt
= A(t)X(t + τ, s + τ) + (A(t + τ)− A(t))X(t + τ, s + τ),

we have that

X(t + τ, s + τ) = X(t, s) +
∫ t

s
X(t, u)(A(u + τ)− A(u))X(u + τ, s + τ)du.

That is why,

‖X(t + τ, s + τ)− X(t, s)‖ ≤∫ t

s
‖X(t, u)‖‖A(u + τ)− A(u)‖‖X(u + τ, s + τ)‖du ≤

max
t∈R
‖A(t + τ)− A(t)‖

∫ t

s
K2e−α(t−s)du =

max
t∈R
‖A(t + τ)− A(t)‖K2

α
e−α(t−s)(t− s) =

max
t∈R
‖A(t + τ)− A(t)‖K2

α
e−

α
2 (t−s)e−

α
2 (t−s)(t− s).

Since sup
u≥0

e−
α
2 uu =

2
αe

, the lemma is proved.

Theorem 1. Assume that conditions (C1), (C2) and (C4) are valid. Then the system (1) admits a
unique asymptotically stable MPPS solution.

Proof. The bounded solution of system (1) has the form [28]

x(t) =
∫ t

−∞
X(t, s)[φ(s) + ψ(s)]ds, t ∈ R. (5)
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One can write that x(t) = xφ(t) + xψ(t), where xφ(t) =
∫ t

−∞
X(t, s)φ(s)ds and

xψ(t) =
∫ t

−∞
X(t, s)ψ(s)ds.

It is not difficult to show that the function xφ(t) is ω−periodic [29].
Next, we prove that the function xψ(t) is Poisson stable. Fix arbitrary positive number

ε and interval [a, b], −∞ < a < b < ∞. We will show that for a large k it is true that
‖xψ(t + tk)− xψ(t)‖ < ε on [a, b]. Let us choose two numbers c and ξ such that c < a and
ξ is positive, satisfying the following inequalities,

4K2mψ

α3e
ξ <

ε

3
, (6)

2Kmψ

α
e−α(a−c) <

ε

3
, (7)

and

Kξ

α
[1− e−α(b−c)] <

ε

3
, (8)

with mψ = sup
t∈R
‖ψ(t)‖. By applying condition (C4), without loss of generality, for sufficiently

large k we obtain that ‖A(t + tk)− A(t)‖ < ξ for all t ∈ R, and ‖ψ(t + tk)− ψ(t)‖ < ξ for
t ∈ [c, b]. Using Lemma 1 we attain that

‖xψ(t + tk)− xψ(t)‖ = ‖
∫ t

−∞

(
X(t + tk, s + tk)ψ(s + tk)− X(t, s)ψ(s)

)
ds‖ ≤∫ t

−∞
‖X(t + tk, s + tk)− X(t, s)‖‖ψ(s + tk)‖ds +∫ t

−∞
‖X(t, s)‖‖ψ(s + tk)− ψ(s)‖ds =∫ t

−∞
‖X(t + tk, s + tk)− X(t, s)‖‖ψ(s + tk)‖ds +∫ c

−∞
‖X(t, s)‖‖ψ(s + tk)− ψ(s)‖ds +

∫ t

c
‖X(t, s)‖‖ψ(s + tk)− ψ(s)‖ds ≤∫ t

−∞

2K2ξ

α2e
e−

α
2 (t−s)mψds +

∫ t

−∞
2Ke−α(t−s)mψds +

∫ t

−∞
Ke−α(t−s)ξds ≤

4K2ξ

α3e
mψ +

2Kmψ

α
e−α(a−c) +

Kξ

α
[1− e−α(b−c)].

Now, the inequalities (6) to (8) imply that ‖xψ(t + tk)− xψ(t)‖ < ε, for t ∈ [a, b]. Therefore,
the sequence xψ(t + tk) uniformly converges to xψ(t) on each bounded interval. Thus,
according to the Definition 2 the solution x(t) of the system (1) is MPPS function with the
periodic component xφ(t) and the Poisson component xψ(t). The asymptotic stability of
the MPPS solution can be verified in the same way as for the bounded solution of a linear
inhomogeneous system [29].

The following examples show the validity of the obtained theoretical result.

Example 1. Let us consider the following linear inhomogeneous system,

x′1 = (−1 + 0.5sin(2t))x1 + 2.5cos(t) + 5.5Θ2(t),
x′2 = (−2 + 0.25cos(t))x2 + 2sin(2t) + 1.7Θ(t),

(9)
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where Θ(t) =
∫ t
−∞ e−3(t−s)Ω(3.85;6π)(s)ds is the Poisson stable function described in Appendix B.

