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Abstract: With the rapid growth of the Internet, the curse of dimensionality caused by massive
multi-label data has attracted extensive attention. Feature selection plays an indispensable role
in dimensionality reduction processing. Many researchers have focused on this subject based
on information theory. Here, to evaluate feature relevance, a novel feature relevance term (FR)
that employs three incremental information terms to comprehensively consider three key aspects
(candidate features, selected features, and label correlations) is designed. A thorough examination
of the three key aspects of FR outlined above is more favorable to capturing the optimal features.
Moreover, we employ label-related feature redundancy as the label-related feature redundancy
term (LR) to reduce unnecessary redundancy. Therefore, a designed multi-label feature selection
method that integrates FR with LR is proposed, namely, Feature Selection combining three types of
Conditional Relevance (TCRFS). Numerous experiments indicate that TCRFS outperforms the other
6 state-of-the-art multi-label approaches on 13 multi-label benchmark data sets from 4 domains.

Keywords: feature selection; information theory; feature relevance; label-related feature redundancy;
conditional relevance

1. Introduction

In recent years, multi-label learning [1–4] has been increasingly popular in applications
such as text categorization [5], image annotation [6], protein function prediction [7], etc.
Additionally, feature selection is of great significance to solving industrial application
problems. Some researchers monitor the wind speed in the wake region to detect wind
farm faults based on feature selection [8]. In signal processing applications, feature selection
is effective for chatter vibration diagnosis in CNC machines [9]. Feature selection is adopted
to classify the cutting stabilities based on the selected features [10]. The most crucial thing
in diverse multi-label applications is to classify each sample and its corresponding label
accurately. Multi-label learning, such as traditional classification approaches, is vulnerable
to dimensional catastrophes. The number of features in text multi-label data is frequently
in the tens of thousands, which means that there are a lot of redundant or irrelevant
features [11,12]. It can easily lead to the “curse of dimensionality”, which dramatically
increases the model complexity and computation time [13]. Feature selection is the process
of selecting a set of feature subsets with distinguishing features from the original data
set according to specific evaluation criteria. Redundant or irrelevant features can be
eliminated to improve model accuracy and reduce feature dimensions, feature space, and
running time [14,15]. Simultaneously, the selected features are more conducive to model
understanding and data analysis.

In traditional machine learning problems, feature selection approaches include wrap-
per, embedded, and filter approaches [16–19]. Among them, wrapper feature selection ap-
proaches use the classifier performance to weigh the pros and cons of a feature subset, which
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has high computational complexity and a large memory footprint [20,21]. The processes of
feature selection and learner training are combined in embedded approaches [22,23]. Fea-
ture selection is automatically conducted during the learner training procedure when the
two are completed in the same optimization procedure. Filter feature selection approaches
weigh the pros and cons of feature subsets using specific evaluation criteria [24,25]. It is
independent of the classifier, and the calculation is fast and straight. As a result, the filter
feature selection approaches are generally used for feature selection.

There are also the above-mentioned three feature selection approaches in multi-label
feature selection, with filter feature selection being the most popular. Information theory is
a standard mathematical tool for filter feature selection [26]. Based on information theory,
this paper mainly focuses on three key aspects that affect feature relevance: candidate
features, selected features, and label correlations. The method proposed in this paper
examines the amount of information shared between the selected feature subset and
the total label set to evaluate feature relevance and denotes it as ∆I for the time being.
Once any candidate feature is selected in the current selected feature subset, the current
selected feature subset will be updated at this point, and ∆I will be altered accordingly.
Moreover, the original label correlations in the total label set also affect ∆I due to some
new candidate features being added to the current selected feature subset. Hence, three
incremental information terms which combine candidate features, selected features, and
label correlations to evaluate feature relevance are used to design a novel feature relevance
term. Furthermore, we employ label-related feature redundancy as the feature redundancy
term to reduce unnecessary redundancy. Table 1 provides three abbreviations and their
corresponding meanings we mentioned. We explain them in detail in Section 4.

Table 1. Abbreviations meaning statistics.

Abbreviations Corresponding Meanings

FR A novel feature relevance term
LR A label-related feature redundancy term

TCRFS Feature Selection combining three types of Conditional Relevance

The major contributions of this paper are as follows:

1. Analyze and discuss the indispensability of the three key aspects (candidate features,
selected features and label correlations) for feature relevance evaluation;

2. Three incremental information terms taking three key aspects into account are used
to express three types of conditional relevance. Then, FR combining the three incre-
mental information terms is designed;

3. A designed multi-label feature selection method that integrates FR with LR is pro-
posed, namely TCRFS;

4. TCRFS is compared to 6 state-of-the-art multi-label feature selection methods on 13
benchmark multi-label data sets using 4 evaluation criteria and certified the efficacy
in numerous experiments.

The rest of this paper is structured as follows. Section 2 introduces the preliminary
theoretical knowledge of this paper: information theory and the four evaluation criteria
used in our experiments. Related works are reviewed in Section 3. Section 4 combines
three types of conditional relevance to design FR and proposes TCRFS, which integrates
FR with LR. The efficacy of TCRFS is proven by comparing it with 6 multi-label methods
on 13 benchmark data sets applying 4 evaluation criteria in Section 5. Section 6 concludes
our work in this paper.
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2. Preliminaries
2.1. Information Theory for Multi-Label Feature Selection

Information theory is a popular and effective means to tackle the problem of multi-
label feature selection [27–29]. It is used to measure the correlation between random
variables [30] and its fundamentals are covered in this subsection.

Assume that the selected feature subset S = { f1, f2, ..., fn}, the label set L = {l1, l2, ..., lm}.
To convey feature relevance, we typically employ I(S; L), which is mutual information
between the selected feature subset and the total label set. Mutual information is a measure
in information theory. It can be seen as the amount of information contained in one
random variable about another random variable. Assume two discrete random variables
X = {x1, x2, ..., xn}, Y = {y1, y2, ..., ym}, then the mutual information between X and Y can
be represented as I(X; Y). Its expansion formula is as follows:

I(X; Y) = H(X)− H(X|Y) = H(Y)− H(Y|X) (1)

where H(X) denotes the information entropy of X, and H(X|Y) denotes the conditional
entropy of X given Y. Information entropy is a concept used to measure the amount of
information in information theory. H(X) is defined as:

H(X) = −
n

∑
i=1

p(xi) log p(xi) (2)

where p(xi) represents the probability distribution of xi, and the base of the logarithm is 2.
The conditional entropy H(X|Y) is defined as the mathematical expectation of Y for the
entropy of the conditional probability distribution of X under the given condition Y:

H(X|Y) = −
n

∑
i=1

m

∑
j=1

p(xi, yj) log p(xi|yj) (3)

where p(xi, yi) and p(xi|yi) represent the joint probability distribution of (xi, yi) and the
conditional probability distribution of xi given yi, respectively. H(X|Y) can also be repre-
sented as follows:

H(X|Y) = H(X, Y)− H(Y) (4)

where H(X, Y) is another measure in information theory, namely, the joint entropy. Its
definition is as follows:

H(X, Y) = −
n

∑
i=1

m

∑
j=1

p(xi, yj) log p(xi, yj) (5)

According to Equation (4), combining the relationship between the three different mea-
sures of the amount information, the mutual information I(X; Y) can also be alternatively
written as follows:

I(X; Y) = H(X) + H(Y)− H(X, Y) (6)

It is common in multi-label feature selection to have more than two random variables,
assuming another discrete random variable Z = {z1, z2, ..., zq}. The conditional mutual
information I(X; Y|Z), which expresses the expected value of mutual information of two
discrete random variables X and Y given the value of the third discrete variable Z. It is
represented as follows:

I(X; Y|Z) = I(X, Z; Y)− I(Y; Z) = I(X; Y, Z)− I(X; Z) = I(X; Y)− I(X; Y; Z) (7)
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where I(X, Z; Y) is the joint mutual information and I(X; Y; Z) is the interaction informa-
tion. Their expansion formulas are as follows:

I(X, Z; Y) = I(X; Y|Z) + I(Y; Z) = I(Y; Z|X) + I(X; Y) (8)

I(X; Y; Z) = I(X; Y) + I(X; Z)− I(X; Y, Z) = I(X; Y)− I(X; Y|Z) (9)

2.2. Evaluation Criteria for Multi-Label Feature Selection

In our experiments, we employ four distinct evaluation criteria to confirm the efficacy
of TCRFS. The four evaluation criteria are essentially separated into two categories: label-
based evaluation criteria and example-based evaluation criteria [31]. The label-based
evaluation criteria include Macro-F1 and Micro-F1 [32]. The higher the value of these two
indicators, the better the classification effect. Macro-F1 actually calculates the F1-score of q
categories first and then averages it as follows:

Micro-F1 =
1
q

q

∑
i=1

2TPi
2TPi + FPi + FNi

(10)

where TPi, FPi, and FNi represent true positives, false positives, and false negatives in i-th
category, respectively. Micro-F1 calculates the confusion matrix of each category, and adds
the confusion matrix to obtain a multi-category confusion matrix and then calculates the
F1-score as follows:

Micro-F1 =

q
∑

i=1
2TPi

q
∑

i=1
(2TPi + FPi + FNi)

(11)

The example-based evaluation criteria include the Hamming Loss (HL) and Zero One
Loss (ZOL) [33]. The lower the value of these two indicators, the better the classification
effect. HL is a metric for the number of times a label is misclassified. That is, a label
belonging to a sample is not predicted, and a label not belonging to the sample is projected
to belong to the sample. Suppose that D = {(xi, Yi)|1 ≤ i ≤ m} is a label test set and
Yi ⊆ Y is a set of class labels corresponding to xi, where Y is the label space with q
categories. The definition of HL is as follows:

HL =
1
m

m

∑
i=1

Y
′
i ⊕Yi

q
(12)

where ⊕means the XOR operation. Y
′
i denotes the predicted label set corresponding to xi.

The other example-based criterion ZOL is defined as follows:

ZOL =
1
m

m

∑
i=1

δ(argmaxy∈Yh(xi, y)) (13)

If the predicted label subset and the true label subset match, the ZOL score is 1 (i.e.,
δ = 1), but if there is no error, the score is 0 (i.e., δ = 0).

3. Related Work

There have been a lot of multi-label learning algorithms proposed so far. These
multi-label learning algorithms can be divided into problem transform and algorithm adap-
tation [34,35]. Problem transform is the conversion of multi-label learning into traditional
single-label learning, such as Binary Relevance (BR) [36], Pruned Problem Transformation
(PPT) [37], and Label Power (LP) [38]. BR treats the prediction of each label as an inde-
pendent single classification issue and trains an individual classifier for each label with all
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of the training data [33]. However, it ignores the relationships between the labels, so it is
possible to end up with imbalanced data. PPT removes the labels with a low frequency by
considering the label set with a predetermined minimum number of occurrences. However,
this irreversible conversion will result in the loss of class information [39].

In contrast to problem transform, algorithm adaptation directly enhances the existing
single-label data learning algorithms to adapt to multi-label data processing. Algorithm
adaption improves the issues caused by problem transformation. Cai et al. [40] propose
Robust and Pragmatic Multi-class Feature Selection (RALM-FS) based on an augmented
Lagrangian method, where there is just one `2,1-norm loss term in RALM-FS, with an ap-
parent `2,0-norm equality constraint. Lee and Kim [41] propose the D2F method that makes
use of interactive information based on mutual information. It is capable of measuring
multiple variable dependencies by default, and its definition is as follows:

J( fk) = ∑
li∈L

I( fk; li)− ∑
f j∈S

∑
li∈L

I( fk; f j; li) (14)

where ∑
li∈L

I( fk; li) and ∑
f j∈S

∑
li∈L

I( fk; f j; li) are regarded as the feature relevance term and

the feature redundancy term, respectively. The feature relevance of D2F only considers
the candidate features in feature relevance, which ignores selected features and label
correlations. Lee and Kim [42] propose the Pairwise Multi-label Utility (PMU), which is
derived from I(S; L) as follows:

J( fk) = ∑
li∈L

I( fk; li)− ∑
f j∈S

∑
li∈L

I( fk; f j; li)− ∑
li∈L

∑
lj∈L

I( fk; li; lj) (15)

where ∑
li∈L

I( fk; li) is to measure the feature relevance and ∑
f j∈S

∑
li∈L

I( fk; f j; li)+

∑
li∈L

∑
lj∈L

I( fk; li; lj) is to measure the feature redundancy. Afterward, Lee and Kim [43]

propose multi-label feature selection based on a scalable criterion for large SCLS. SCLS uses
a scalable relevance evaluation approach to assess conditional relevance more correctly:

J( fk) = ∑
li∈L

I( fk; li)− ∑
f j∈S

I( fk; f j)

H( fk)
∑
li∈L

I( fk; li) =

1− ∑
f j∈S

I( fk; f j)

H( fk)

 ∑
li∈L

I( fk; li) (16)

In fact, the scalable relevance in SCLS considers both candidate features and selected
features but ignores label correlations. Liu et al. [44] propose feature selection for multi-
label learning with streaming label (FSSL) in which label-specific features are learned
for each newly received label, and then label-specific features are fused for all currently
received labels. Lin et al. [45] apply a multi-label feature selection method based on fuzzy
mutual information (MUCO) to the redundancy and correlation analysis strategies. The
next feature that enters S can be selected by the following:

J( fk) = FMI( fk; L)− 1
|S| ∑

f j∈S
(FMI( fk; f j)) (17)

where FMI( fk; L) denotes the fuzzy mutual information.
When we try to add a new candidate feature fk to the current selected feature subset

S, the feature fk, the selected features f j in S, and label correlations in the total label set
will all impact feature relevance. To this end, FR is devised by merging the three types of
conditional relevance. Therefore, a designed multi-label feature selection method TCRFS
that integrates FR with LR is proposed.
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4. TCRFS: Feature Selection Combining Three Types of Conditional Relevance

According to the past multi-label feature selection methods, they do not take into
account all the three key aspects of influencing feature relevance. That is, the key aspects
that influence feature relevance are not comprehensively examined. Here, we utilize three
incremental information terms to depict three types of conditional relevance that consider
candidate features, selected features, and label correlations comprehensively. The reasons
for our consideration are as follows.

4.1. The Three Key Aspects of Feature Relevance We Consider
4.1.1. Candidate Features

We evaluate each candidate feature according to specific criteria. When a candidate
feature fk attempts to enter the current selected feature subset S as a new selected feature
to generate a new selected feature subset, it will affect the amount of information provided
by the current selected feature subset to the label set. The influence of candidate features is
represented by a Venn diagram, as shown in Figure 1.

Figure 1. The relationship between features and labels in the Venn diagram.

In Figure 1, we assume that fk1 and fk2 are two candidate features, f j is a selected
feature in S, and li is a label in the total label set L. fk1 is irrelevant to f j, and fk2 is redundant
with f j. The amount of information provided by f j to li is mutual information I( f j; li), that
is, the area {2, 3}. If fk1 is selected, then the amount of information provided by f j to li will
be I( f j; li| fk1), which corresponds to the area {2, 3}. If fk2 is selected, then the amount of
information provided by f j to li will be I( f j; li| fk2), which corresponds to the area {2} since
the area {2} is less than the area {2, 3}, I( f j; li| fk2) < I( f j; li| fk1). Therefore, the higher the
label-related redundancy between the candidate feature and the selected feature in the
current selected feature subset, the greater the amount of information between f j and li
is reduced. In other words, the label-related redundancy between the candidate feature
and the selected features should be kept to a minimum. From this point of view, fk1 takes
precedence over fk2 .

