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Abstract: Motivated by current communication networks in which users can choose different
transmission channels to operate and also by the recent growth of renewable energy sources, we
study the average Age of Information of a status update system that is formed by two parallel
homogeneous servers and such that there is an energy source that feeds the system following a
random process. An update, after getting service, is delivered to the monitor if there is energy in a
battery. However, if the battery is empty, the status update is lost. We allow preemption of updates
in service and we assume Poisson generation times of status updates and exponential service times.
We show that the average Age of Information can be characterized by solving a system with eight
linear equations. Then, we show that, when the arrival rate to both servers is large, the average
Age of Information is one divided by the sum of the service rates of the servers. We also perform a
numerical analysis to compare the performance of our model with that of a single server with energy
harvesting and to study in detail the aforementioned convergence result.

Keywords: parallel servers; energy harvesting; Age of Information

1. Introduction
1.1. Motivation

The Age of Information is a recent metric of the performance of systems and it
measures the freshness of the information that a monitor has about the status of a remote
process of interest. There is a wide range of applications in which information about a
source must be as recent as possible. An example of this is given in autonomous driving
systems since the location of the vehicles must be known as soon as possible. Or, in
other words, obsolete information about the traffic might lead to bad consequences (traffic
accidents, for instance) to the users.

Status update systems are formed by sources of generation status updates, a transmis-
sion channel and a monitor that receives the updates. The transmission channel takes care
of sending the status updates from the source to the destination. It is clear that the devices
of the transmission channel require energy to work. Therefore, it is important to consider
energy consumption in the modeling of the transmission channel. Furthermore, there has
been recently an increasing amount of different types of renewable energy sources that feed
the energy network. Some examples are solar or wind energy sources, which are clearly
very volatile. As a consequence, the randomness of the generation of energy also needs to
be taken into account in the modeling of the transmission channel.

Current communication networks are very complex and often allow users to operate
using different transmission channels. This is the case, for instance, when a user is a part
of an overlay network (i.e., when it belongs to a set of nodes that are located in different
spots over the Internet and collaborate with each other to forward data between any pair of
nodes with minimum delay). In fact, in this instance, the user can choose the transmission
channel that provides the IP protocol or through the overlay network. Therefore, in this
work, we study the average Age of Information in a status update system with energy
harvesting. That is, we consider that the transmission channel is formed by parallel servers
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that do not interchange information and a battery that can store energy that can be used to
send status updates after getting service in the servers.

1.2. Related Work

The Age of Information has been introduced in [1,2] as a metric to measure the
freshness of the information about the state of a remote system. Since its introduction,
there has been many researcher of different areas that has been interested in analyzing this
metric. In the first works following the seminal papers, the goal has been to characterize
the average Age of Information of status update systems where the transmission channel is
modeled as a single queue. For instance, the authors in [3] characterize the average Age of
Information of a single server (i.e., a queue without buffer) and a single source. Regarding
optimality, the authors in [4] show that the preemptive Last Generated First Served policy
minimizes the Age of Information. Unfortunately, the characterization of the average Age
of Information of many models is known to be an extremely difficult task. Therefore, some
authors has been interested in other similar metric of performance such as the Peak Age of
Information [5] or the Age of Incorrect Information [6]. We refer to the following surveys
on this topic for full details of these metrics and their properties [7–9].

Let us now discuss the work of some authors that have been interested in analyzing
the Age of Information of a system with energy harvesting. In [10,11] it is considered a
system with Poisson arrivals of energy and that there is no losses of packets. Their goal is to
find the optimal status updates policy such that the battery is not empty upon an arrival of
a status update. The authors in [12–14] generalize the model of [10,11] by allowing status
update losses and also focus on optimal policies for generation updates, with or without
knowledge (or feedback) whether the status updates are delivered successfully. Our model,
that has been in inspired by the Energy Packet Networks [15,16], is different from these
models for different reasons. First, we do not impose the presence of energy to receive a
status update. Another difference is that the generation of status updates follows a Poisson
process in our model, which is not the case in these works. Finally, our goal is different
since we are interested in characterizing the average Age of Information and studying its
properties and, hence, we do not aim to find the optimal policy.

1.3. Contribution

We consider a system with two parallel homogeneous servers and one battery that
stores energy packets. Energy packets model a certain amount of energy and are necessary
to send the status updates (or data packets) to the monitor after ending service. This means
that a data packet is sent to the battery when it ends service and, if the battery is empty,
the data packet is lost, whereas if battery is not empty the data packet is delivered to the
monitor and one energy packet disappears. We consider that arrivals of data packets and
energy packets follow a Poisson process and the queues that handle data packets and
energy packets do not have buffer. We allow preemption of data packets, i.e., when a data
packet arrives to a server that is busy, the incoming packet replaces the packet in service.

The first contribution of this work is to characterize the average Age of Information of
the above status update system using the Stochastic Hybrid System technique [17]. More
specifically, we show that the average Age of Information can be computed by solving a
system of 8 linear equations. We then consider the regime where the arrival rate of data
packets to both servers tends to infinity and we show that the average Age of Information
is one divided by two times the service rate of data packets.

The model we study here generalizes

• the work of Section IIIA of [18] where it is studied the Age of Information of two
parallel servers. In our work, we consider energy harvesting in their model. In fact,
when in our model the arrival rate of energy packets is very large, it coincides with
the model of [18].
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• the work of [19] where it is analyzed a system with a single server and energy har-
vesting. In our work, we consider the same energy harvesting model, but with two
parallel servers.