The perturbation is an MPPS function with the periodic component φ(t) =
(

2.5cos(t), 2sin(2t)
)T

and the Poisson component ψ(t) =
(

5.5Θ2(t), 1.7Θ(t)
)T

. The common period of the coefficient

A(t) and the periodic component φ(t) is 2π. Since the function Ω(3.85,6π)(t) is constructed on the
intervals [6πi, 6π(i + 1)), i ∈ Z, for the Poisson sequence tk of the function Θ(t) there exists a
subsequence tkl

such that tkl
→ 0(mod 2π). Therefore, the Poisson number κω = 0. Condition

(C4) is valid with the multipliers ρ1 = e−2π , and ρ2 = e−4π . According to Theorem 1, the system
admits a unique asymptotically stable MPPS solution, z(t). Since it is impossible to determine the
initial value of the solution, we simulate a solution, which asymptotically approaches z(t) as time
increases. We depict in Figure 1 the coordinates of the solution x(t), with initial values x1(0) = 2.5
and x2(0) = 1.5, which visualizes the MPPS solution approximately. In Figure 2 the trajectory of
the solution x(t) is shown.
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Figure 1. Coordinates of the solution x(t) of system (9) with initial values x1(0) = 2.5 and x2(0) = 1.5,
which asymptotically converge to the coordinates of the MPPS solution z(t) of the system.
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Figure 2. The trajectory of the solution x(t) of the Equation (9), which asymptotically approaches the
MPPS solution z(t) of the system.

In the next example, the periodic component φ(t) of the MPPS perturbation is absent,
but the condition (C2) is correct, since a constant function is of arbitrary period. It is
remarkable to say that the absence of a proper non-constant periodic component makes
the dynamics more irregular, this is seen in Figures 3 and 4.
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Example 2. Consider the inhomogeneous linear system

x′1 = (−0.25 + 0.5cos(πt))x1 + 12Θ3(t),
x′2 = (−1.5 + sin2(πt))x2 + 8Θ2(t),
x′3 = (−0.5 + cos( 2π

3 t))x3 + 6Θ(t),
(10)

where Θ(t) =
∫ t
−∞ e−2(t−s)Ω(3.9;6)(s)ds. The conditions (C1)–(C3) are satisfied, and condition

(C4) is valid with multipliers ρ1 = e−0.75, ρ2 = e−3 and ρ3 = e−1.5. Consequently, there exists the
unique asymptotically stable MPPS solution of the system (10). Figure 3 presents the coordinates
of the solution x(t) with initial values x1(0) = 1, x2(0) = 1 and x3(0) = 1. The coordinates of
solution x(t) approximate the coordinates of the MPPS solution. The trajectory of the solution x(t)
is shown in Figure 4.
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Figure 3. Coordinates of the solution x(t), with initial values x1(0) = 1, x2(0) = 1 and x3(0) = 1,
which asymptotically converge to the coordinates of the MPPS solution of system (10).
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Figure 4. The trajectory of the solution, x(t), of Equation (10), which asymptotically approaches the
MPPS solution of the equation.

3.2. Quasilinear Differential Equations

The main object of the present section is the system of quasilinear differential equations

x′(t) = A(t)x + g(t, x) + φ(t) + ψ(t), (11)

where t ∈ R, x ∈ Rn, n is a fixed natural number; A(t) is n−dimensional square matrix
and satisfies to the condition (C1) and inequality (3); g : R×U → Rn, g = (g1, . . . , gn),
U = {x ∈ Rn, ‖x‖ < H}, where H is a fixed positive number; the functions φ(t) and ψ(t)
satisfy conditions (C2) and (C3).

The following conditions on system (11) are required.
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(C5) the function g(t, x) is continuous and ω−periodic in t;
(C6) there exists a positive constant L such that ‖g(t, x1)− g(t, x2)‖ ≤ L‖x1 − x2‖ for all

t ∈ R, x1, x2 ∈ U.

We denote sup
R×U
‖g(t, x)‖ = mg, max

t∈R
‖φ(t)‖ = mφ and sup

t∈R
‖ψ(t)‖ = mψ.

The following additional conditions will be needed:

(C7)
K(mg + mφ + mψ)

H
< α;

(C8) KL < α.

For simplicity, we use the notation F(t, x) = g(t, x) + φ(t) + ψ(t) in what follows.
According to [28], a bounded on the real axis function y(t) is a solution of (11), if and

only if it satisfies the equation

y(t) =
∫ t

−∞
X(t, s)F(s, y(s))ds, t ∈ R. (12)

Theorem 2. If conditions (C1)–(C8) are valid, then the system (11) possesses a unique asymptoti-
cally stable Poisson stable solution.

Proof. Let tk is the Poisson sequence of the function ψ(t) in the system (11). We denote by
B the set of all Poisson stable functions ν(t) = (ν1, ν2, . . . , νn), νi ∈ R, i = 1, 2, . . . , n, with
common Poisson sequence tk, which satisfy ‖ν‖1 < H.

Let us show that the B is a complete space. Consider a Cauchy sequence θm(t) in B,
which converges to a limit function θ(t) on R. We have that

‖θ(t + tk)− θ(t)‖ < ‖θ(t + tk)− θm(t + tk)‖+ ‖θm(t + tk)− θm(t)‖+
‖θm(t)− θ(t)‖. (13)

for a fixed closed and bounded interval I ⊂ R. Now, one can take sufficiently large m and
k such that each term on the right hand-side of (13) is smaller than ε

3 for a fixed positive ε
and t ∈ I, i.e., the sequence θ(t + tk) uniformly converges to θ(t) on I. Likewise, one can
check that the limit function is uniformly continuous [28]. The completeness of B is shown.