4.1.2. Selected Features

The influence of selected features is represented by a Venn diagram as shown in
Figure 2.
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Figure 2. The relationship between features and labels in the Venn diagram.

As shown in Figure 2, fk1 and fk2 are both redundant with f j. Without considering
selected features, the information that fk1 and fk2 shared with the label li are I( fk1 ; li) and
I( fk2 ; li), respectively. The area {1, 2} denotes I( fk1 ; li), and the area {5, 6} denotes I( fk2 ; li).
We assume that the area {1, 2} is less than the area {5, 6}, the area {2} is less than the
area {5}, but the area {1} is larger than {6}. With the selected features taken into account,
the information shared by fk1 and li is I( fk1 ; li| f j) (i.e., the area {1}), and the information
shared by fk2 and li is I( fk2 ; li| f j) (i.e., the area {6}): I( fk1 ; li) < I( fk2 ; li), but I( fk1 ; li| f j) >
I( fk2 ; li| f j). There are two causes for this situation, the first is that the amount of information
provided to li by fk2 itself is insufficient, and the second is that the label-related redundancy
between fk2 and f j is excessive. Now, in the hypothesis, replace the condition that area
{1} is larger than the area {6} to the area {1} is less than the area {6}, and we obtain the
following result: I( fk1 ; li) < I( fk2 ; li) but I( fk1 ; li| f j) < I( fk2 ; li| f j). Therefore, considering
the influence of the selected features on feature relevance is necessary.

4.1.3. Label Correlations

It has no influence on the amount of information between candidate features and each
label if the labels are independent. The influence of label correlations is represented by a
Venn diagram as shown in Figure 3.

Figure 3. The relationship between features and labels in the Venn diagram.

In Figure 3, li and lj are two redundant labels, that is, there exists a correlation between
li and lj. Without the consideration of label correlations, the amount of information
provided to li by fk1 is I( fk1 ; li) (the area {1, 2}) and the amount of information provided to
li by fk2 is I( fk2 ; li) (the area {4, 5}). Then, while taking label correlations into consideration,
the amount of information provided to li by fk1 is I( fk1 ; li|lj) (the area {1}) and the amount
of information provided to li by fk2 is I( fk2 ; li|lj) (the area {4}). Now, provide the first
hypothesis: the area {1, 2} is larger than the area {4, 5}, the area {2} is larger than the area
{5}, but the area {1} is less than the area {4}. Hence, I( fk1 ; li) > I( fk2 ; li) but I( fk1 ; li|lj) <
I( fk2 ; li|lj). The second hypothesis modifies the last condition in the first hypothesis: the
area {1} is larger than the area {4}. Hence, I( fk1 ; li) > I( fk2 ; li) and I( fk1 ; li|lj) > I( fk2 ; li|lj).
We call the area {2} and the area {5} feature-related label redundancy. Therefore, the
original amount of information between candidate features and labels and the feature-
related label redundancy can affect the selection of features. Merely using the accumulation
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of mutual information as the feature relevance will cause the redundant recalculation of
feature-related label redundancy.

According to the three key aspects of feature relevance described above, they are
indispensable. As a result, we devise FR as the feature relevance term of TCRFS.

4.2. Evaluation Function of TCRFS
4.2.1. Definitions of FR and LR

Regarding the feature relevance evaluation, we distinguish the importance of features
based on the closeness of the relationship between features and labels. According to
Section 4.1, candidate features, selected features, and label correlations are three key
aspects on evaluating feature relevance. In order to be able to perform better in multi-label
classification, we utilize three types of conditional relevance (I( fk; li| f j), I( f j; li| fk) and
I( fk; li|lj) to represent the feature relevance term in the proposed method. By using three
incremental information terms to summarize the three key aspects of feature relevance, FR
is devised. The three incremental information terms represent the three respective types of
conditional relevance.

Definition 1. (FR). Suppose that F = { f1, f2, ..., fm} and L = {l1, l2, ..., 1n} are the total feature
set and the total label set, respectively. Let S be the selected feature set excluding candidate features,
that is, fk ∈ F− S. FR is depicted as follows:

FR( fk) = ∑
li∈L

∑
f j∈S

I( fk; li| f j) + ∑
li∈L

∑
f j∈S

I( f j; li| fk) + ∑
li∈L

∑
i 6=j,lj∈L

I( fk; li|lj) (18)

where ∑
li∈L

∑
f j∈S

I( fk; li| f j) denotes the conditional relevance taking candidate features into account

while evaluating feature relevance, ∑
li∈L

∑
f j∈S

I( f j; li| fk) denotes the conditional relevance taking

selected features into account while evaluating feature relevance, and ∑
li∈L

∑
i 6=j,lj∈L

I( fk; li|lj) denotes

the conditional relevance taking label correlations into account while evaluating feature relevance.
The comprehensive evaluation of the above-mentioned three key aspects of feature relevance is more
conducive to capturing the optimal features. Furthermore, FR can be expanded as follows:

FR( fk) = ∑
li∈L

∑
f j∈S

I( fk; li| f j) + ∑
li∈L

∑
f j∈S

I( f j; li| fk) + ∑
li∈L

∑
i 6=j,lj∈L

I( fk; li|lj)

= ∑
li∈L

∑
f j∈S

[I( fk; li| f j) + I( f j; li| fk)] + ∑
li∈L

∑
i 6=j,lj∈L

I( fk; li|lj)

= ∑
li∈L

∑
f j∈S

[I( fk, f j; li)− I( f j; li) + I( f j, fk; li)− I( fk; li)] + ∑
li∈L

∑
i 6=j,lj∈L

[I( fk; li, lj)− I(li; lj)]

∝ ∑
li∈L

∑
f j∈S

[2I( fk, f j; li)− I( fk; li)] + ∑
li∈L

∑
i 6=j,lj∈L

I( fk; li, lj) (19)

where I( f j; li) and I(li; lj) are considered to be two constants in feature selection.

Definition 2. (LR). In the initial analysis of the three key aspects of feature relevance, it is
mentioned that the label-related feature redundancy is repeatedly calculated in the previous methods,
which will impact on capturing the optimal features. Here, LR is devised as follows:

LR( fk) = ∑
li∈L

∑
f j∈S

[I( fk; f j)− I( fk; f j|li)] (20)

As indicated in Table 2, we have compiled a list of feature relevance terms and feature
redundancy terms for TCRFS and the contrasted methods based on information theory.
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Table 2. Feature relevance terms and feature redundancy terms of multi-label feature selection methods.

Methods Feature Relevance Terms Feature Redundancy Terms

D2F ∑
li∈L

I( fk; li) ∑
f j∈S

∑
li∈L

I( fk; f j; li)

PMU ∑
li∈L

I( fk; li) ∑
f j∈S

∑
li∈L

I( fk; f j; li) + ∑
li∈L

∑
lj∈L

I( fk; li; lj)

SCLS

[
1− ∑

f j∈S

I( fk ; f j)
H( fk)

]
∑

li∈L
I( fk; li) None

MUCO FMI( fk; L) 1
|S| ∑

f j∈S
(FMI( fk; f j))

TCRFS 1
|L||S| ∑

li∈L
∑

f j∈S
[I( fk; li| f j) + I( f j; li| fk)] +

1
|L||L−1| ∑

li∈L
∑

i 6=j,lj∈L
I( fk; li|lj)

1
|L||L−1| ∑

li∈L
∑

f j∈S
[I( fk; f j)− I( fk; f j|li)]

4.2.2. Proposed Method

We design FR and LR to analyze and discuss feature relevance and feature redundancy,
respectively, in Section 4.2.1. Subsequently, TCRFS, a designed multi-label feature selection
method that integrates FR with LR, is suggested. The definition of TCRFS is as follows:

J( fk) =
1
|L||S| ∑

li∈L
∑
f j∈S

I( fk; li| f j) +
1
|L||S| ∑

li∈L
∑
f j∈S

I( f j; li| f j) +
1

|L||L− 1| ∑
li∈L

∑
i 6=j,lj∈L

I( fk; li|lj)

− 1
|L||S| ∑

li∈L
∑
f j∈S

[I( fk; f j)− I( fk; f j|li)], (21)

where |L| and |S| represent the number of the total label set and the number of the selected
subset, respectively, and their inversions are 1

|L| and 1
|S| , respectively. The feature relevance

term and the feature redundancy term can be balanced using the two balance parameters
1
|L||S| and 1

|L||L−1| . According to Formula (19), Formula (21) can be rewritten as follows:

J( fk) =
1
|L||S| ∑

li∈L
∑
f j∈S

I( fk; li| f j) +
1
|L||S| ∑

li∈L
∑
f j∈S

I( f j; li| f j) +
1

|L||L− 1| ∑
li∈L

∑
i 6=j,lj∈L

(I( fk; li|lj)

− 1
|L||S| ∑

li∈L
∑
f j∈S
{I( fk; f j)− I( fk; f j|li)}

=
1
|L||S| ∑

li∈L
∑
f j∈S
{I( fk; li| f j) + I( f j; li| f j)− I( fk; f j) + I( fk; f j|li)}+

1
|L||L− 1| ∑

li∈L
∑

i 6=j,lj∈L
I( fk; li|lj)

∝
1
|L||S| ∑

li∈L
∑
f j∈S
{2I( fk, f j; li)− I( fk; li)− I( fk; f j; li)}+

1
|L||L− 1| ∑

li∈L
∑

i 6=j,lj∈L
I( fk; li, lj)

=
1
|L||S| ∑

li∈L
∑
f j∈S
{2I( fk, f j; li)− I( fk; li| f j)− 2I( fk; f j; li)}+

1
|L||L− 1| ∑

li∈L
∑

i 6=j,lj∈L
I( fk; li, lj)

=
1
|L||S| ∑

li∈L
∑
f j∈S
{2I( fk, f j; li)− I( fk, f j; li) + I( f j; li)− 2I( fk; f j; li)}+

1
|L||L− 1| ∑

li∈L
∑

i 6=j,lj∈L
I( fk; li, lj)

∝
1
|L||S| ∑

li∈L
∑
f j∈S
{I( fk, f j; li)− 2I( fk; f j; li)}+

1
|L||L− 1| ∑

li∈L
∑

i 6=j,lj∈L
I( fk; li, lj)

=
1
|L||S| ∑

li∈L
∑
f j∈S

I( fk, f j; li) +
1

|L||L− 1| ∑
li∈L

∑
i 6=j,lj∈L

I( fk; li, lj)−
2
|L||S| ∑

li∈L
∑
f j∈S

I( fk; f j; li), (22)
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where 1
|L||S| ∑

li∈L
∑

f j∈S
I( fk, f j; li) + 1

|L||L−1| ∑
li∈L

∑
i 6=j,lj∈L

I( fk; li, lj) is regarded as the new feature

relevance term and 2
|L||S| ∑

li∈L
∑

f j∈S
I( fk; f j; li) is regarded as the new feature redundancy term.

The pseudo-code of TCRFS (Algorithm 1) is as follows:

Algorithm 1. TCRFS.

Input:

A training sample D with a full feature set F = { f1, f2, ..., fn} and the label set L =

{l1, l2, ..., lm}; User-specified threshold K.

Output:

The selected feature subset S.

1: S← ∅;

2: k← 0;

3: for i = 1 to n do

4: Calculate the feature relevance I( fi; li|lj);

5: end for

6: while k < K do

7: if k == 0 then

8: Select the first feature f j with the largest I( fi; li|lj);

9: k = k + 1;

10: S = S ∪ { f j};
11: F = F− { f j};
12: end if

13: for each candidate feature fi ∈ F do

14: According to the Formula (21) and calculate the J( fi);

15: end for

16: Select the feature f j with the largest J( fi);

17: S = S ∪ { f j};
18: F = F− { f j};
19: k = k + 1;

20: end while

First, in lines 1–5, the selected feature subset S and the number of selected features
k in the proposed method are initialized. To capture the initial feature, we calculate the
incremental information I( fi; li|lj) to capture the first feature (lines 6–12). Then, until the
procedure is complete, calculate and capture the following feature (lines 13–20).

4.3. Time Complexity

Time complexity is also one of the criteria for evaluating the pros and cons of methods.
The time complexity of each contrasted method and TCRFS has been computed here.
Assume that there are n, p, and q instances, features, and labels, respectively. The computa-
tional complexity of mutual information and conditional mutual information is O(n) for all
instances that have to be visited for probability. Each iteration of RALM-FS requires O(p3).
Assume that k denotes the number of selected features. The time complexity of TCRFS
is O(npq2 + knpq) as three incremental information terms and one label-related feature
redundancy term are calculated. Similarly, D2F, PMU, and SCLS have time complexities



Entropy 2021, 23, 1617 11 of 21

of O(npq + knpq), O(npq + knpq + npq2), and O(nma + knm), respectively. FSSL has a
time complexity of O(knpq). The time complexity of MUCO is O(n2 + p(p− k)) since it
constructs a fuzzy matrix and incremental search.

5. Experimental Evaluation

Against the demonstrated efficacy of TCRFS, we compare it to 6 advanced multi-label
feature selection approaches (RALM-FS [40], D2F [41], PMU [42], SCLS [43], FSSL [44], and
MUCO [45]), on 13 benchmark data sets in this section. As a result, we have conducted
numerous experiments based on four different criteria using three classifiers, which are
Support Vector Machine (SVM), 3-Nearest Neighbor (3NN), and Multi-Label k-Nearest
Neighbor (ML-kNN) [46,47]. The 13 multi-label benchmark data sets utilized in the experi-
ments are depicted first. Following that, the findings of the experiments are discussed and
examined. Four evaluation metrics that we employed in the experiments have been offered
in Section 2.2. The approximate experimental framework is depicted in Figure 4.

Figure 4. The experimental framework.

5.1. Multi-Label Data Sets

A total of 13 multi-label benchmark data sets from 4 different domains have been
depicted in Table 3, which are collected on the Mulan repository [48]. Among them, the
Birds data set classifies the birds in Audio [49], the Emotions data set is gathered for
Music [38], the Genbase and Yeast data sets are primarily concerned with the Biology
category [34], and the remaining 9 data sets are categorized as Text. The 13 data sets we
chose have an abundant number of instances, which are split into two parts: training set
and test set [48]. Ueda and Saito [50] attempted to classify real Web pages linked from
the “yahoo.com” domain, which is composed of 14 top-level categories, each of which
is split into many second-level subcategories. They tested 11 of the 14 independent text
classification problems by focusing on the second-level categories. For each problem, the
training set includes 2000 documents and the test set includes 3000 documents, such as
the Arts and Health data sets, and so on [51]. The number of labels and the number of
features both vary substantially. Previous research demonstrates that maintaining 10% of
the features results in no loss, while retaining 1% of the features results in a slight loss
dependent on document frequency [3]. For example, the Arts and Social data sets have
more than 20,000 features and 50,000 features, respectively, and they retain about 2% of the
features with the highest document frequency. The continuous features of 13 data sets are
discretized into equal intervals with 3 bins as indicated in the literature [38,52].
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Table 3. The depiction of data sets in our experiments.