We go beyond the above presented analytical results with a numerical work that
we describe next. First, we aim to compare the performance of a single servers with
two parallel servers with energy harvesting. For this purpose, we consider the following
systems: (i) a single server with arrival rate λ/2 and service rate µ, (ii) a single server
with arrival rate λ and service rate 2µ and (iii) two parallel servers with service rate µ,
each of them handling an arrival rate of λ/2. Let us note that the ratio of the arrival rate
over the service rate coincide in all the servers of the systems under consideration. This
comparison has been previously done in Section IIIA of [18], but they do not consider
energy harvesting. Our first finding is that, when the arrival rate of energy packets is very
large, we obtain the plot as Figure 4 of [18] and, therefore, their conclusions follow in our
model as well (i.e., the system with double service rate and a single server minimizes the
average Age of Information). We then investigate whether the conclusions of [18] also hold
when the arrival rate of energy packets is not large. We observe that the average Age of
Information is smaller for the system with two parallel servers and this difference increases
when we decrease the arrival rate of energy packets. Finally, we study how the average
Age of Information converges, when the arrival rate to the servers increases, to the value
obtained in our analytical part. We conclude that the average Age of Information is not
monotone with respect to the arrival rate of energy packets when the arrival rate to both
servers is small. However, the average Age of Information does not depend on the arrival
rate of energy packets when the arrival rate of packets to both servers is very large.

Potential applications of this model include systems in which two different transmis-
sion channels can be chosen to send updates. This is the case, for instance, when the source
that generates status updates is part of an overlay network (i.e., when it belongs to a set
of nodes that are located in different spots over the Internet and collaborate with each
other to forward data between any pair of nodes with minimum delay) and it can choose
to send the status updates through the path the provides the IP protocol or through the
overlay routing.

1.4. Organization

The rest of the paper is organized as follows. First, in Section 2, we describe the model
we study in this article. The average Age of Information analysis of this model is presented
in Section 3. In Section 4, we focus on our numerical work and, finally, in Section 5, we
draw the main conclusions of this work.

2. Model Description
2.1. Age of Information

We study the transmission of status updates (or data packets) to a monitor. We
consider that data packet i is generated at time ti and that it is delivered to the monitor at
time t′i. We denote by N(t) the index of the last successfully delivered data packet to the
monitor at time t, i.e.,

N(t) = max{i|t′i ≤ t}.

Taking into account that the generation time of the last received data packet before
time t is tN(t), we define the Age of Information at time t as follows:

∆(t) = t− tN(t),

that is, the Age of Information at time t is the time elapsed since the generation of the last
delivered packet to the monitor. We show in Figure 1 an example of ∆(t).
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Figure 1. An example of ∆(t).

Assuming that the updating system is stable, the average Age of Information can be
computed as the area below a “saw-tooth” shaped curve with teeth at the times at which
the data packets are delivered (see Figure 1). Hence, if we denote by ∆ the average Age of
Information, we have that

∆ = lim
τ→∞

1
τ

∫ τ

0
∆(t)dt.

In this article, we are interested in calculating the average Age of Information in an
energy harvesting model. In the following section, we describe the model we analyze.

2.2. Energy Harvesting Model

In our model, we represent energy by packets of discrete units called energy packets
that model a certain quantity of energy (energy packets) measured in Joules, whereas
the status updates of a process of interest are represented by packets that we call data
packets. We consider an energy harvesting model formed by two parallel queues that store
data packets (data queues) and a single queue that stores the energy packets. We show in
Figure 2 the model under consideration in this work.

μ
1

α

λ
1

Data 
Transmission

μ
2

λ
2

Data 
Transmission

DataQueue1

DataQueue2

EnergyQueue

Figure 2. The energy harvesting model with two parallel data queues and a single energy queue.
Energy packets are depicted with gray and data packets with white.

Energy packets arrive to the system according to a Poisson process of rate α and data
packets (or workload packets) with rate λ. Upon arrival, a packet is dispatched to data
queue 1 with probability p > 0 and to data queue 2 with probability 1− p > 0. Therefore,
the arrival rate to data queue 1 is λ1 = λp and to data queue 2 is λ2 = λ(1− p).
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Remark 1. The probability p can be seen as the willingness of a source to use an alternative path
(for instance, the path of an overlay network) rather than the usual transmission channel.

We consider that the service rate of jobs of data queue i is exponentially distributed
with rate µ, i = 1, 2

In this model, we consider that data packets, i.e., the packets of the data queues, start
the transfer to a single energy queue. This means that, when a data packet gets served (in
data queue 1 or data queue 2), it is sent to the energy queue. If the energy queue is empty
upon arrival of a data packet, the data packet is lost. However, if there are energy packets
when a data packet arrives to the energy queue, the data packet is transferred successfully
to the monitor and one energy packet disappears.

Remark 2. Our model considers a single energy queue. This models that the destination requires
energy to receive status updates. This occurs, for instance, when there is a wireless antenna in
charge of receiving the status updates at the destination (indeed, in absence of energy the antenna
cannot deliver packets to the monitor).

Here, we assume that the energy queue and the data queues do not have buffer.
Therefore, the number of packets in each queue is, at most, one. Besides, energy packets
that arrive when the energy queue is full are dropped, whereas when a data packet arrives
to a full data queue, it replaces the job in execution.

