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Abstract: Text classification is a fundamental research direction, aims to assign tags to text units.
Recently, graph neural networks (GNN) have exhibited some excellent properties in textual infor-
mation processing. Furthermore, the pre-trained language model also realized promising effects in
many tasks. However, many text processing methods cannot model a single text unit’s structure or
ignore the semantic features. To solve these problems and comprehensively utilize the text’s structure
information and semantic information, we propose a Bert-Enhanced text Graph Neural Network
model (BEGNN). For each text, we construct a text graph separately according to the co-occurrence
relationship of words and use GNN to extract text features. Moreover, we employ Bert to extract
semantic features. The former part can take into account the structural information, and the latter can
focus on modeling the semantic information. Finally, we interact and aggregate these two features
of different granularity to get a more effective representation. Experiments on standard datasets
demonstrate the effectiveness of BEGNN.

Keywords: text classification; Bert; graph neural networks

1. Introduction

Text classification is a fundamental task in natural language processing. It aims to
assign labels to natural language text. Text classification has wide range of application
scenarios, such as in sentiment classification and question answering [1,2]. Among these
related tasks, text classification is the core of their application. It is used to deal with
complex text information, which provides great help for fast and accurate text mining.
For example, in a sentiment classification task, we focus on sentiment related words and
classify texts by establishing a special emotion related dictionary. In the selective question
answering, we extract the features of questions and alternative answers and classify them
to select the most appropriate answer. Since the text is unstructured data written in natural
language, which brings certain difficulties to its classification.

Early classification methods used bag-of-words features [3], that is, to calculate which
word appeared in the text, and take it as the representation of the text, but this method did
not consider the context information. The last decade has witnessed significant advances in
text feature extraction using deep neural networks. Recently, with the progress in artificial
intelligence research, a large number of neural network-based models are widely used
in the task of text classification. Pre-trained word vectors such as Word2Vec [4] provide
better initial embeddings for the tokens in the sentences. Other models such as RNN [5]
and TextCNN [6] have also been proven effective in processing text data. In recent years,
the pre-trained language model Bert [7] has gained increased attention and has refreshed
the records in multiple natural language processing tasks. Attention mechanism [8] has
also been integrated into various deep learning methods, which greatly improves the
classification accuracy.

However, these methods cannot model the local and global structure features in
text. While GNN has natural advantages in modeling structural information. There
have been studies using graph neural networks to model text data. Some works build
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homogeneous graphs or heterogeneous graphs from text data and perform graph neural
network propagation such as convolution operations on the graphs [9,10]. In this way, the
model can take into account the structural information, which is of great significance for
understanding the meaning of the text. However, some methods build text graphs on the
entire dataset, weakening the individual features of each document.

Based on the above analysis, the existing text classification methods have some limita-
tions in text feature extraction. First, most models use RNN, LSTM [5] and other methods
to process serialized data, which cannot take into account the text structure information.
Secondly, some methods based on graph neural networks extract the representation of text
by building a heterogeneous graph structure for the entire dataset, but it’s hard to consider
a single text’s semantic features. In addition, some methods have combined structural
features and semantic features of sequences for extraction, but they can not consider single
text features alone or do not consider the interaction between features, which limits their
representation ability.

To solve the problems of these algorithms, we construct the BEGNN model. Specif-
ically, we first construct a graph structure for each document separately. Moreover, we
propose to aggregate the features extracted from Bert and the features extracted by graph
structures. The former represents the semantic information of the documents, and the
latter is a representation that considers the structural feature of the text. Compared with
other work, we also add a co-attention module to solve the problem of interaction between
features, and performed a variety of experiments to integrate the features, which can
maximize the representation ability of the extracted features.

Our contribution is as follows:
(1) Our model can extract features of different granularities, from a pre-trained lan-

guage model and graph neural networks for text representation. It not only takes into
account the semantic information, and also the structural information, which improves the
effect of the learned text representation.

(2) In order to prevent the two features from being separated during the prediction
process, we have designed and performed experiments on co-attention modules as well as
different aggregation methods, which can consider the interaction of the two representa-
tions and make full use of them to achieve better classification capabilities.

(3) The experiment results and analysis on four datasets demonstrate the effectiveness
of BEGNN.

In the following paragraphs: Section 2 introduces researches about text classification
methods related to our work, Section 3 illustrates the overall model we proposed, Section 4
shows the experimental results, and finally, the conclusion.