Define the operator Π on B such that

Πν(t) =
∫ t

−∞
X(t, s)F(s, ν(s))ds, t ∈ R. (14)

Fix a function ν(t) that belongs to B. We have that

‖Πν(t)‖ ≤
∫ t

−∞
‖X(t, s)‖‖F(s, ν(s))‖ds ≤

K(mg + mφ + mψ)

α

for all t ∈ R. Therefore, by the condition (C7) it is true that ‖Πν‖1 < H.
Fix a positive number ε and an interval [a, b], −∞ < a < b < ∞. Let us choose two

numbers c < a, and ξ > 0 satisfying the inequalities

4K2ξ

α3e
(mg + mφ + mψ) <

ε

3
, (15)

2K
α
(mg + mφ + mψ)e−α(a−c) <

ε

3
, (16)

and

Kξ

α
[1− e−α(b−c)] <

ε

3
. (17)



Entropy 2021, 23, 1535 8 of 17

Using the condition (C4) and Lemmas A3 and A5 from Appendix A, without loss of
generality, we obtain that ‖A(t + tk)− A(t)‖ < ξ for all t ∈ R, and ‖F(t + tk, ν(t + tk))−
F(t, ν(t))‖ < ξ for t ∈ [c, b] and sufficiently large k. Then, applying the inequality (4),
we obtain:

‖Πν(t + tk)−Πν(t)‖ =

‖
∫ t

−∞
X(t + tk, s + tk)F(s + tk, ν(s + tk))ds−

∫ t

−∞
X(t, s)F(s, ν(s))ds‖ ≤∫ t

−∞
‖X(t + tk, s + tk)− X(t, s)‖‖F(s + tk, ν(s + tk))‖ds +∫ c

−∞
‖X(t, s)‖‖F(s + tk, ν(s + tk))− F(t, s)‖ds +∫ t

c
‖X(t, s)‖‖F(s + tk, ν(s + tk))− F(t, s)‖ds ≤∫ t

−∞

2K2ξ

α2e
e−

α
2 (t−s)(mg + mφ + mψ)ds +∫ t

−∞
2Ke−α(t−s)(mg + mφ + mψ)ds +

∫ t

−∞
Ke−α(t−s)ξds ≤

4Kξ

α3e
(mg + mφ + mψ) +

2K
α
(mg + mφ + mψ)e−α(a−c) +

Kξ

α
[1− e−α(b−c)],

for all t ∈ [a, b]. From inequalities (15)–(17) it follows that ‖Πν(t + tk)−Πν(t)‖ < ε for
t ∈ [a, b]. Therefore, Πν(t + tk) uniformly converges to Πν(t) on bounded interval of R.

It is easy to verify that Πν(t) is a uniformly continuous function, since its derivative is
a uniformly bounded function on the real axis. Summarizing the above discussion, the set
B is invariant for the operator Π.

We proceed to show that the operator Π : B→ B is contractive. Let u(t) and v(t) be
members of B. Then, we obtain that

‖Πu(t)−Πv(t)‖ ≤
∫ t

−∞
‖X(t, s)‖‖F(s, u(s))− F(s, v(s))‖ds ≤∫ t

−∞
Ke−α(t−s)L‖u(s)− v(s)‖ds ≤ KL

α
‖u(t)− v(t)‖1,

for all t ∈ R. Therefore, the inequality ‖Πu−Πv‖1 ≤
KL
α
‖u− v‖1 holds, and according to

the condition (C8) the operator Π : B→ B is contractive.
By the contraction mapping theorem there exists the unique fixed point, x̄(t) ∈ B, of

the operator Π, which is the unique bounded Poisson stable solution of the system (11).
Finally, we will study the asymptotic stability of the Poisson stable solution x̄(t) of the

system (11). It is true that

x̄(t) = X(t, t0)x̄(t0) +
∫ t

t0

X(t, s)
(

g(s, x̄(s)) + φ(s) + ψ(s)
)

ds,

for t ≥ t0.
Let x(t) be another solution of system (11). One can write

x(t) = X(t, t0)x(t0) +
∫ t

t0

X(t, s)
(

g(s, x(s)) + φ(s) + ψ(s)
)

ds.

Making use of the relation

x̄(t)− x(t) = X(t, t0)(x̄(t0)− x(t0)) +
∫ t

t0

X(t, s)
(

g(s, x̄(s))− g(s, x(s))
)

ds,
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we obtain that

‖x̄(t)− x(t)‖ ≤ ‖X(t, t0)‖‖x̄(t0)− x(t0)‖+
∫ t

t0

‖X(t, s)‖‖g(s, x̄(s))− g(s, x(s)‖ds ≤

Ke−α(t−t0)‖x̄(t0)− x(t0)‖+
∫ t

t0

KLe−α(t−s)‖x̄(s)− x(s)‖ds.

Now, applying Gronwall–Bellman Lemma, one can attain that

‖x̄(t)− x(t)‖ ≤ Ke−(α−KL)(t−t0)‖x̄(t0)− x(t0)‖, t ≥ t0. (18)

The last inequality and condition (C8) confirm that the Poisson stable solution x̄(t) is
asymptotically stable. The theorem is proved.