3. Average Age of Information Analysis

In this section, we aim to analyze the average Age of Information of a system formed
by two parallel queues with energy harvesting. We will use the Stochastic Hybrid System
method to characterize the average Age of Information of the system under consideration.
The Stochastic Hybrid System is formed by two values: the state of a continuous time
Markov Chain and a vector containing the generation times of all the packets in the system
as well of the current Age of Information. The Markov chain we consider is presented in
Figure A1.

Let s0 s1 . . . s7 be the solution of the following system of equations:

0 = −s0(λ + α) + s2µ + s3µ + s4µ + s5µ (1a)

0 = s0α− s1λ (1b)

0 = s0λ(1− p)− s2(λp + µ + α) + s6µ + s7µ (1c)

0 = s1λ(1− p) + s2α− s3(λp + µ) (1d)

0 = s0λp− s4(λ(1− p) + α + µ) + s6µ + s7µ (1e)

0 = s1λp + s4α− s5(λ(1− p) + µ) (1f)

0 = s2λp + s4λ(1− p)− s6(α + 2µ) (1g)

0 = s3λp + s5λ(1− p) + s6α− s7 2µ (1h)

that satisfies that ∑7
i=0 si = 1. As we will see in Appendix B, the solution of the above system

of equations provides the steady-state distribution of the Markov chain of Figure A1.
We also define x1, x2, . . . , x16 as the solution of the following system of equations:
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−s0 =− x1(λ + α) + µx7 + µx10 + µx3 + µx6 (2a)

−s1 =− x2(λ + α) + αx1 + αx2 (2b)

−s2 =− x3(λ + α + µ) + λ(1− p)x1 + λ(1− p)x3

+ µx15 (2c)

−s2 =− x4(λ + α + µ) + µx16 (2d)

−s3 =− x5(λ + α + µ) + αx3 + αx5 + λ(1− p)x2

+ λ(1− p)x5 (2e)

−s3 =− x6(λ + α + µ) + αx4 + αx6 (2f)

−s4 =− x7(λ + α + µ) + λpx1 + λpx7 + µx16 (2g)

−s4 =− x8(λ + α + µ) + µx15 (2h)

−s5 =− x9(λ + α + µ) + λpx2 + λpx9 + αx9 + αx7 (2i)

−s5 =− x10(λ + α + µ) + αx10 + αx8 (2j)

−s6 =− x11(λ + 2µ + α) + λpx3 + λpx11

+ λ(1− p)x7 + λ(1− p)x11 (2k)

−s6 =− x12(λ + 2µ + α) + λ(1− p)x8 + λ(1− p)x12 (2l)

−s6 =− x13(λ + 2µ + α) + λpx4 + λpx13 (2m)

−s7 =− x14(λ + 2µ) + λpx5 + λpx14 + λ(1− p)x9

+ λ(1− p)x14 + αx11 (2n)

−s7 =− x15(λ + 2µ) + λ(1− p)x10 + λ(1− p)x15

+ αx12 (2o)

−s7 =− x16(λ + 2µ) + λpx6 + λpx16 + αx13, (2p)

where s0, s1, . . . , s7 are given in Equation (1a–h). As we explain in Appendix B, the values
x1, . . . , x16 coincide with the generation time of all the packets in the system for all the
possible states of the Markov chain.

In the following result, we use the Stochastic Hybrid System technique [17] to charac-
terize the average Age of Information of this system and we show that it can be done by
solving the above system of equations.

Proposition 1. The average Age of Information of a system with two parallel servers with the
energy harvesting is given by

x1 + x2 + x3 + x5 + x7 + x9 + x11 + x14,

where x1, x2, . . . , x16 are the solution of Equation (2a–p).

Proof. See Appendix B.

In Proposition 1, we show that the computation of the average Age of Information of
the system under study requires to solve Equation (2a–p), which is a system of 16 linear
equations with 16 variables. Now, we aim to show that this system of equations has a
special structure and how it can be used to obtain a method to compute the average Age
of Information by solving a simpler system. Let us first present the following auxiliary
results.

Lemma 1. The Equation (2d,f,m,p), form a system of 4 linear equations with 4 variables (x4, x6, x13
and x16). Let

c =
λpα

λ + α + µ

(
1

λ + µ
+

1
λ(1− p) + 2µ + α

)
. (3)
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We have that

x16 =
s7 − λps3

λ+µ −
αs6

λ(1−p)+2µ+α
− c s2

cµ− (λ(1− p) + 2µ)
, (4)

and

x4 =
µx16 + s2

λ + α + µ
. (5)

as well as

x6 =
αx4 + s3

λ + µ
. (6)

Proof. See Appendix C.

Lemma 2. The Equation (2h,j,l,o), form a system of 4 linear equations with 4 variables (x8, x10, x12
and x15). Let

d =
λ(1− p)α
λ + α + µ

(
1

λ + µ
+

1
λp + 2µ + α

)
. (7)

We have that

x15 =
s7 − λps5

λ+µ −
αs6

λ(1−p)+2µ+α
− d s4+

dµ− (λ(1− p) + 2µ)
, (8)

and

x8 =
µx15 + s4

λ + α + µ
. (9)

as well as

x10 =
αx8 + s5

λ + µ
. (10)

Proof. The proof is symmetric to the proof of Lemma 1 and, therefore, we omit it for clarity
of the presentation.