2. Related Work
2.1. Traditional Feature Engineering Method

Traditional text classification methods need to extract manually defined features, and
they are often combined with machine learning algorithms for training and prediction.
For a specific task, some early studies classify sentences or documents by analyzing text
data and extracting statistical features of the text, then use pre-specified training set as
training data. Bag-Of-Words (BOW) [11] and n-grams [12] are commonly used word-based
representation method, which represents a sentence based on a collection of words or
n-gram sequences which occur in it. These features are usually combined with models
such as SVM [11] and have achieved good results. However, machine learning requires
extensive feature engineering and relies on domain knowledge, which makes it difficult for
the features on a single task to be generalized to other aspects.

2.2. Deep Learning-Based Method

Methods based on deep learning have been investigated to resolve the limitations of
manual feature engineering [13,14]. The text is automatically mapped to a low-dimensional
vector through the model to extract text features. Word embedding has brought new
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solutions to natural language tasks. Word2Vec [4] and GloVe [15] have been drawing great
attention in NLP tasks. Mikolov et al. have shown these pre-trained embeddings can
capture meaningful semantic features [16]. In addition, RNN models [17] have shown
advantages in processing sequence data. TextCNN [6] performs convolution operations
on text features and has achieved good results. Tan et al. [18] use a structure based on a
dynamic convolutional gated neural network, making it possible to selectively control how
much context information is contained in each specific location.

Recently, pre-trained language models have caused a great upsurge in research. Mod-
els such as Bert [7] are pre-trained on a large corpus, and can be simply transferred to
downstream NLP tasks with fine-tuning, which have refreshed records on multiple NLP
tasks. Bert [7] takes advantage of the self-attention mechanism, and builds a multi-layer
self-attention network, which can also realize parallel computing. The attention mecha-
nism is applied to various models, greatly improving the performance of various NLP
tasks [19]. There have also been some studies exploring how to efficiently use Bert for
natural language processing tasks [20–22]. These models have been proved effective in
extracting features, but they cannot fully utilize the text’s structural features. While graph
structure has natural advantages in modeling structural information.

There have been some researches that model text as graph structure for feature ex-
traction. GNN [23] can capture the features of the nodes and the structural features in
the graph, which can learn more effective representations for the nodes or the whole
graph. GatedGNN [10] and GCN [9] have been applied to the task of text classification.
Textgcn [9] constructed a heterogeneous graph network of words and documents, and
uses co-occurrence features and TFIDF to measure the relationship between words and
documents. For a new document, it needs to update the whole graph structure to perform
prediction. Additionally, it cannot take into account the structural characteristics of a
single document well. TextING [10] builds graph structure on each single text, which can
learn the fine-grained word representation of the local structure. Lei et al. [24] designed
a structure that can integrate the graph convolutional features of multi-layer neighbors,
alleviating the problem of over-fitting to a certain extent. However, semantic features used
in the models rely on pre-trained word embeddings, which limits the effect of the model.
Parcheta et al. [25] studied the influence of embeddings extracted by combining different
methods on text classification models.

There are also some methods that combine the pre-trained language model with graph
neural networks to extract features. VGCN-Bert [26] builds a graph of the whole dataset,
and uses the features extracted by GCN [27] to enhance the effect of Bert [7]. However, as
in GCN, the unique structural characteristics of each text cannot be fully taken into account.
Jeong et al. [28] simply concatenate the features of Bert and GCN for the recommendation
task, but this method cannot consider the features’ interactive relationship, which reduces
the representation ability. We show the methods of some related works in Table 1.

Considering the above problems, we propose to combine the features extracted by
Bert [7] and graph neural networks, which can take into account the semantic and structural
information of a single text. Different from the previous work, first of all, we build a graph
structure for each text separately, and combine the graph neural network and Bert to extract
different granular features. While most of the studies built a graph on the entire dataset
or did not combine the different characteristics of different granularity. In addition, we
employ the co-attention module to integrate features. As far as we know, we are the first
to employ a co-attention module to combine the features of graph networks and Bert for
text classification. So that we can take the advantages of the feature representation with
different granularity.
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Table 1. Comparison of some related work.

Related Researches Method

[7] Self-encoding language model, constructed using the
encoder module of transformer.

[20]
Explore how to fine-tune Bert to improve the effect of
text classification, including hierarchical learning rate
adjustment, multi-task pre-training and other methods.