Remark 2. According to the Lemma A4 in the Appendix A, the Poisson stable solution x̄(t) of the
system (11) is an MPPS function.

Example 3. Consider the quasilinear system.

x′1 = (−1.5 + 2sin(2t))x1 + 0.01cos(2t)arctg(x2) + 1.2sin(8t)− 10.5Θ3(t),
x′2 = (−3.5 + 3sin2(2t))x2 + 0.03sin(4t)arctg(x3)− 1.5cos(8t) + 2.5Θ(t),
x′3 = (−1.5 + 2cos2(t))x3 − 0.02sin(2t)arctg(x1) + sin(4t) + 7.2Θ2(t),

(19)

where Θ(t) =
∫ t
−∞ e−3(t−s)Ω(3.86,3π)(s)ds is the Poisson stable function, which described sim-

ilarly to that in Appendix B. Since, the piecewise constant function Ω(3.86;3π)(t) is given on
intervals [3πi, 3π(i + 1)), for the Poisson sequence tk of the function Θ(t) there exists a sub-
sequence tkl

such that tkl
→ 0(mod π), that is the condition (C3) is valid. The common

period of the matrix A(t) and functions g(t, x), φ(t) is equal to π. We have that the func-
tion g(t, x) = (0.01cos(2t)arctg(x2), 0.03sin(4t)arctg(x3),−0.02sin(2t)arctg(x1))

T is con-
tinuous and π− periodic in t and satisfies condition (C6) with L = 0.03. The sum of φ(t) =
(1.2sin(8t),−1.5cos(8t), sin(4t))T and ψ(t) = (10.5Θ3(t), 2.5Θ(t), 7.2Θ2(t))T is an MPPS
function, which meets conditions (C2), (C3). The assumptions (C4)–(C8) are valid with mg = 0.048,
mφ = 1.5, mψ = 0.84, ρ1 = e−1.5π , ρ2 = e−2π , ρ3 = e−0.5π , α = 0.5π, K = 1, and H = 4.8.
Thus, all conditions for the last theorem have been verified, and there is the Poisson stable solution
of the system, which is asymptotically stable.

It is worth noting that the simulation of the Poisson stable solution, x̄(t), is not possible,
since the initial value is not known precisely. For this reason, we will consider the solution
x(t) of the system (19), with initial values x1(0) = 1, x2(0) = 1 and x3(0) = 1. Using the
inequality (18) one can obtain that ‖x̄(t)− x(t)‖ ≤ e−1.54‖x̄(0)− x(0)‖ for t ≥ 0. The last
inequality shows that ‖x̄(t)− x(t)‖ decreases exponentially. Consequently, the graph of the
solution x(t) asymptotically approaches the Poisson stable solution x̄(t) of the system (19),
as time increases. The Figure 5 demonstrates the coordinates of the solution x(t), which
illustrate the Poisson stability of the system (19). In the Figure 6 the trajectory of the
function x(t) is depicted.
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Figure 5. The coordinates of the solution x(t), with x1(0) = 1, x2(0) = 1, x3(0) = 1, which is
asymptotic for the Poisson stable solution of the system (19).
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Figure 6. The trajectory of the solution x(t), with x1(0) = 1, x2(0) = 1, x3(0) = 1, which illustrates
the Poisson stability of the system (19).

3.3. A Case with MPPS Coefficients

Let us consider the quasilinear Equation (11) with A(t) = B(t) + D(t), where B(t)
is a continuous ω−periodic matrix, and D(t) is a Poisson stable matrix with the Poisson
sequence tk. That is, the coefficient is an MPPS matrix and the system (11) is of the form

x′(t) = (B(t) + D(t))x + g(t, x) + φ(t) + ψ(t), (20)

where the functions φ(t) and ψ(t) satisfy conditions (C2) and (C3) and their sum is an
MPPS function. The function g(t, x) satisfies conditions (C5), (C6).

Denote G(t, x) = D(t)x + g(t, x) + φ(t) + ψ(t) and rewrite the system (20) as

x′(t) = B(t)x + G(t, x). (21)
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The homogeneous ω− periodic system, associated with (20),

y′(t) = B(t)y, (22)

has the fundamental matrix Y(t), Y(0) = I, and the transition matrix Y(t, s), t, s ∈ R.
Assume that the following assumptions are valid.

(C9) The multipliers of the system (22) are in modulus less than one.

From the condition (C9) we have that there exist positive numbers D ≥ 1 and β such that

‖Y(t, s)‖ ≤ De−β(t−s), (23)

for t ≥ s.

(C10) D(L + d) < β;

(C11)
D(mg + mφ + mψ)

H
< β− Dd,

where d = supt∈R ‖D(t)‖.

Theorem 3. If conditions (C2), (C3), (C5), (C6), and (C9) to (C11) are hold, then system (20)
admits a unique asymptotically stable Poisson stable solution.

Proof. A bounded on the real axis function z(t) is a solution of (21), if and only if it satisfies
the equation

z(t) =
∫ t

−∞
Y(t, s)G(s, z(s))ds, t ∈ R. (24)

Denote by U the Banach space of all Poisson stable functions ν(t) = (ν1, ν2, . . . , νn), νi ∈ R,
i = 1, 2, . . . , n, with common Poisson sequence tk. The functions of space U satisfies the
condition ‖ν‖1 < H.