We now writ Equation (2a–p) that have not been analyzed in the previous lemmas:

−s0 =− x1(λ + α) + µx7 + µx10 + µx3 + µx6 (11a)

−s1 =− x2λ + αx1 (11b)

−s2 =− x3(λp + α + µ) + λ(1− p)x1 + µx15 (11c)

−s3 =− x5(λp + µ) + αx3 + λ(1− p)x2 (11d)

−s4 =− x7(λ(1− p) + α + µ) + λpx1 + µx16 (11e)

−s5 =− x9(λ(1− p) + µ) + λpx2 + αx7 (11f)

−s6 =− x11(2µ + α) + λpx3 + λ(1− p)x7 (11g)

−s7 =− x142µ + λpx5 + λ(1− p)x9 + αx11 (11h)

which is a system of 8 equations with 12 variables (the variables are x1, x2, x3, x5, x6, x7, x8, x9,
x10, x11, x14, x15 and x16). However, an explicit expression of x6 and x16 have been obtained
in Lemma 1 and an explicit explicit expression of x10 and x15 in Lemma 2. Therefore, the
next result follows.
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Proposition 2. Let x1, x2, x3, x5, x7, x9, x11, x14 be the solution of Equation (11a–h) (recall that
x6 and x16 are given in Lemma 1 and x10 and x15 in Lemma 2). Therefore, the average Age of
Information of a two parallel servers system with energy harvesting is given by

x1 + x2 + x3 + x5 + x7 + x9 + x11 + x14.

3.1. Analysis When λ Tends to ∞

We now consider the asymptotic regime where λ→ ∞ when the parameters α and µ
are finite.

We first focus on the solution of Equation (1a–h).

Lemma 3. When λ → ∞ and max(α, µ) < 0, the solution of Equation (1a–h) satisfies that
s0 = s1 = s2 = s3 = s4 = s5 = 0.

Proof. See Appendix D.

From this result, we conclude that, in the asymptotic regime under study, s6 + s7 = 1
and that Equation (11a–h) can be written as

0 =− x1(λ + α) + µx7 + µx10 + µx3 + µx6 (12a)

0 =− x2λ + αx1 (12b)

0 =− x3(λp + α + µ) + λ(1− p)x1 + µx15 (12c)

0 =− x5(λp + µ) + αx3 + λ(1− p)x2 (12d)

0 =− x7(λ(1− p) + α + µ) + λpx1 + µx16 (12e)

0 =− x9(λ(1− p) + µ) + λpx2 + αx7 (12f)

−s6 =− x11(2µ + α) + λpx3 + λ(1− p)x7 (12g)

−s7 =− x142µ + λpx5 + λ(1− p)x9 + αx11 (12h)

If we replace the last equation by the sum the last two equations, we get the following
equivalent system:

0 =− x1(λ + α) + µx7 + µx10 + µx3 + µx6 (13a)

0 =− x2λ + αx1 (13b)

0 =− x3(λp + α + µ) + λ(1− p)x1 + µx15 (13c)

0 =− x5(λp + µ) + αx3 + λ(1− p)x2 (13d)

0 =− x7(λ(1− p) + α + µ) + λpx1 + µx16 (13e)

0 =− x9(λ(1− p) + µ) + λpx2 + αx7 (13f)

−s6 =− x11(2µ + α) + λpx3 + λ(1− p)x7 (13g)

−1 =− (x14 + x11)2µ + λpx5 + λ(1− p)x9

+ λpx3 + λ(1− p)x7 (13h)

We now analyze the solution of Equation (13a–h) for large λ.

Lemma 4. When λ → ∞ and max(α, µ) < 0, the solution of Equation (13a–h) satisfies that
x1 = x2 = x3 = x5 = x7 = x9 = 0.

Proof. The proof uses the same arguments than those of the proof of Lemma 3 and,
therefore, we omit it.

From the above results, we conclude that the average Age of Information of this
system is given by x11 + x14. Furthermore, using that x3 = x5 = x7 = x9 = 0 and from
(13h), we obtain that x11 + x14 = 1

2µ , which gives the following result:
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Proposition 3. When λ → ∞ and max(α, µ) < ∞, the average Age of Information of a two
parallel servers system with energy harvesting is given by 1

2µ .

It is important to remark that the average Age of Information of the system under
study in the considered asymptotic regime does not depend on the arrival rate of energy
packets, i.e., on α.

3.2. Limitations to Analyze More Complex Models

We have tried to extend the results presented in this section to more complex systems
and we have noticed that this task is extremely difficult. The main reason for this that
the Markov chain to be considered (and, as a consequence, the number of equations to
be solved ) increases at a very high rate with the complexity of the system. This suggests
that the analysis of the average Age of Information of more complex systems requires to
consider other techniques such as simulations or approximation techniques.

4. Performance Evaluation

In the previous section, we have obtained an explicit expression of the average Age of
Information of a system with two parallel servers and energy harvesting. Now, we aim to
evaluate the obtained expression to analyze its main properties. We have performed a large
number of simulations changing the values of the parameters and the illustrations of this
section are illustrative of the general pattern. (The plots of this section can be reproduced
using the code of https://github.com/josudoncel/AioParallelEnergy, accessed on 18
November 2021).