[21] Prove the superiority of bert over traditional machine
learning algorithms.

[9]
Build a heterogeneous graph for the entire dataset, and
use the representation of the document node as the
classification basis.

[10]
Build a separate graph for each text, use graph neural
network and design the output layer to get the
representation and classification of the text.

[26] Build a graph for the entire dataset, word embedding
and graph feature are feeded into attention layer.

[24] Build a graph for the entire dataset, integrate the graph
convolution features of multi-hop neighbors.

[28] The output of GNN and Bert are concatenated for the
recommendation task.

[18] Dynamically Gated Convolutional Neural Network.

[25] Research on effect of different embedding technologies
when they are used together.

3. Method

In this part, we describe the structure of BEGNN in detail.

3.1. Architecture Overview

The model structure is illustrated in Figure 1. BEGNN is composed of five modules:
graph construction, Bert-based feature extraction, GNN based feature extraction, feature
interaction and aggregation. Given a document represented as Wi = {w1, w2, . . . , wn},
according to co-occurrence relationship of the words, we construct each text as a graph. By
initializing the representation of graph nodes using word vectors and employing a graph
neural network, we get the structure feature of each word. Moreover, We input the text into
Bert [7] for semantic feature extraction. Finally, the two feature representations interact and
aggregate through the co-attention layer and the aggregation layer to obtain the aggregated
representation Hi = {h1, h2, . . . , hn}. Taking the final representation Hi, we finally use the
fully connected layer to predict the category. The details are presented in Sections 3.2–3.6,
respectively.
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Figure 1. The architecture of BEGNN. (a) The input document. (b) Graph construction and graph neural network based
feature extraction. (c) Bert based feature extraction. (d) Interactive feature aggregation. (e) Fully-connected layer.

3.2. Graph Construction

We create separate graphs for the documents, expressed as G = (V, E). V is the set of
nodes in the graph, including all the words in the text. While E includes edges between
nodes. We use standard methods to pre-process the text, including word segmentation
and cleaning. Afterwards, co-occurrence information is extracted to model the relationship
between words in a document. We build an undirected text graph by setting a fixed-size
sliding window, connecting the words appearing in the same window with undirected
edges. Figure 2 is an instance.

Figure 2. The graph constructed for a document with five words.

The feature vector of the nodes are initialized with the GloVe word vector [15], doc-
ument i is represented by H0

i =
{

h0
1, h0

2, . . . , h0
|V|

}
. H0

i ∈ R|V|∗d, d is the word embedding
size. For the graph structure established for each document, we use graph neural network
for message passing.

3.3. Graph Neural Network Based Feature Extraction

For each text graph, we use Gated Graph Neural Networks [29] for feature propagation
and extraction. It is a classical spatial domain message passing model based on GRU. The
proposal of Gated Graph Neural Networks enables GNN to be better used to deal with
sequence problems. In the process of message passing in the whole graph structure, the
principle of GRU is adopted. The embedding of a node at time t + 1 is determined by the
embedding of itself and its neighbor nodes, and the edge information of the interaction
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between the nodes. By stacking such layers for T times, the nodes are able to receive the
information of their T-hop neighbors. The formulas of the propagation recurrence in the
k-th layer are:

at+1 = AHtWa + b (1)

zt+1 = σ
(

Wzat+1 + UzHt + bz

)
(2)

rt+1 = σ
(

Wrat+1 + UrHt + br

)
(3)

H̃t+1 = tanh
(

WHat+1 + UH

(
rt+1 �Ht

)
+ bH

)
(4)

Ht+1 = H̃t+1 � zt+1 + Ht �
(

1− zt+1
)

(5)

where A ∈ R|V|∗|V| is the adjacency matrix, at+1 represents the result of the interaction
between the nodes and their adjacent nodes through the edges. Formulas (2)–(4) is similar
to the calculation process of GRU. Among them, zt+1 controls the forgotten information,
and rt+1 controls the newly generated information. Ht+1 is the final updated node status
of t + 1-th layer. σ is sigmoid function. W, U and b are trainable weight matrices.

To simplify, we can write such a message passing process as:

Ht+1 = GGNN(Ht, A; Θt) (6)

where Θt is the parameter set of the gated graph neural network of the t-th layer. After
message passing of T layers, we get the final representation HT

0 .