Introduce the operator Γ on U such that

Γν(t) =
∫ t

−∞
Y(t, s)G(s, ν(s))ds, t ∈ R. (25)

Let us show that the space U is invariant for the operator Γ. Fix a function ν(t) from U . We
have that

‖Γν(t)‖ ≤
∫ t

−∞
‖Y(t, s)‖‖G(s, ν(s))‖ds ≤

D(dH + mg + mφ + mψ)

β

for all t ∈ R. Condition (C11) implies that ‖Γν‖1 < H.
Next, we will use fixed positive number ε and an interval [a, b], −∞ < a < b < ∞,

and two numbers c < a, and ξ > 0 satisfying the following inequalities

4DK2ξ

β3e
(dH + mg + mφ + mψ) <

ε

3
, (26)

2D
β

(dH + mg + mφ + mψ)e−α(a−c) <
ε

3
, (27)

and

Dξ

β
[1− e−α(b−c)] <

ε

3
. (28)
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Using the condition (C9) and Lemmas A3, A5 from Appendix A, we obtain that ‖B(t +
tk)− B(t)‖ < ξ for all t ∈ R, and ‖G(t + tk, ν(t + tk))− G(t, ν(t))‖ < ξ for t ∈ [c, b] and
sufficiently large k. Then, applying the inequality (4), we obtain

‖Γν(t + tk)− Γν(t)‖ =

‖
∫ t

−∞
Y(t + tk, s + tk)G(s + tk, ν(s + tk))ds−

∫ t

−∞
Y(t, s)G(s, ν(s))ds‖ ≤∫ t

−∞
‖Y(t + tk, s + tk)−Y(t, s)‖‖G(s + tk, ν(s + tk))‖ds +∫ c

−∞
‖Y(t, s)‖‖G(s + tk, ν(s + tk))− G(t, s)‖ds +∫ t

c
‖Y(t, s)‖‖G(s + tk, ν(s + tk))− G(t, s)‖ds ≤∫ t

−∞

2D2ξ

β2e
e−

β
2 (t−s)(dH + mg + mφ + mψ)ds +∫ t

−∞
2De−β(t−s)(dH + mg + mφ + mψ)ds +

∫ t

−∞
De−β(t−s)ξds ≤

4Dξ

β3e
(dH + mg + mφ + mψ) +

2D
β

(dH + mg + mφ + mψ)e−β(a−c) +
Dξ

β
[1− e−β(b−c)],

for all t ∈ [a, b]. Hence, the inequalities (26)-(28) give that ‖Γν(t + tk)− Γν(t)‖ < ε for
t ∈ [a, b]. Therefore, the sequence Γν(t + tk) uniformly converges to Γν(t) on the bounded
interval of R. Thus, we have shown that the operator Γ is invariant in U .

Let us show that the operator Γ : U → U is contractive. Fix members u(t) and v(t) of
U . It is true that

‖Γu(t)− Γv(t)‖ ≤
∫ t

−∞
‖Y(t, s)‖‖G(s, u(s))− G(s, v(s))‖ds ≤∫ t

−∞
De−β(t−s)(d + L)‖u(s)− v(s)‖ds ≤ D(d + L)

β
‖u(t)− v(t)‖1,

for all t ∈ R, and condition (C10) implies that the operator Γ is contractive.
Using the contraction mapping theorem, one can conclude that there exists a unique

fixed point, x̄(t), of the operator Γ, which is the Poisson stable solution of the system (20).
Let us investigate its stability.

If x(t) is a solution of the equation (20), then

x̄(t)− x(t) = Y(t, t0)(x̄(t0)− x(t0)) +∫ t

t0

Y(t, s)
(

D(s)(x̄(s)− x(s)) + (g(s, x̄(s))− g(s, x(s))
)

ds,

and

‖x̄(t)− x(t)‖ ≤ ‖Y(t, t0)‖‖x̄(t0)− x(t0)‖+∫ t

t0

‖Y(t, s)‖
(
‖D(s)(x̄(s)− x(s))‖+ ‖g(s, x̄(s))− g(s, x(s)‖

)
ds ≤

De−β(t−t0)‖x̄(t0)− x(t0)‖+
∫ t

t0

D(d + L)e−α(t−s)‖x̄(s)− x(s)‖ds.