No. Data Set #Domains #Labels #Features #Training #Test #Instance

1 Birds Audio 19 260 322 323 645
2 Emotions Music 6 72 391 202 593
3 Genbase Biology 27 1185 463 199 662
4 Yeast Biology 14 103 1500 917 2417
5 Medical Text 45 1449 333 645 978
6 Entertain Text 21 640 2000 3000 5000
7 Recreation Text 22 606 2000 3000 5000
8 Arts Text 26 462 2000 3000 5000
9 Health Text 32 612 2000 3000 5000
10 Education Text 33 550 2000 3000 5000
11 Reference Text 33 793 2000 3000 5000
12 Social Text 39 1047 2000 3000 5000
13 Science Text 40 743 2000 3000 5000

5.2. The Theoretical Justification of TCRFS on an Artificial Data Set

To further justify the indispensability of the three key aspects (candidate features,
selected features, and label correlations) for feature relevance evaluation. We employ an
artificial data set to compare the classification performance of five information-theoretical-
based methods (D2F, PMU, SCLS, MUCO, and TCRFS) that use distinct feature relevance
terms. With respect to the feature relevance terms, D2F and PMU employ the amount of
information between candidate features and labels, SCLS employs a scalable relevance
evaluation, which takes feature redundancy into account in feature relevance, MUCO
employs fuzzy mutual information, and TCRFS comprehensively considers the three types
of conditional relevance we mentioned to design FR. Tables 4 and 5 display the training set
and the test set, respectively.

Table 4. Training set.

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 y0 y1 y2 y3

1 1 0 0 0 0 1 0 1 0 1 0 0 1
0 0 0 1 1 0 1 0 0 0 1 1 1 1
0 1 0 1 0 0 0 0 1 0 0 0 1 1
0 1 0 0 1 0 0 1 0 1 1 0 0 0
1 1 1 0 0 1 0 1 1 0 0 0 0 0
1 0 0 0 0 0 1 0 1 0 1 1 0 0
1 0 0 0 1 0 1 0 1 0 0 1 0 1
0 0 1 0 1 0 0 1 0 1 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 1 1 0
0 1 1 0 0 0 0 0 1 0 1 0 0 1
1 1 0 0 0 0 1 1 1 0 1 1 0 1
1 1 0 1 1 0 0 1 0 0 1 0 0 0
0 1 1 1 0 0 0 0 0 0 0 1 1 0
0 1 1 0 1 0 0 1 0 1 1 0 0 0
1 1 0 0 0 1 0 1 1 0 0 1 1 0
1 0 1 0 0 0 0 0 1 0 1 1 0 1
0 0 0 0 1 0 1 0 1 0 0 0 1 0
0 0 1 0 1 0 0 1 0 1 0 0 0 1
0 0 0 1 0 1 0 0 0 0 0 1 0 0
0 1 1 0 1 0 0 1 1 1 1 1 0 0
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Table 5. Test set.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 y1 y2 y3 y4

1 1 0 0 0 0 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1 0 0 1 0
1 0 1 1 0 1 0 1 0 0 0 1 0 1
1 1 0 0 0 1 0 0 0 0 0 0 1 0
1 0 0 1 1 0 0 1 0 1 0 1 1 0
1 0 1 0 1 1 0 0 1 1 0 1 0 1
1 1 0 0 0 0 1 0 1 0 0 1 1 1
0 0 1 0 1 0 1 1 1 1 1 0 1 0
1 0 1 1 1 1 0 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 0 1 1 0 1

Table 6 shows the experimental results and the feature ranking of each approach on the
artificial data set. As shown in Table 6, the first feature selected by TCRFS is f5. Different
from D2F and PMU, f2 is regarded as the least essential feature. In TCRFS, feature rankings
f0, f8, and f4 are higher than the feature ranking of SCLS, whereas MUCO selects f4 as
the first feature. TCRFS achieves the best classification performance overall. Therefore,
TCRFS, which considers three key aspects (candidate features, selected features, and label
correlations), is justified.

Table 6. Experimental results on the artificial data set.

Methods Feature Ranking
SVM ML-kNN

Macro-F1 ↑ Micro-F1 ↑ Macro-F1 ↑ Micro-F1 ↑ HL ↓ ZOL ↓
TCRFS { f5, f0, f7, f8, f3, f4, f1, f6, f9, f2} 0.332 0.457 0.375 0.435 0.5000 0.97

D2F { f5, f0, f7, f8, f3, f4, f1, f6, f2, f9} 0.331 0.455 0.374 0.431 0.5150 0.97
PMU { f5, f0, f7, f8, f3, f4, f1, f6, f2, f9} 0.331 0.455 0.374 0.431 0.5150 0.97
SCLS { f5, f9, f3, f7, f0, f6, f1, f2, f8, f4} 0.32 0.409 0.373 0.427 0.5025 0.98

MUCO { f4, f6, f7, f8, f1, f2, f3, f0, f5, f9} 0.331 0.397 0.334 0.385 0.5450 0.98

5.3. Analysis and Discussion of the Experimental Findings

The experiments that run on a 3.70 GHz Intel Core i9-10900K processor with 32 GB of
main memory are performed on four different evaluation criteria regarding three classifiers.
Python is used to create the proposed method [53]. Hamming Loss is conducted on the
ML-kNN (k = 10) classifier, and Macro-F1 and Micro-F1 measures are conducted on the
SVM and 3NN classifiers. The number of selected features on the 12 data sets is set to
{1%, 2%,..., 20%} of the total number of features when using a step size of 1, whereas the
number of selected features on the Medical data set is set to {1%, 2%,..., 17%}. Tables 7–12
present the classification performance of 6 contrasted approaches and TCRFS on 13 data
sets. The average classification results and standard deviations are used to express the
classification performance. The average classification results of each method on all data
sets are represented in the row “Average”. The data of the best-performing classification
results in Tables 7–12 are bolded.



Entropy 2021, 23, 1617 14 of 21

Table 7. Classification performance of each method regarding Macro-F1 on SVM classifier (mean ± std).

Data Set RALM-FS D2F PMU SCLS FSSL MUCO TCRFS

Birds 0.058 ± 0.024 0.077 ± 0.04 0.075 ± 0.036 0.039 ± 0.026 0.049 ± 0.027 0.1 ± 0.051 0.116 ± 0.058
Emotions 0.147 ± 0.101 0.315 ± 0.061 0.239 ± 0.095 0.336 ± 0.055 0.35 ± 0.085 0.366 ± 0.127 0.381 ± 0.089
Genbase 0.738 ± 0.153 0.706 ± 0.107 0.628 ± 0.093 0.241 ± 0.022 0.762 ± 0.133 0.758 ± 0.14 0.765 ± 0.129

Yeast 0.229 ± 0.036 0.258 ± 0.034 0.262 ± 0.031 0.207 ± 0.014 0.213 ± 0.037 0.227 ± 0.044 0.276 ± 0.036
Medical 0.129 ± 0.063 0.191 ± 0.055 0.188 ± 0.057 0.079 ± 0.013 0.227 ± 0.086 0.254 ± 0.074 0.311 ± 0.075

Entertain 0.059 ± 0.022 0.081 ± 0.006 0.051 ± 0.004 0.067 ± 0.006 0.075 ± 0.028 0.058 ± 0.013 0.119 ± 0.023
Recreation 0.024 ± 0.008 0.077 ± 0.009 0.026 ± 0.002 0.044 ± 0.004 0.042 ± 0.024 0.041 ± 0.018 0.105 ± 0.019

Arts 0.024 ± 0.014 0.031 ± 0.005 0.014 ± 0.007 0.027 ± 0.005 0.025 ± 0.014 0.026 ± 0.014 0.072 ± 0.024
Health 0.062 ± 0.021 0.089 ± 0.008 0.078 ± 0.008 0.089 ± 0.01 0.087 ± 0.022 0.077 ± 0.021 0.141 ± 0.028

Education 0.024 ± 0.009 0.046 ± 0.009 0.027 ± 0.008 0.038 ± 0.006 0.041 ± 0.015 0.041 ± 0.019 0.065 ± 0.013
Reference 0.023 ± 0.01 0.039 ± 0.004 0.026 ± 0.006 0.024 ± 0.004 0.03 ± 0.011 0.04 ± 0.017 0.065 ± 0.013

Social 0.046 ± 0.018 0.07 ± 0.01 0.052 ± 0.012 0.052 ± 0.006 0.055 ± 0.02 0.059 ± 0.019 0.101 ± 0.028
Science 0.008 ± 0.006 0.021 ± 0.003 0.009 ± 0.005 0.016 ± 0.004 0.023 ± 0.013 0.024 ± 0.013 0.049 ± 0.017
Average 0.121 0.154 0.129 0.097 0.152 0.159 0.197

Table 8. Classification performance of each method regarding Micro-F1 on SVM classifier (mean ± std).