3.4. Bert Based Feature Extraction

In addition to using GNN to obtain the features of the word nodes, we also fine-
tune Bert to obtain the words’ semantic features. Pre-trained on large-scale corpus in an
unsupervised way, the parameters of Bert are then fine-tuned according to downstream
tasks. Bert is composed of the encoder of transformer module, which includes the self-
attention layer and feed-forward layer. Self-attention is calculated by:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (7)

Q, K and V are the matrix of queries, keys and values, respectively. dk is the dimension of
the matrices. Furthermore, multi-head attention can be defined as:

MultiHead(Q, K, V) = CONCAT(head1, . . . , headn)W (8)

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(9)

After the multi-layer transformer module, we eventually get the final word feature
representation Hbert

0 .

3.5. Co-Attention Layer

We introduce the co-attention layer as shown in Figure 3. Given the text representation
extracted by GNN and Bert, the query, key and value matrices are calculated, just as they
are calculated in the standard self-attention mechanism. However, the keys and values of
both text features are passed as input to each other’s multi-headed attention block.

According to HT
0 and Hbert

0 , we calculate the query, key and value matrix, respectively.
Different from the self-attention mechanism, we take HT

0 WQ
T , Hbert

0 WK
bert and Hbert

0 WV
bert as

the input of the formula (7) to obtain HT , and take Hbert
0 WQ

bert, HT
0 WK

T and HT
0 WV

T as the
input to obtain Hbert. Where WQ, WK, WV are parameter matrices.
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Then we get the attention representation of GNN conditioned on Bert output and the
attention representation of Bert conditioned on GNN output. Therefore, we obtain the
mutually conditional attention convergence feature between the two representations.

Mul�-head
A�en�on

Mul�-head
A�en�on

......

Figure 3. Co-attention layer.

3.6. Feature Aggregation

We designed three ways to aggregate the extracted features interactively, namely max-
pooling, concatenation and addition. For a word wi in the sequence, the features extracted
by GNN and Bert are denoted as hgnn

i and hbert
i , respectively. The three aggregation

methods are as follows.
max-pooling. This function takes the larger value of the two features in each dimen-

sion to form the final representation:

hi = MAX
(

hgnn
i , hbert

i

)
(10)

which chooses the most informative feature in each dimension.
Concatenation. It takes the concatenation of the representation directly in the node

feature dimension:

hi = CONCAT
(

hgnn
i , hbert

i

)
(11)

which can keep the output of each module intact.
Addition.

hi = hgnn
i ⊕ hbert

i (12)

where ⊕ operation means element-wise addition.
We denote the final representation of the whole document i as Hi.

3.7. Final Prediction

After feature aggregation, we employed a fully connected layer for classification. We
minimize the cross-entropy loss to train our model.

ŷ = softmax(WHi + b) (13)

L = −∑
i

yi · log ŷi (14)

W, b are trainable parameters. ŷi and yi are the predicted and true label for the document,
respectively.
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4. Experiments

Here, we evaluated the effect of BEGNN and compared it with baseline models on
four publicly available datasets.

4.1. Datasets

We adopted four widely used datasets for text classification:
MR [30]. It is a sentiment classification dataset, each review is classified as positive

or negative.
SST-2 [31]. It is the Stanford Sentiment Treebank dataset, which includes sentences

from movie reviews. Each sample is labeled as negative or positive.
R8 [32]. It is a subset of the Reuters-21578 dataset and had been manually classified

into eight categories.
Ohsumed [33]. It is from the MEDLINE database, which is a bibliographic database.

Each document had been classified into 23 cardiovascular diseases categories.
The statistics are in Table 2.
For each dataset, we use 10% of the training data for validation to assist in model

training. For each piece of data in the dataset, we proceed with it as follows. First,
a BertTokenizer is used to segment the document. Second, in the Bert-based feature
extraction module, we directly use the segmentation as the input. Third, in the graph
neural network-based module, to ensure that the two modules can be aligned, we use
the result of Bert word segmentation, and then use the Glove word vector as the words’
initial representation.

Table 2. Statistics of datasets.

Dataset Documents Training Test Class Average Length

MR 10,662 7108 3554 2 18
SST-2 9613 7792 1821 2 19

R8 7674 5485 2189 8 41
Ohsumed 7400 3357 4043 23 79

4.2. Compared Methods

We make a comparison with some state-of-the-art models, including deep models for
processing serialized data and models based on GNNs.

Fasttext [34]. A lightweight neural network model. The input is multiple words
represented by vectors. In the hidden layer, the average of word vectors is calculated. The
last hidden layer’s output is the basis for classification.