With the aid of the Gronwall–Bellman Lemma, one can verify that

‖x̄(t)− x(t)‖ ≤ De−(β−D(d+L))(t−t0)‖x̄(t0)− x(t0)‖, t ≥ t0. (29)

Now, based on the condition (C10), we conclude that the Poisson stable solution x̄(t) of
system (20) is asymptotically stable. The theorem is proved.
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4. Conclusions

In this paper, we have introduced a new type of recurrence, which is the sum of
two compartments, periodic and Poisson stable functions. We call it as modulo periodic
Poisson stable function. Sufficient conditions for the dynamics to be Poisson stable have
been determined. The novelty is convenient for theoretical analysis of differential and
discrete equations of various types. In the present paper, we study quasilinear ordinary
differential equations. If one consider the periodic compartment in the Poisson stability,
and achievements of the paper for simulations of the recurrence, the results create new pro-
ductive opportunities in the research of mechanical, electronic dynamics and neuroscience.
Concerning theoretical research, it is of strong interest to search for Poisson stability and
its periodic components in such famous dynamics as Lorenz, Rössler and Chua attractors.
Generally speaking, one can look for periodic components of any chaotic dynamics. The
results can be applied in problems of optimization. The results can be applied for problems
of optimization.
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Appendix A

Lemma A1. For arbitrary sequence of positive real numbers tk, k = 1, 2, · · · , and a positive
number ω there exist a subsequence tkl

, l = 1, 2, · · · , and a number τω, 0 ≤ τω < ω, such that
tkl
→ τω(mod ω) as l → ∞.

Proof. Consider the sequence τk such that tk ≡ τk(mod ω), and 0 ≤ τk < ω for all k ≥ 1.
The boundedness of the sequence τk implies that there exists a subsequence τkl

, which
converges to a number τω [30].

Lemma A2. κω ∈ Tω.

Proof. Assume on the contrary that κω is not in Tω . Then there exists a strictly decreasing
sequence τm, m ≥ 1, in Tω, such that τm → κω. For each natural m, denote by tm

i a
subsequence of tk such that tm

i → τm(mod ω) as i→ ∞.
Fix a sequence of positive numbers εn, which converges to the zero. One can find

numbers in, n = 1, 2, . . . , such that |tn
in − τn| < εn(mod ω). It is clear that tn

in → κω(mod ω)
as n→ ∞.

Remark A1. The last assertion implies that if κω = 0, then there exists a subsequence tkl
such

that tkl
→ 0(mod ω) as l → ∞.

Lemma A3. If f (t) = φ(t) + ψ(t) is an MPPS function, and κω = 0, then the function f (t) is
Poisson stable.
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Proof. According to Lemma A2, there exists a subsequence tkl , which tends to zero in
modulus ω as l → ∞. Without loss of generality assume that tk → 0(mod ω) as k→ ∞. Fix
a positive number ε, and bounded interval I ⊂ R. The periodic function φ(t) is uniformly
continuous on R. Consequently, there exists a number k1 such that

‖φ(t + tk)− φ(t)‖ < ε

2
,

for all t ∈ R and k > k1. Moreover, there exists an integer k2, such that

‖ψ(t + tk)− ψ(t)‖ < ε

2
,

for t ∈ I, k > k2. This is why,

‖ f (t + tk)− f (t)‖ ≤ ‖φ(t + tk)− φ(t)‖+ ‖ψ(t + tk)− ψ(t)‖ < ε,

if t ∈ I and k > max(k1, k2). That is, the function f (t) is Poisson stable.

Lemma A4. Assume that ψ(t) is a Poisson stable function. If κω = 0, for some positive number
ω, then ψ(t) is MPPS function.

Proof. Let us write ψ(t) = g(t) + (ψ(t)− g(t)), where g(t) is a continuous ω−periodic
function. Since κω = 0, then the subtraction ψ(t)− g(t) is Poisson stable by Lemma A3.

Remark A2. The last result is a source for the optimization problem how to choose the function
g(t) and the period ω to minimize the difference ψ(t) − g(t). In other words, the problem of
approximation of Poisson stable functions with periodic ones. It is of exceptional interest for celestial
mechanics [2].

Lemma A5. Assume that a function G(t, u) : R × U → Rn, U ⊆ Rn, is a Poisson stable
function in t and satisfies the inequality ‖G(t, u1)− G(t, u2)‖ ≤ L‖u1 − u2‖, where L is a
positive constant, for all t ∈ R, u1, u2 ∈ U. Moreover, υ(t) : R → U is ω−periodic in t. If the
Poisson sequence and period ω are such that the Poisson number κω equals to the zero, then the
function G(t, υ(t)) is Poisson stable.

Proof. By the Lemma A2 there exists a subsequence tkl
, such that tkl

→ 0(mod ω) as l → ∞.
We assume, without loss of generality, that the sequence tk itself satisfies the condition
tk → 0(mod ω) as k→ ∞.

Let us fix a positive number ε, and a bounded interval I. Since of the property of
the sequence tk, we have that for sufficiently large k, it is true that ‖G(t + tk, υ(t + tk))−
G(t, υ(t + tk))‖ <

ε

2
for all t ∈ R, and ‖υ(t + tk)− υ(t)‖ < ε

2L
for t ∈ I, and

‖G(t + tk, υ(t + tk))− G(t, υ(t))‖ ≤ ‖G(t + tk, υ(t + tk))− G(t, υ(t + tk))‖+
‖G(t, υ(t + tk))− G(t, υ(t))‖ ≤ ‖G(t + tk, υ(t + tk))− G(t, υ(t + tk))‖+

L‖υ(t + tk)− υ(t)‖ ≤ ε

2
+ L

ε

2L
≤ ε,

for all t ∈ I. That is, G(t, υ(t)) is Poisson stable function.