Data Set RALM-FS D2F PMU SCLS FSSL MUCO TCRFS

Birds 0.096 ± 0.046 0.135 ± 0.075 0.129 ± 0.055 0.06 ± 0.04 0.084 ± 0.049 0.197 ± 0.078 0.207 ± 0.086
Emotions 0.178 ± 0.113 0.372 ± 0.038 0.295 ± 0.099 0.422 ± 0.038 0.434 ± 0.06 0.425 ± 0.118 0.45 ± 0.07
Genbase 0.958 ± 0.136 0.968 ± 0.066 0.946 ± 0.066 0.541 ± 0.014 0.969 ± 0.108 0.977 ± 0.071 0.979 ± 0.067

Yeast 0.552 ± 0.027 0.565 ± 0.023 0.571 ± 0.021 0.532 ± 0.008 0.54 ± 0.026 0.549 ± 0.031 0.584 ± 0.027
Medical 0.363 ± 0.147 0.629 ± 0.07 0.625 ± 0.075 0.37 ± 0.009 0.661 ± 0.168 0.711 ± 0.087 0.753 ± 0.058

Entertain 0.108 ± 0.043 0.163 ± 0.015 0.096 ± 0.013 0.149 ± 0.016 0.192 ± 0.062 0.127 ± 0.041 0.251 ± 0.054
Recreation 0.043 ± 0.018 0.138 ± 0.016 0.038 ± 0.003 0.07 ± 0.007 0.065 ± 0.038 0.077 ± 0.034 0.198 ± 0.035

Arts 0.059 ± 0.033 0.075 ± 0.013 0.033 ± 0.016 0.072 ± 0.015 0.062 ± 0.033 0.056 ± 0.031 0.16 ± 0.051
Health 0.401 ± 0.018 0.418 ± 0.012 0.391 ± 0.029 0.406 ± 0.004 0.426 ± 0.02 0.396 ± 0.061 0.479 ± 0.026

Education 0.073 ± 0.024 0.117 ± 0.017 0.077 ± 0.014 0.138 ± 0.023 0.142 ± 0.056 0.132 ± 0.06 0.203 ± 0.045
Reference 0.153 ± 0.077 0.305 ± 0.039 0.265 ± 0.05 0.259 ± 0.039 0.286 ± 0.062 0.314 ± 0.093 0.344 ± 0.058

Social 0.252 ± 0.107 0.396 ± 0.072 0.31 ± 0.07 0.384 ± 0.049 0.357 ± 0.105 0.356 ± 0.082 0.426 ± 0.073
Science 0.029 ± 0.015 0.053 ± 0.01 0.024 ± 0.016 0.058 ± 0.014 0.071 ± 0.034 0.074 ± 0.037 0.122 ± 0.032
Average 0.251 0.333 0.292 0.266 0.33 0.338 0.397

Table 9. Classification performance of each method regarding Macro-F1 on 3NN classifier (mean ± std).

Data Set RALM-FS D2F PMU SCLS FSSL MUCO TCRFS

Birds 0.093 ± 0.036 0.15 ± 0.066 0.122 ± 0.036 0.078 ± 0.028 0.075 ± 0.037 0.131 ± 0.038 0.17 ± 0.048
Emotions 0.312 ± 0.074 0.434 ± 0.033 0.413 ± 0.046 0.426 ± 0.042 0.442 ± 0.124 0.434 ± 0.101 0.468 ± 0.068
Genbase 0.689 ± 0.132 0.65 ± 0.086 0.604 ± 0.089 0.224 ± 0.018 0.702 ± 0.12 0.7 ± 0.123 0.71 ± 0.103

Yeast 0.3 ± 0.027 0.348 ± 0.038 0.34 ± 0.03 0.301 ± 0.026 0.309 ± 0.041 0.314 ± 0.033 0.334 ± 0.039
Medical 0.069 ± 0.029 0.121 ± 0.019 0.114 ± 0.018 0.063 ± 0.006 0.149 ± 0.04 0.155 ± 0.03 0.184 ± 0.025

Entertain 0.079 ± 0.031 0.108 ± 0.011 0.083 ± 0.014 0.095 ± 0.013 0.094 ± 0.028 0.089 ± 0.014 0.128 ± 0.019
Recreation 0.06 ± 0.014 0.082 ± 0.011 0.053 ± 0.01 0.066 ± 0.011 0.057 ± 0.026 0.057 ± 0.021 0.114 ± 0.019

Arts 0.036 ± 0.018 0.064 ± 0.01 0.058 ± 0.014 0.072 ± 0.016 0.061 ± 0.026 0.064 ± 0.019 0.092 ± 0.02
Health 0.064 ± 0.027 0.087 ± 0.011 0.093 ± 0.008 0.087 ± 0.011 0.087 ± 0.024 0.08 ± 0.018 0.122 ± 0.022

Education 0.047 ± 0.011 0.065 ± 0.009 0.057 ± 0.009 0.059 ± 0.01 0.063 ± 0.015 0.06 ± 0.019 0.074 ± 0.012
Reference 0.032 ± 0.01 0.044 ± 0.004 0.034 ± 0.007 0.036 ± 0.005 0.041 ± 0.01 0.046 ± 0.015 0.07 ± 0.011

Social 0.052 ± 0.013 0.064 ± 0.006 0.054 ± 0.006 0.051 ± 0.004 0.064 ± 0.024 0.058 ± 0.016 0.091 ± 0.011
Science 0.024 ± 0.008 0.04 ± 0.005 0.028 ± 0.008 0.03 ± 0.004 0.039 ± 0.019 0.036 ± 0.011 0.057 ± 0.012
Average 0.143 0.174 0.158 0.122 0.168 0.171 0.201
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Table 10. Classification performance of each method regarding Micro-F1 on 3NN classifier (mean ± std).

Data Set RALM-FS D2F PMU SCLS FSSL MUCO TCRFS

Birds 0.171 ± 0.066 0.231 ± 0.072 0.203 ± 0.05 0.144 ± 0.043 0.159 ± 0.054 0.227 ± 0.057 0.273 ± 0.061
Emotions 0.353 ± 0.051 0.469 ± 0.02 0.445 ± 0.022 0.46 ± 0.028 0.478 ± 0.114 0.471 ± 0.079 0.503 ± 0.05
Genbase 0.956 ± 0.134 0.95 ± 0.061 0.919 ± 0.064 0.518 ± 0.012 0.959 ± 0.126 0.974 ± 0.074 0.977 ± 0.065

Yeast 0.529 ± 0.019 0.549 ± 0.041 0.553 ± 0.014 0.518 ± 0.035 0.526 ± 0.049 0.523 ± 0.041 0.552 ± 0.041
Medical 0.294 ± 0.108 0.53 ± 0.038 0.522 ± 0.037 0.353 ± 0.013 0.558 ± 0.121 0.591 ± 0.053 0.638 ± 0.032