4.1. Parallel Servers vs. Single Server

We aim to compare the average Age of Information of the model under study in this
paper with that of a system with a single server with energy harvesting (the average Age of
Information of the latter model has been studied in [19]). For this purpose, we consider the
following systems: (i) a single server with arrival rates λ and α of data packets and energy
packets, respectively, and service rate 2µ (which is represented with a dotted line); (ii) a
single server with arrival rates λ/2 and α of data packets and energy packets, respectively,
and service rate 2µ (which is represented with a solid line); and (iii) two parallel servers
with p = 0.5, i.e., the arrival rate to each server is λ/2, the service rate is µ and the arrival
rate of energy packets is α (which is represented with a dashed line).

We first consider that the arrival rate of energy packet is very large. For this instance,
there is always energy to transmit the data packet when it ends service, or in other words,
the data packets are never lost because there is no energy. We note that, when this occurs,
the comparison study we carry out here coincides with the analysis of Section III2 of [18].
In Figure 3, we consider µ = 1 and α = 103 and we plot the evolution of the average Age
of Information of the systems under study in this section when λ varies from 0.1 to 103.
We observe that the obtained plot coincides with Figure 4 of [18]. From this illustration,
the authors in [18] conclude that some properties of the classical performance metrics
of queuing theory, such as mean delay, are verified for the average Age of Information
(the system that minimizes performance is the single server with service 2µ), but other
properties do not (the mean delay of a system with two parallel servers with arrival rate
to each equal to λ/2 is the same as that of a single server with arrival rate λ/2, but this is
not the case for the average Age of Information). This illustration shows that, as expected,
these conclusions also hold for our model when α is large.

https://github.com/josudoncel/AioParallelEnergy
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Figure 3. Average Age of Information of the three systems under comparison when λ changes from
0.1 to 103. α = 1000 and µ = 1.

We now aim to compare the performance of these systems when the arrival rate is not
large. Thus, we fix the parameters equal to the previous plot and we consider different
values of α. First, we consider α = 1 and in Figure 4, we observe that the average Age of
Information of all the systems do not change substantially with respect to the previous
plot when λ is small. However, as λ grows, the average Age of Information of the systems
with a single server decreases less than that of two parallel servers. We have also seen
that, when λ is large, the average Age of Information of two parallel servers is 0.5, of a
single server with double service rate 1.5 and of a single server with half traffic is 1.67. The
difference on the average Age of Information between these system is even larger if we
consider a smaller value of α. For instance, in Figure 5, we illustrate that the system with
the smallest average Age of Information is the system with two parallel servers for almost
all the values of λ we have considered.
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Figure 4. Average Age of Information of the three systems under comparison when λ changes from
0.1 to 103. α = 1 and µ = 1.



Entropy 2021, 23, 1549 11 of 19

6
10 -1 10 0 10 1 10 2 10 3

A
ve

ra
ge

 A
ge

 o
f I

nf
or

m
at

io
n

10 -1

10 0

10 1

10 2
,=0.1

2 parallel
single 6/2, 7
single 6,  2 7

Figure 5. Average Age of Information of the three systems under comparison when λ changes from
0.1 to 103. α = 0.1 and µ = 1.

4.2. Convergence Analysis of Proposition 3

In Proposition 3, we show that, when λ→ ∞, the average Age of Information tends
to 1

2µ , i.e., it does not depend on α or p. In this part of the article, we aim to study this

convergence. We consider µ = 1 and p = 0.1 and we vary α from 0.1 to 103. We plot the
evolution of the average Age of Information for different values of λ in Figure 6 and we
observe that, as λ increases, the obtained values tend to 0.5, which confirms the result of
Proposition 3. We consider p = 0.45 in Figure 7 to study how this convergence depends on
p and we observe that it seems to converge at the same rate to 0.5 than in the previous case.

From these illustrations, we also conclude that the average Age of Information is not
monotone with respect to α (note that in [19] it has been shown that the average Age of
Information of a system with a single server with energy harvesting is monotone with
respect to α). For instance, we see that, when p = 0.45 and λ = 10, the average Age of
Information increases when λ is small, then decreases and finally decreases again.
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Figure 6. Average Age of Information with respect to α for different values of λ, when α varies from
0.1 to 103. µ = 1 and p = 0.1.
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Figure 7. Average Age of Information with respect to α for different values of λ, when α varies from
0.1 to 103. µ = 1 and p = 0.45.

4.3. Analysis of ther Parameter p

We now focus on the parameter p that determines the proportion of the total incoming
arrival rate is sent to each of the servers. In Figure 8, we consider α = 1 and we plot the
average Age of Information when p varies from 0.01 to 0.99 for different values of λ and
µ. We observe that, in all the considered instances, the average Age of Information first
decreases with p and then increases. This suggests that the minimum of the average Age
of Information for p is achieved when this parameter is close to 0.5, i.e., in the symmetric
case that has been studied in Section 4.1.
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Figure 8. Average Age of Information with respect to p for different values of λ and µ, when p varies
from 0.01 to 0.99. α = 1.