Bi-LSTM [35]. It is a kind of RNN. It is specially designed to solve the long-term
dependency problem of general RNN. The final hidden state is used for classification.

TextGCN [9]. A GNN based text classification model. The whole corpus is used to
construct a large heterogeneous graph. Furthermore, GCN is designed to jointly learn
the embedding of words and documents. We build the text graph in the same way as
the original paper and use the final representation of the document node as the basis
for classification.

TextING [10]. It is another graph based model. Different from TextGCN, it constructs
a graph for each text. The final representation of the text is obtained through the output
layer and classified.

VGCN-Bert [26]. The word embedding and graph features are fed to the attention
layer. Then the attention module’s output is used as the basis for classification.

BEGNN (our proposed method). It is a text classification model combining graph
neural networks and Bert, which can extract the semantic and structural information of
the text.

Fasttext [34] is a non sequential model while LSTM [35] is a model for sequential data.
TextGCN [9] and TextING [10] are graph based models. TextGCN builds a large graph of
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thesaurus and documents together. The difference is that TextING builds a text graph of
words in each document. By comparing these methods, we can analyze which feature is
more important to the model.

4.3. Hyper-Parameter Settings

Regarding the setting of hyperparameters, based on previous research and experimental
experience, we refer to some optimization algorithms based on the Bayesian method [36,37],
and use the python open-source toolkit ’advisor’ for parameter optimization.

Regarding the relevant models we compared, we continued the parameter settings
of original papers for experiments. For fair comparison, we uniformly use GloVe embed-
ding [15] as the initial word feature vector. For our proposed method BEGNN, we set the
learning rate of 0.00005, the l2 regularization weight of 0.01, and the optimized function of
Adam. For the text graph, the sliding window size is 3. The number of attention heads is set
to 8. Early stopping is applied, the number of epochs is 100. The nonlinearity function is set
to ReLU. We use the BertTokenizer to split text. For each dataset, we use three interactive
aggregation methods we designed to aggregate the features and report the best results.
While training, to ensure the convergence, we firstly pre-trained the GNN network, and
then trained the entire model.

4.4. Experimental Results

We adopt the classification accuracy and the macro-F1 value as the evaluation metrics.
From the experimental results, we can make the following observations. The main results
are presented in Table 3.

Table 3. This is a table caption. Tables should be placed in the main text near to the first time they
are cited.

Methods MR SST-2 R8 Ohsumed

Fasttext 75.04 80.25 96.11 57.70

Bi-LSTM 76.27 81.23 96.30 50.27

TextGCN 75.56 80.25 96.89 67.44

TextING 78.93 83.69 97.92 70.41

VGCN-BERT 86.21 91.02 97.98 70.53

BEGNN 86.42 91.43 98.41 71.19

(1) BEGNN outperforms all the baselines. We use Bert based feature extraction module
and GNN based feature extraction module. At the same time, the co-attention module is
employed to interactively combine the two features. Suggesting that the combination of
GNN based method and pre-trained language method benefits text processing.

(2) The longer the text, the more obvious the improvement of our model to the
experimental effect. According to the statistics of the datasets, the text length of R8 and
Ohsumed is longer. Especially on the Ohsumed dataset, the average text length is 79. On
the datasets where the average text length is less than 20, the performance improvement
of our model is relatively lower than the other two datasets with longer text. This shows
our model can better process longer texts. Our feature extraction module based on graph
neural network passes through message in multiple layers, and can mine the information
of multi-hop neighbors. Superior to RNN based model, the self-attention module in Bert
can also pay attention to words that are farther away.

(3) RNN based model outperforms Fasttext and TextGCN in two datasets, and shows
comparable capability in R8, which shows its advantages in processing sequential data.
While in Ohsumed, it does not perform well. The text length of this dataset is long, causing
difficulties in processing long-distance context. RNN-based models have no advantage
when dealing with longer text data. After long-distance propagation, information will be
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lost. LSTM adds the memory module to solve the problem of long-distance dependence of
traditional RNN architecture, but when the average text length exceeds 70 in the Ohsumed
dataset, there are still some problems.

(4) TextGCN and TextING are graph based models. When they are used in text
classification tasks, TextING has achieved better results on each dataset. This is because, for
the texts, TextGCN constructs a graph of the entire corpus, which is low-density. However,
TextING constructs a graph structure for each document separately, which can take into
account the different structural information of each text, which will not be so sparse as it
in TextGCN.