Entertain 0.187 ± 0.085 0.241 ± 0.032 0.22 ± 0.053 0.217 ± 0.031 0.229 ± 0.037 0.234 ± 0.048 0.249 ± 0.032
Recreation 0.102 ± 0.014 0.159 ± 0.024 0.094 ± 0.02 0.115 ± 0.017 0.111 ± 0.045 0.112 ± 0.041 0.224 ± 0.033

Arts 0.095 ± 0.045 0.15 ± 0.031 0.137 ± 0.028 0.172 ± 0.028 0.126 ± 0.044 0.155 ± 0.029 0.237 ± 0.028
Health 0.2 ± 0.097 0.367 ± 0.05 0.361 ± 0.038 0.366 ± 0.064 0.33 ± 0.092 0.339 ± 0.038 0.38 ± 0.063

Education 0.254 ± 0.026 0.19 ± 0.032 0.18 ± 0.04 0.19 ± 0.033 0.238 ± 0.032 0.191 ± 0.054 0.22 ± 0.036
Reference 0.164 ± 0.073 0.364 ± 0.048 0.35 ± 0.043 0.294 ± 0.048 0.334 ± 0.049 0.319 ± 0.085 0.42 ± 0.046

Social 0.302 ± 0.04 0.39 ± 0.051 0.363 ± 0.051 0.368 ± 0.04 0.354 ± 0.069 0.349 ± 0.056 0.432 ± 0.045
Science 0.08 ± 0.037 0.123 ± 0.019 0.099 ± 0.018 0.147 ± 0.034 0.112 ± 0.041 0.136 ± 0.037 0.153 ± 0.031
Average 0.284 0.363 0.342 0.297 0.347 0.355 0.404

Table 11. Classification performance of each method regarding HL on ML-kNN classifier (mean ± std).

Data Set RALM-FS D2F PMU SCLS FSSL MUCO TCRFS

Birds 0.05081 ± 0.00106 0.05269 ± 0.00164 0.05227 ± 0.0017 0.0544 ± 0.00188 0.0526 ± 0.00143 0.05138 ± 0.00133 0.05147 ± 0.00103
Emotions 0.33752 ± 0.01318 0.29408 ± 0.01324 0.31854 ± 0.00914 0.27947 ± 0.00716 0.2922 ± 0.01356 0.28878 ± 0.02079 0.28012 ± 0.01018
Genbase 0.00377 ± 0.0068 0.00315 ± 0.00391 0.00469 ± 0.00405 0.03093 ± 0.00042 0.00301 ± 0.00585 0.00296 ± 0.00433 0.00269 ± 0.00396

Yeast 0.23706 ± 0.00434 0.22784 ± 0.00287 0.22793 ± 0.00356 0.2332 ± 0.00431 0.23182 ± 0.00293 0.23341 ± 0.00377 0.22565 ± 0.00404
Medical 0.02702 ± 0.0007 0.01955 ± 0.00105 0.01972 ± 0.00107 0.02332 ± 0.00018 0.01842 ± 0.00237 0.01852 ± 0.00108 0.01774 ± 0.0009

Entertain 0.06652 ± 0.00057 0.06568 ± 0.00133 0.06708 ± 0.00112 0.06587 ± 0.00144 0.06415 ± 0.00103 0.06631 ± 0.00085 0.06315 ± 0.00145
Recreation 0.06513 ± 0.00038 0.06239 ± 0.00077 0.06484 ± 0.00068 0.06444 ± 0.0006 0.06513 ± 0.00069 0.06419 ± 0.0007 0.06144 ± 0.00111

Arts 0.06285 ± 0.00023 0.0635 ± 0.00122 0.06441 ± 0.00104 0.06339 ± 0.00074 0.06389 ± 0.00057 0.06412 ± 0.00075 0.06135 ± 0.00063
Health 0.04969 ± 0.00132 0.04831 ± 0.00051 0.04934 ± 0.00059 0.04848 ± 0.00114 0.04764 ± 0.00101 0.04898 ± 0.00068 0.04545 ± 0.00111

Education 0.04414 ± 0.00034 0.04427 ± 0.00073 0.04453 ± 0.00082 0.04408 ± 0.00101 0.04403 ± 0.0006 0.0444 ± 0.00054 0.04303 ± 0.00069
Reference 0.03503 ± 0.00035 0.03223 ± 0.00117 0.03357 ± 0.00095 0.0329 ± 0.00021 0.03262 ± 0.00068 0.03332 ± 0.00061 0.03133 ± 0.00075

Social 0.03061 ± 0.00122 0.03032 ± 0.00046 0.03091 ± 0.00031 0.02866 ± 0.0007 0.02906 ± 0.00092 0.02967 ± 0.00055 0.02766 ± 0.00077
Science 0.03615 ± 0.00028 0.03579 ± 0.0004 0.03626 ± 0.00036 0.03583 ± 0.00041 0.03567 ± 0.00027 0.0361 ± 0.00058 0.03543 ± 0.00042
Average 0.08048 0.07537 0.07801 0.07731 0.0754 0.07555 0.07281

Table 12. Classification performance of each method regarding ZOL on ML-kNN classifier (mean ± std).

Data Set RALM-FS D2F PMU SCLS FSSL MUCO TCRFS

Birds 0.53239 ± 0.00619 0.53352 ± 0.01484 0.55013 ± 0.02117 0.53543 ± 0.00551 0.52745 ± 0.00789 0.53007 ± 0.00864 0.54019 ± 0.01396
Emotions 0.92468 ± 0.03724 0.82815 ± 0.02803 0.88331 ± 0.05054 0.85502 ± 0.03048 0.85431 ± 0.03856 0.83982 ± 0.03592 0.83522 ± 0.02541
Genbase 0.07909 ± 0.15179 0.06976 ± 0.07896 0.09236 ± 0.07004 0.56379 ± 0.01154 0.06285 ± 0.12667 0.06058 ± 0.07839 0.05795 ± 0.0815

Yeast 0.94729 ± 0.02727 0.88602 ± 0.02723 0.89168 ± 0.02807 0.91671 ± 0.01147 0.9233 ± 0.03139 0.91613 ± 0.03483 0.88586 ± 0.01848
Medical 0.86604 ± 0.07297 0.65611 ± 0.03702 0.66257 ± 0.04058 0.82617 ± 0.00642 0.62048 ± 0.0981 0.61537 ± 0.0484 0.58932 ± 0.0373

Entertain 0.94447 ± 0.01955 0.90565 ± 0.01002 0.94136 ± 0.00863 0.90345 ± 0.01303 0.88309 ± 0.03407 0.91441 ± 0.02957 0.85752 ± 0.02652
Recreation 0.97955 ± 0.01057 0.92066 ± 0.00898 0.97122 ± 0.00609 0.95327 ± 0.00543 0.95681 ± 0.02178 0.9493 ± 0.02212 0.87796 ± 0.01967

Arts 0.96399 ± 0.0181 0.9548 ± 0.01101 0.97061 ± 0.0167 0.9529 ± 0.01086 0.96364 ± 0.02175 0.96234 ± 0.02165 0.92196 ± 0.02549
Health 0.7561 ± 0.0662 0.77159 ± 0.05271 0.77152 ± 0.04486 0.73661 ± 0.0437 0.74891 ± 0.05006 0.7876 ± 0.05694 0.70867 ± 0.04394

Education 0.95281 ± 0.0162 0.94833 ± 0.00936 0.95489 ± 0.01428 0.9339 ± 0.01388 0.94176 ± 0.02666 0.93868 ± 0.02975 0.90171 ± 0.02493
Reference 0.90776 ± 0.05755 0.80313 ± 0.03802 0.81068 ± 0.05208 0.8284 ± 0.0372 0.80829 ± 0.04754 0.80433 ± 0.0658 0.7591 ± 0.06182