5. Conclusions

We consider a system with two transmission channels that do not communicate
and a energy source that generates energy following a random process. We model this
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system as a system with Poisson arrivals of status updates to two parallel servers and of
energy packets to a battery. We study the average Age of Information of system using
the Stochastic Hybrid System method. We first show that the average Age of Information
of this system can be computed by solving a system of 8 linear equations (Proposition 2).
We then consider that the arrival rate tends to infinity and, in this case, we show that the
average Age of Information is equal to one divided by the sum of the service rate of the
servers. This implies that, in this regime, the average Age of Information does not depend
on the probability to dispatch jobs to the server and on the arrival rate of energy packets.
We then study numerically the performance of our model with single server systems with
energy harvesting and the same load of data packets as in our model. We conclude that,
when the arrival rate of energy packets tends to infinity, the same conclusions of [18] follow
in our model (i.e., the average Age of Information does not satisfy the same properties
that other performance measures used in queuing theory such as number of packets in the
queue). However, when the arrival rate of energy packets is not large, we conclude that the
parallel server system outperforms the single server systems.

For future work, we would like to analyze the average Age of Information with a
larger number of servers and with buffer for the energy packets and the data packets.
Furthermore, we would like to study optimality of this model for some parameters such as
p. We would also like to extend this model to include other parameters of the system such
as transmit power or channel statistics to address real-life problems. Finally, we are also
interested in exploring the performance of this model when it requires energy not only to
send a status update to the monitor after getting service, but also to receive data packets
from the source.
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Appendix A. Average Age of Information and SHS

In the SHS, the system is modeled as a hybrid state (q(t), x(t)), where q(t) a state of a
continuous time Markov Chain and x(t) is a vector whose components is the generation
time of each of the updates. We assume that in the monitor there is the update with the
latest generation time.

A link l of the Markov Chain represents a transition between two states, which occurs
with rate λl . In each transition l, the vector x changes to x′ using a transformation matrix
Al , that is, x′ = xAl . Therefore, x(t) is a piece-wise function.

For each state q of the Markov Chain, we define bq as the vector whose elements are
zero or one. One values represent the packets that are present in the system and therefore
that the time from their generation increases at unit rate. On the other hand, zero values
represent the updates that are not in the system.

We assume the Markov Chain is ergodic and we denote by πq the stationary distribu-
tion of state q. We denote by Lq the set of outgoing links of state q and L′q the set of links
that get into state q. We now present the following theorem that will be used to characterize
the average Age of Information:

https://github.com/josudoncel/AioParallelEnergy
https://github.com/josudoncel/AioParallelEnergy
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Theorem A1 ([17], Thm 4). Let vq(i) denote the i-th element of the vector vq. For each state q, if
vq is a non-negative solution of the following system of equations

vq ∑
l∈Lq

λl = bqπq + ∑
l∈L′q

λlvql Al , (A1)

then the average Age of Information is ∆ = ∑q vq(0).

Appendix B. Proof of Proposition 1

We use the SHS technique to compute the average age of information of this system.
We denote by x = [x0(t) x1(t) x2(t)], where x0(t) represents the age of the information at
time t and xi(t) the age of information if a data packet that is getting service in data queue
i is sent successfully to the monitor, i = 1, 2.

The Markov Chain of this model is presented in Figure A1. We denote by ijk the state
where there are i data packets in data queue 1, j data packets in data queue 2 and k energy
packets in the energy queue. We now describe each of the transitions of this model.

Figure A1. The SHS Markov chain for the model with two parallel data queues and a battery.

l = 0 A data packet arrives to data queue 1 when the system is empty. Therefore, the
data packet starts getting service and the value of x1 is set to zero, that is, x′1 = 0.
The rest of values of x are not modified.

l = 1 A data packet of data queue 1 ends service when data queue 2 is empty. The data
packet is sent to the energy queue, which is empty. Hence, the data packet is lost
and the system gets empty. The vector x is not modified.

l = 2 A data packet arrives to data queue 1 when it is full. For this case, the last arrived
packet replaces the packet in service and the age of x1 changes to zero since the
last arrived packet is fresh, that is, x′1 = 0. The rest of values of x do not change.

l = 3 A data packet arrives to data queue 1 when the energy queue is full. Therefore, the
data packet starts getting service and the value of x1 is set to zero, that is, x′1 = 0.
The rest of values of x are not modified.

l = 4 An energy packet arrives to the system when data queue 1 is full and data queue 2
is empty. The arrival of an energy packet does not modify the age of the packets in
the system and of the monitor, therefore the vector x is not modified.
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l = 5 A data packet is data queue 1 ends service and it is sent to the energy queue, which
contains one energy packet. Therefore, the packet is successfully delivered and the
age of information is modified by the age of the served packet, that is, x′0 = x1.

l = 6 A data packet arrives to data queue 2 when the data queue 1 is full and the data
queue 2 and the energy queue were empty. For this case, the value of x2 is set to
zero, that is, x′2 = 0 and the rest of the values of x are not modified.

l = 7 A data packet in data queue 2 ends service when the energy queue is empty and
data queue 1 is full. Therefore, the served packet is sent to the energy queue and it
is lost. The vector x is not modified.

l = 8 A data packet in data queue 2 ends service and the system is full. Therefore, the
served packet is delivered and thus, the value of x0 is replaced by that of x2, that
is, x′0 = x2. The rest of the values of x are not modified.

l = 9 A data packet arrives to data queue 2 when the energy queue and data queue 1
are full. Therefore, all the queues are full and the value of x2 is set to zero since a
fresh packet arrived to that queue, that is, x′2 = 0. The rest of the values of x are
not modified.

l = 10 A data packet arrives to data queue 1 or there is an energy packet arrival when the
energy queue and data queue 1 are full and data queue 2 is empty. In the former
case, the value of x1 changes to zero since a fresh packet arrived to that queue, that
is, x′1 = 0 and the rest of the values of x are not modified, whereas in the later case
the vector x does not change.