Lemma A6. Assume that a function G(t, u) : R×U → Rn, U ⊆ Rn, is ω−periodic in t and
satisfies the inequality ‖G(t, u1)− G(t, u2)‖ ≤ L‖u1 − u2‖, where L is a positive constant, for all
t ∈ R, u1, u2 ∈ U. Moreover, υ(t) : R→ U is a Poisson stable function. If the Poisson sequence
and period ω are such that the Poisson number κω equals to the zero, then the function G(t, υ(t))
is Poisson stable.
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Proof. Since κω = 0, the Lemma A2 implies that there exists a subsequence tkl
, such that

tkl
→ 0(mod ω) as l → ∞. For simplicity, we assume that the sequence tk itself satisfies the

condition tk → 0(mod ω) as k→ ∞. Therefore, G(t + tk, v) uniformly converges to G(t, v)
as k→ ∞, for all t ∈ R and v ∈ U .

Consequently, for arbitrarily fixed positive number ε and a bounded interval I one

can find sufficiently large number k such that ‖G(t + tk, υ(t + tk))− G(t, υ(t + tk))‖ <
ε

2
for all t ∈ R, and ‖υ(t + tk)− υ(t)‖ < ε

2L
for t ∈ I. Finally, we have that

‖G(t + tk, υ(t + tk))− G(t, υ(t))‖ ≤ ‖G(t + tk, υ(t + tk))− G(t, υ(t + tk))‖+
‖G(t, υ(t + tk))− G(t, υ(t))‖ ≤ ‖G(t + tk, υ(t + tk))− G(t, υ(t + tk))‖+

L‖υ(t + tk)− υ(t)‖ ≤ ε

2
+ L

ε

2L
≤ ε,

for all t ∈ I. That is, G(t, υ(t)) is Poisson stable function.

Lemma A7. Assume that a function G(t, u) : R×U → Rn, U ⊆ Rn, is Poisson stable in t and
satisfies the inequality ‖G(t, u1)− G(t, u2)‖ ≤ L‖u1 − u2‖, where L is a positive constant, for all
t ∈ R, u1, u2 ∈ U. Moreover, υ(t) : R→ U is a Poisson stable function. If there exists a Poisson
sequence common for the functions G(t, u) and υ(t), then the function G(t, υ(t)) is Poisson stable.

Proof. Let us fix a positive number ε, and a bounded interval I. Since G(t, v(t)) is Poisson
stable in t, and v(t) is Poisson stable function, there exists sufficiently large k, such that

‖G(t + tk, υ(t + tk))− G(t, υ(t + tk))‖ <
ε

2
for all t ∈ R, and ‖υ(t + tk)− υ(t)‖ < ε

2L
for

t ∈ I. That is,

‖G(t + tk, υ(t + tk))− G(t, υ(t))‖ ≤ ‖G(t + tk, υ(t + tk))− G(t, υ(t + tk))‖+
‖G(t, υ(t + tk))− G(t, υ(t))‖ ≤ ‖G(t + tk, υ(t + tk))− G(t, υ(t + tk))‖+

L‖υ(t + tk)− υ(t)‖ ≤ ε

2
+ L

ε

2L
≤ ε,

for all t ∈ I. Thus, G(t, υ(t)) is Poisson stable function.

Remark A3. The last lemma implies, in particular, that sum and product of Poisson stable functions
with common Poisson sequence are Poisson stable functions.

Appendix B

This part of the paper is about an example of the Poisson stable functions. The task
is not an easy one, and there are very few constructively determined cases [4,5]. In our
research, we use the dynamical approach of functions determination. One of the most
familiar is of sin and cos functions as solutions of ordinary differential equations. We
shall consider the Poisson function as a continuous component of solution for a hybrid
system, which consists of a discrete equation and a simple differential equation, while
discrete component can be accepted as a Poisson stable sequence. A significant element
of the present study is visualization of the continuous Poisson stable solution through a
neighboring it by an asymptotically close counterpart.

In [6] as a part of the result construction of a Poisson stable sequence was performed
as the solution of the logistic equation

λn+1 = µλn(1− λn). (A1)

More precisely, it is proved that for each µ ∈ [3 + (2/3)1/2, 4] there exists a solution
{ηn}, n ∈ Z, of Equation (A1) such that the sequence belongs to the interval [0, 1] and there
exists a sequence ζn, which diverges to infinity such that |ηi+ζn − ηi| → 0 as n → ∞ for
each i in bounded intervals of integers.
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Consider the following integral

Θ(t) =
∫ t

−∞
e−2(t−s)Ω(s)ds, t ∈ R, (A2)

where Ω(t) is a piecewise constant function defined on the real axis through the equation
Ω(t) = ηi for t ∈ [i, i + 1), i ∈ Z. It is convenient to consider the function Θ(t) as a unique
bounded on the real axis solution of the equation Θ′ = −2Θ + Ω(t). In all next examples
of the paper we use the function notation Ω(t) = Ω(µ,q)(t), where q denotes the length of
the intervals on which the function Ω(t) is built.