Social 0.84735 ± 0.07255 0.73236 ± 0.08727 0.77499 ± 0.06847 0.74463 ± 0.04251 0.75138 ± 0.08065 0.76243 ± 0.052 0.72314 ± 0.05028
Science 0.98663 ± 0.00642 0.9725 ± 0.00583 0.98477 ± 0.00815 0.95488 ± 0.01192 0.95139 ± 0.01995 0.96111 ± 0.02084 0.94441 ± 0.0112
Average 0.82217 0.76789 0.78924 0.82347 0.76874 0.77247 0.73869

Observing Tables 7 and 8, TCRFS delivers the optimum classification performance
on SVM classifier regarding Macro-F1 and Micro-F1 measures, since the higher the values
of the two measures, the more superior the classification performance. In Table 9, except
for the Yeast data set, TCRFS beats 6 other contrasted approaches on 12 data sets using
3NN classifier for Macro-F1. TCRFS surpasses the other 6 contrasted approaches on 11
data sets using the 3NN classifier for Micro-F1 in Table 10. According to the properties
of the HL and ZOL measures, the lower values of the two measures mean the more
excellent classification performance. In Tables 11 and 12, TCRFS can exhibit the best system
performance on 11 data sets on the ML-kNN classifier for the HL and ZOL criteria. In some
cases, comprehensive consideration of the three key aspects to assess feature relevance
does not achieve the best classification effect. The classification results of D2F takes the first
position on the Yeast data set regarding Macro-F1 on the 3NN classifier. PMU and RALM-FS
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possess the optimal classification performance on the Yeast data set and the Education data
sets, respectively. In terms of HL (Table 11), RALM-FS and SCLS surpass other approaches
on the Birds and Emotions data sets, respectively. In terms of ZOL (Table 12), FSSL and
D2F surpass other approaches on the Birds and Emotions data sets, respectively. Despite
the fact that D2F, PMU, RALM-FS, SCLS and FSSL have the greatest system performance
on individual data sets, the overall optimal classification performance is still TCRFS. The
average values of each method for different evaluation criteria are illustrated in Figure 5.
The abscissa and different colored bars represent different feature selection methods, while
the ordinate represents the average value.
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Observing the trend of the bar graphs in Figure 5a,b, Macro-F1 results and Micro-F1
results achieved on the SVM classifier and 3NN classifier have reached similar classification
performance. The average results of TCRFS in terms of Macro-F1 are roughly 0.2 or above,
and the average results of TCRFS in terms of Micro-F1 are roughly 0.4 or above, which are
clearly greater than the average results of other approaches. The average result of TCRFS
is less than 0.074 in Figure 5c and less than 0.74 in Figure 5d, which are clearly less than the
average results of other approaches. Intuitively, TCRFS clearly presents the most excellent
average values in terms of the four evaluation criteria. In order to further observe the
classification performance of the seven methods on the data sets, we draw Figures 6–9.
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Observing the trend of the bar graphs in Figure 5a,b, Macro-F1 results and Micro-F1
results achieved on the SVM classifier and 3NN classifier have reached similar classification
performance. The average results of TCRFS in terms of Macro-F1 are roughly 0.2 or above,
and the average results of TCRFS in terms of Micro-F1 are roughly 0.4 or above, which are
clearly greater than the average results of other approaches. The average result of TCRFS
is less than 0.074 in Figure 5c and less than 0.74 in Figure 5d, which are clearly less than the
average results of other approaches. Intuitively, TCRFS clearly presents the most excellent
average values in terms of the four evaluation criteria. In order to further observe the
classification performance of the seven methods on the data sets, we draw Figures 6–9.
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(a) (b) (c)

(d) (e) (f)

Figure 6. The classification performance of seven methods on Arts data set for (a) Macro-F1 using SVM, (b) Macro-F1 using
3NN, (c) Micro-F1 using SVM, (d) Micro-F1 using 3NN, (e) HL using ML-kNN, (f) ZOL using ML-kNN.

(a) (b) (c)

(d) (e) (f)

Figure 7. The classification performance of seven methods on Recreation data set for (a) Macro-F1 using SVM, (b) Macro-F1

using 3NN, (c) Micro-F1 using SVM, (d) Micro-F1 using 3NN, (e) HL using ML-kNN, (f) ZOL using ML-kNN.
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(a) (b) (c)

(d) (e) (f)

Figure 8. The classification performance of seven methods on Entertain data set for (a) Macro-F1 using SVM, (b) Macro-F1

using 3NN, (c) Micro-F1 using SVM, (d) Micro-F1 using 3NN, (e) HL using ML-kNN, (f) ZOL using ML-kNN.

(a) (b) (c)

(d) (e) (f)

Figure 9. The classification performance of seven methods on Health data set for (a) Macro-F1 using SVM, (b) Macro-F1

using 3NN, (c) Micro-F1 using SVM, (d) Micro-F1 using 3NN, (e) HL using ML-kNN, (f) ZOL using ML-kNN.

Figures 6–9 indicate that TCRFS delivers superior classification performance on the
Arts, Recreation, Entertain, and Health data sets regarding the four evaluation criteria.
As shown in Figure 6, the classification performance of our method is significantly better
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than the other six contrasted methods. On the Recreation data set (Figure 7), the classifi-
cation performance of the method is not constantly improved by increasing the number
of selected features. TCRFS, for example, may obtain the most significant classification
results regarding the ZOL measure when the number of selected features is set at 8% or
11% of the total number of features. On the Entertain data set (Figure 8), TCRFS is clearly
in the lead regarding Macro-F1 when the percentage of the selected features is larger than
one. In terms of HL and ZOL, TCRFS also possesses significant advantages among the
seven methods. The proposed method can obtain the optimum classification performance
for each metric when the percentage of the selected features is set to 6%. In Figure 9, our
method outperforms the other six contrasted methods on the Health data set utilizing
the four metrics. Although in most cases the performance of feature selection methods
improves as the number of selected features increases, as the number of features increases
to a certain number, the improvement in the classification performance tends to be flat.
When the percentage of the number of features increases to about 16% on the Arts data
set (Figure 6a–d) and the percentage of the number of features increases to about 19% on
the Entertain data (Figure 8a–d), the classification performance has reached a relatively
high level. That is to say, an optimal feature subset is to select a smaller number of features
to achieve a better classification performance. However, some methods appear to have
the same classification performance as TCRFS in Figure 8d and Figure 9e, but TCRFS is
superior on average, and they are not as excellent as TCRFS overall. As a consequence, it is
critical to consider the three types of conditional relevance for multi-label feature selection.

We create the final feature subset by starting from an empty feature subset and
adding a feature after each calculation of the proposed method. According to the TCRFS
evaluation function, the score of each candidate feature is calculated and sorted. Due to
TCRFS using three incremental information terms as the evaluation criteria for feature
relevance, the incremental information of the remaining candidate features will change
after each time the selection operation of candidate features is completed. It needs to be
recalculated and scored. Therefore, while achieving better classification performance, more
time is consumed.

6. Conclusions

In this paper, a TCRFS that combines FR and LR is proposed to capture the optimal
selected feature subset. FR fuses three incremental information terms that take three
key aspects into consideration to convey three types of conditional relevance. Then,
TCRFS is compared with 1 embedded approach (RALM-FS) and 5 information-theoretical-
based approaches (D2F, PMU, SCLS, FSSL, and MUCO) on 13 multi-label benchmark
data sets to demonstrate its efficacy. The classification performance of seven multi-label
feature selection methods is evaluated through four multi-label metrics (Macro-F1, Micro-
F1, Hamming Loss, and Zero One Loss) for three classifiers (SVM, 3NN, and ML-kNN).
Finally, the classification results verify that TCRFS outperforms the other six contrasted
approaches. Therefore, candidate features, selected features, and label correlations are
critical for feature relevance evaluation, and they can aid in the selection of a more suitable
subset of selected features. Our current research is based on a fixed label set for multi-label
feature selection. In our future research, we intend to explore multi-label feature selection
integrating information theory with the stream label problem.
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