(5) The performance of VGCN-Bert surpasses other models besides our proposed
model. It takes the features extract from graph neural networks and word embedding
features as the input of the attention module. However, it builds a graph structure on the
entire dataset. Compared with our operation of building a graph structure from a single
text, it cannot fully consider the unique structural characteristics of each text. Furthermore,
it chooses to concatenate the two representations and send them to the attention module.
Different from it, we interact and aggregate the features from GNN module and Bert
based module, which can avoid the separation of the two representations and utilize
their correlation.

Compared to other related models, first of all, the experimental results demonstrate
the superiority of BEGNN. Secondly, our model shows a more obvious advantage in the
processing of long texts and can extract features that span longer distances. In addition,
our model can take the semantic and structure information of the given documents. The
transformer module in Bert uses the attention mechanism to perform parallel calculations,
also extracts semantic features. The module based on GNN can extract the structure
information of the text well. While the interactive aggregation of these two features can
combine the advantages of these two features to the greatest extent. This ensures that
BEGNN attains a better effect over the baseline models.

4.5. Ablation Study

To analyze the usefulness of each component of BEGNN, we performed the follow-
ing experiments.

4.5.1. Effectiveness of the Text Graph

In our base model, we build a text graph based on the word co-occurrence relation in
the document and aggregate the features obtained from the text graph and the features
obtained from Bert. Compared with the original Bert, our model can not only consider the
semantic features, but also integrate the structural information. To validate the effectiveness
of this module, we designed experiments to compare the effects of our basic model and the
model without a graph neural network. We name the model with GNN module removed as
BEGNN-GNN. That is, a separate Bert model. Figure 4 illustrates the experimental results.
At the same time, we also experimented on the model BEGNN-CoAttention without a
feature interaction module.
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Figure 4. Ablation study of the text graph and the co-attention modules of the model.

Compared with using Bert only for training and testing, our original model with graph
neural network achieves significant results on four datasets. This confirms the necessity of
adding a text graph neural network in our proposed model. Among them, the model with
graph structure features has achieved the most significant effect on the Ohsumed dataset.
Showing advantages of BEGNN in processing longer text features. Compared with the
model without the graph neural network feature extraction module, even without feature
interaction, the model containing two granular features still achieves better results than
the original Bert model. This also illustrates the importance of adding structural features.
Other than semantic features, adding structural features can improve the representation
ability of the extracted joint features.

4.5.2. Effectiveness of the Co-Attention Module

On the basis of using Bert to extract semantic features, and adding the structural
features extracted by the graph neural network module, we also hope that the two features
can interact, rather than being separated from each other. For the features extracted from
the Bert model and the graph neural network, we add the co-attention mechanism in order
to provide interaction between these two features. We name the model with co-attention
module removed as BEGNN-CoAttention.

As shown in Figure 4, removing the co-attention module in the training procedure
causes performance degradation on four datasets. In the four datasets, although there
is a certain gap in text length, the degree of effect decline is basically the same. When
dealing with the interaction of text data, the co-attention mechanism is important in both
long and short texts. In the co-attention module, we get the attention representation of
GNN conditioned on the features extracted from Bert, and the attention representation of
Bert conditioned on the features extracted from GNN. In this way, the two representations
interact with each other and improve the performance.

5. Conclusions

In this article, we conduct research on text classification algorithms. The application
scenarios of text classification are very extensive, and it is important in public opinion
analysis and news classification. We propose a Bert-enhanced graph neural network
(BEGNN) to improve the representation ability of text. Although it is designed for text
classification, its ideas can be applied to other research fields, such as information retrieval.
We build a text graph structure for each document and extract the structural features of
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the text. Furthermore, Bert is used to extract semantic features. In addition, we added an
interaction module and aggregated the semantic and structural features of text. Different
from other studies, we can take into account the two granular text features in an innovative
way, and employ the co-attention module to interact and aggregate them. Experimental
results prove the effectiveness of BEGNN.

In future research, we will further study what algorithms and features will have a
positive impact on the deep learning model when using Bert and graph neural network
for feature extraction. At the same time, we will study how to use this analysis result to
further optimize the model, increase the interpretability of the model and produce more
fine-grained and reasonable interpretation. We will also consider further research on the
lightweight optimization to reduce the cost of calculation and reasoning while ensuring
the effect of the model.
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