With the roles of data queue 1 and data queue 2 reversed, transitions 11–21 coincide
with 0–10, respectively. Besides, transitions 21–24 represent an arrival of an energy queue,
which increases by one the number of energy packets if the energy queue is empty, but the
vector x is never modified. Finally, we focus on transitions 25 and 26:

l = 25 The data queues are full the energy queue is empty. If a data packet arrives to
data queue 1, the value of x1 changes to zero since a fresh packet arrived to that
queue, that is, x′1 = 0 and the rest of the values of x are not modified. Likewise, if a
data packet arrives to data queue 2, the value of x2 changes to zero since a fresh
packet arrived to that queue, that is, x′2 = 0 and the rest of the values of x are not
modified.

l = 26 The system is full and one of the following events occur: (i) a data packet arrives
to data queue 1, (ii) a data packet arrives to data queue 2 and (iii) an energy packet
arrives to the energy queue. For the case (i), (resp. the case (ii)) the value of x1
changes to zero (resp. x2 changes to zero) since a fresh packet arrived to that queue,
that is, x′1 = 0 (resp. x′2 = 0) and the rest of the values of x are not modified. Finally,
for the case (iii), the vector x is not modified since an arrival of an energy queue
does not change the age of the packets in the system.
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Table A1. Table of SHS transitions of Figure A1.

l ql → ql′ λl x′ = xAl v̄ql Al

0 000→ 100 λp [x0 0 0] [v000(0) 0 0]
1 100→ 000 µ [x0 0 0] [v100(0) 0 0]
2 100→ 100 λp [x0 0 0] [v100(0) 0 0]
3 001→ 101 λp [x0 0 0] [v001(0) 0 0]
4 100→ 101 α [x0 0 0] [v100(0) 0 0]
5 101→ 000 µ [x1 0 0] [v101(1) 0 0]
6 100→ 110 λ(1− p) [x0 x1 0] [v100(0) v100(1) 0]
7 110→ 100 µ [x0 x1 0] [v110(0) v110(1) 0]
8 111→ 100 µ [x2 x1 0] [v111(2) v111(1) 0]
9 101→ 111 λ(1− p) [x0 x1 0] [v101(0) v101(1) 0]
10 101→ 101 λp [x0 0 0] [v101(0) 0 0]

α [x0 x1 0] [v101(0) v101(1) 0]
11 000→ 010 λ(1− p) [x0 0 0] [v000(0) 0 0]
12 010→ 000 µ [x0 0 0] [v010(0) 0 0]
13 010→ 010 λ(1− p) [x0 0 0] [v010(0) 0 0]
14 001→ 011 λ(1− p) [x0 0 0] [v001(0) 0 0]
15 010→ 011 α [x0 0 x2] [v010(0) 0 v010(2)]
16 011→ 000 µ [x2 0 0] [v011(2) 0 0]
17 010→ 110 λp [x0 0 x2] [v010(0) 0 v010(2)]
18 110→ 010 µ [x0 0 x2] [v110(0) 0 v110(2)]
19 111→ 010 µ [x1 0 x2] [v111(1) 0 v111(2)]
20 011→ 111 λp [x0 0 x2] [v011(0) 0 v011(2)]
21 011→ 011 λ(1− p) [x0 0 0] [v011(0) 0 0]

α [x0 0 x2] [v011(0) 0 v011(2)]
22 000→ 001 α [x0 0 0] [v000(0) 0 0]
23 001→ 001 α [x0 0 0] [v001(0) 0 0]
24 110→ 111 α [x0 x1 x2] [v110(0) v110(1) v110(2)]
25 110→ 110 λp [x0 0 x2] [v110(0) 0 v110(2)]

λ(1− p) [x0 x1 0] [v110(0) v110(1) 0]
26 111→ 111 λp [x0 0 x2] [v111(0) 0 v111(2)]

λ(1− p) [x0 x1 0] [v111(0) v111(1) 0]
α [x0 x1 x2] [v111(0) v111(1) v111(2)]

We represent the evolution of x for all the above transitions in Table A1 . We now
that the information is presented in the same way as in Table A1, that is, in each row, each
transition is represented in a different row, in the second column of the table, the origin and
the destination state of the Markov Chain, in the third column the rate of each transition,
whereas in the last two columns we show the evolution of x and v̄ql Al , respectively.

LetQp be the set of state of the Markov Chain of Figure A1. The stationary distribution
of state q ∈ Qp is denoted by πq. We now focus on the stationary distribution of the Markov
Chain of Figure A1. The balance equations are provided next:

π000(λ + α) = π101µ + π100µ + π011µ + π010µ

π001λ = π000α

π010(λp + µ + α) = π000λ(1− p) + π110µ + π111µ

π011(λp + µ) = π010α + π001λ(1− p)

π100(λ(1− p) + α + µ) = π000λp + π110µ + π111µ

π101(λ(1− p) + µ) = π001λp + π100α

π110(α + 2µ) = π010λp + π100λ(1− p)

π1112µ = π011λp + π101λ(1− p) + π110α
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The Markov chain under study is clearly ergodic. Therefore, there always exists a
unique solution of the above system of equations that satisfies ∑q∈Qp πq = 1.