It is worth noting that Θ(t) is bounded on the hole real axis such that supt∈R |Θ(t)| ≤ 1/2.
Next, we will show that Θ(t) is a Poisson stable function.
Consider a fixed closed interval [a, b] of the axis and a positive number ε. Without loss

of generality one can assume that a and b are integers. Let us fix a positive number ξ and an
integer c < a, which satisfy the following inequalities e−2(a−c) < ε

2 and ξ[1− e−2(b−c)] < ε.
Let n be a large natural number such that |Ω(3.89,1)(t + ζn)−Ω(3.89,1)(t)| < ξ on [c, b]. Then
for all t ∈ [a, b] we obtain that

|Θ(t + ζn)−Θ(t)| = |
∫ t

−∞
e−2(t−s)(Ω(3.89,1)(s + ζn)−Ω(3.89,1)(s))ds| =

|
∫ c

−∞
e−2(t−s)(Ω(3.89,1)(s + ζn)−Ω(3.89,1)(s))ds +∫ t

c
e−2(t−s)(Ω(3.89,1)(s + ζn)−Ω(3.89,1)(s))ds| ≤∫ c

−∞
e−2(t−s)2ds +

∫ b

c
e−2(t−s)ξds ≤ e−2(a−c) +

ξ

2
[1− e−2(b−c)] <

ε

2
+

ε

2
= ε.

Thus, |Θ(t + ζn)−Θ(t)| → 0 as n→ ∞ uniformly on the interval [a, b].

References
1. Minorsky, N. Introduction to Non-Linear Mechanics: Topological Methods, Analytical Methods, Non-Linear Resonance, Relaxation

Oscillations; J.W. Edwards: Ann Arbor, MI, USA, 1947.
2. Poincaré, H. New Methods of Celestial Mechanics, Volume I–III; Dover Publications: New York, NY, USA, 1957.
3. Birkhoff, G.D. Dynamical Systems; Colloquium Publications: Providence, RI, USA, 1991.
4. Nemytskii, V.V.; Stepanov, V.V. Qualitative Theory of Differential Equations; Princeton University Press: Princeton, NJ, USA, 1960.
5. Sell, G.R. Topological Dynamics and Ordinary Differential Equations; Van Nostrand Reinhold Company: London, UK, 1971.
6. Akhmet, M.; Fen, M.O. Unpredictable points and chaos. Commun. Nonlinear Sci. Nummer. Simulat. 2016, 40, 1–5. [CrossRef]
7. Akhmet, M. Domain Structured Dynamics: Unpredictability, Chaos, Randomness, Fractals, Differential Equations and Neural Networks;

IOP Publishing: Bristol, UK, 2021.
8. Akhmet, M.; Tleubergenova, M.; Fen, M.O.; Nugayeva, Z. Unpredictable solutions of linear impulsive systems. Mathematics 2020,

8, 1798. [CrossRef]
9. Akhmet, M.; Tleubergenova, M.; Zhamanshin, A. Quasilinear differential equations with strongly unpredictable solutions.

Carpathian J. Math. 2020, 36, 341–349. [CrossRef]
10. Akhmet, M. A Novel Deterministic Chaos and Discrete Random Processes; ACM International Conference Proceeding Series;

Association for Computing Machinery: New York, NY, USA, 2020; pp. 53–56.
11. Akhmet, M.; Fen, M.O. Non-autonomous equations with unpredictable solutions. Commun. Nonlinear Sci. Nummer. Simulat. 2018,

59, 657–670. [CrossRef]
12. Akhmet, M.; Fen, M.O.; Tleubergenova, M.; Zhamanshin, A. Unpredictable solutions of linear differential and discrete equations.

Turk. J. Math. 2019, 43, 2377–2389. [CrossRef]
13. Akhmet, M.U.; Fen, M.O.; Alejaily, E.M. Dynamics with Chaos and Fractals; Springer: Cham, Switzerland, 2020.
14. Akhmet, M.; Fen, M.O. Poincare chaos and unpredictable functions. Commun. Nonlinear Sci. Nummer. Simulat. 2017, 41, 85–94.

[CrossRef]
15. Akhmet, M.; Fen, M.O. Existence of unpredictable solutions and chaos. Turk. J. Math. 2017, 41, 254–266. [CrossRef]
16. Akhmet, M.; Tola, A. Unpredictable strings. Kazakh Math. J. 2020, 20, 16–22.
17. Akhmet, M.; Seilova, R.; Tleubergenova, M.; Zhamanshin, A. Shunting inhibitory cellular neural networks with strongly

unpredictable oscillations. Commun. Nonlinear Sci. Nummer. Simulat. 2020, 89, 05287. [CrossRef]

http://doi.org/10.1016/j.cnsns.2016.04.007
http://dx.doi.org/10.3390/math8101798
http://dx.doi.org/10.37193/CJM.2020.03.02
http://dx.doi.org/10.1016/j.cnsns.2017.12.011
http://dx.doi.org/10.3906/mat-1810-86
http://dx.doi.org/10.1016/j.cnsns.2016.12.015
http://dx.doi.org/10.3906/mat-1603-51
http://dx.doi.org/10.1016/j.cnsns.2020.105287


Entropy 2021, 23, 1535 17 of 17

18. Akhmet, M.; Tleubergenova, M.; Nugayeva, Z. Strongly unpredictable oscillations of Hopfield-type neural networks. Mathematics
2020, 8, 1791. [CrossRef]
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