We remark that the above system of equations coincides with Equation (1a–h).
We now define the vector bq for any q ∈ Qp. For q ∈ {000, 001}, we have that

bq = [1 0 0], whereas for q ∈ {100, 101}, bq = [1 1 0], for q ∈ {010, 011}, bq = [1 0 1] and for
q ∈ {110, 111}, bq = [1 1 1]. Besides, for all q ∈ Qp, we denote by vq(i) the i-th component
of vector vq, with i = 0, 1, 2.

We now aim to apply Theorem A1 to this model and, from (A1), it follows that

v000(λ + α) =[π000 0 0] + µ[v100(0) 0 0]

+ µ[v101(1) 0 0] + µ[v010(0) 0 0]

+ µ[v011(2) 0 0] (A2a)

v001(λ + α) =[π001 0 0] + α[v000(0) 0 0]

+ α[v001(0) 0 0] (A2b)

v010(λ + α + µ) =[π010 0 π010] + λ(1− p)[v000(0) 0 0]

+ λ(1− p)[v010(0) 0 0]

+ µ[v111(1) 0 v111(2)] (A2c)

v011(λ + α + µ) =[π011 0 π011] + α[v010(0) 0 v010(2)]

+ α[v011(0) 0 v011(2)]

+ λ(1− p)[v001(0) 0 0]

+ λ(1− p)[v011(0) 0 0] (A2d)

v100(λ + α + µ) =[π100 π100 0] + λp[v000(0) 0 0]

+ λp[v100(0) 0 0]

+ µ[v111(2) v111(1) 0] (A2e)

v101(λ + α + µ) =[π101 π101 0] + λp[v001(0) 0 0]

+ λp[v101(0) 0 0]

+ α[v101(0) v101(1) 0]

+ α[v100(0) v100(1) 0] (A2f)

v110(λ + 2µ + α) =[π110 π110 π110]

+ λp[v010(0) 0 v010(2)]

+ λp[v110(0) 0 v110(2)]

+ λ(1− p)[v100(0) v100(1) 0]

+ λ(1− p)[v110(0) v110(1) 0] (A2g)

v111(λ + 2µα) =[π111 π111 π111]

+ λp[v011(0) 0 v011(2)]

+ λp[v111(0) 0 v111(2)]

+ λ(1− p)[v101(0) v101(1) 0]

+ λ(1− p)[v111(0) v111(1) 0]

+ α[v110(0) v110(1) v110(2)]

+ α[v111(0) v111(1) v111(2)]. (A2h)

We note that the above expression is the same as Equation (2a–p) with the following
change of variable: v000(0) = x1, v001(0) = x2, . . . , v111(1) = x15, v111(2) = x16 and s0 =
π000, s1 = π001, . . . , s7 = π111. Using Theorem A1, the desired result follows.
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Appendix C. Proof of Lemma 1

We first write the Equation (2d,f,m,p), :

−s2 =− x4(λ + α + µ) + µx16 (A3a)

−s3 =− x6(λ + µ) + αx4 (A3b)

−s6 =− x13(λ(1− p) + 2µ + α) + λpx4 (A3c)

−s7 =− x16(λ(1− p) + 2µ) + λpx6 + αx13, (A3d)

And we observe that it is a system with 4 linear equations with 4 variables. Moreover,
from (A3b), we get

x6 =
αx4 + s3

λ + µ
,

which gives (6), whereas from (A3c) we get

x13 =
λpx4 + s6

λ(1− p) + 2µ + α
.

Substituting these expression in Equation (A3a–d), we obtain the following system of
equations:

−s2 =− x4(λ + α + µ) + µx16 (A4a)

−s7 =− x16(λ(1− p) + 2µ) + λp
αx4 + s3

λ + µ

+ α
λpx4 + s6

λ(1− p) + 2µ + α
, (A4b)

From (A4a), it results that

x4(λ + α + µ) = µx16 + s2 ⇐⇒ x4 =
µx16 + s2

λ + α + µ
,

which is equal to (5) and substituting the obtained expression in (A4b) and simplifying, we
get (4). And the desired result follows.

Appendix D. Proof of Lemma 3

We first note that, from (1a), we have that

s0 =
s2µ + s3µ + s4µ + s5µ

λ + α
,

which tends to zero when λ→ ∞ because si < 1 for all i and µ < ∞. From (1b), we get that

s1 =
s0α

λ
,

which, using the previous result and α < ∞, also proves that s1 tends to zero when λ→ ∞
because s0 < 1. We now focus on (1c),:

s2 =
s0λ(1− p) + s6µ + s7µ

λp + µ + α
,

and when λ→ ∞, we have that s2 tends to s0(1− p)/p and this tends to zero because s0
tends to zero. We now study (1d) and, using that αs0 = λs1 (see (1b)), we get

s3 =
s0α(1− p) + s2α

λp + µ
,
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F which also tends to zero when λ→ ∞ because s0 < 1 and α < ∞. From (1e), we obtain

s4 =
s0λp + s6µ + s7µ

λ(1− p) + α + µ
,

and we observe that s4 tends to s0 p/(1− p) when λ → ∞ and, since s0 tends to zero, so
does s4. Finally, we have from (1f) and using that αs0 = λs1 (see (1b)),

s5 =
s0αp + s4α

λ(1− p) + µ
,

which also tends to zero when λ→ ∞. And the desired result follows.
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