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Abstract: In this work, we consider the zero-delay transmission of bivariate Gaussian sources over
a Gaussian broadcast channel with one-bit analog-to-digital converter (ADC) front ends. An outer
bound on the conditional distortion region is derived. Focusing on the minimization of the average
distortion, two types of methods are proposed to design nonparametric mappings. The first one
is based on the joint optimization between the encoder and decoder with the use of an iterative
algorithm. In the second method, we derive the necessary conditions to develop the optimal encoder
numerically. Using these necessary conditions, an algorithm based on gradient descent search is
designed. Subsequently, the characteristics of the optimized encoding mapping structure are dis-
cussed, and inspired by which, several parametric mappings are proposed. Numerical results show
that the proposed parametric mappings outperform the uncoded scheme and previous parametric
mappings for broadcast channels with infinite resolution ADC front ends. The nonparametric map-
pings succeed in outperforming the parametric mappings. The causes for the differences between
the performances of two nonparametric mappings are analyzed. The average distortions of the
parametric and nonparametric mappings proposed here are close to the bound for the cases with
one-bit ADC front ends in low channel signal-to-noise ratio regions.

Keywords: joint source channel coding; zero-delay transmission; broadcast channel; bivariate
Gaussian sources; average distortion; one-bit ADC

1. Introduction

Traditional digital communication systems, based on Shannon’s separation principle
between source and channel coding [1], concentrate on mappings with long block lengths.
Although these separated systems are not very robust to the channel variation, optimality
can be achieved given that no constraints are considered in terms of complexity and delay.
However, these systems have become unsuitable for certain emerging applications that
require transmission in extreme latency constraints, such as those involving the internet
of things (IoT) technologies [2] or wireless sensor networks (WSNs) [3]. Based on these
applications scenarios, strict delay constraints are present owing to the near real-time
monitoring and feedback between users and the underlying physical systems. For example,
with the full realization of the industry 4.0 revolution in the forthcoming sixth-generation
(6G) connection standards, machine controls are expected to achieve real-time operations
with guaranteed microsecond delay jitter [4].

As a result, we consider the extreme case of JSCC, zero-delay transmission, where a
single source sample is transmitted over a single use of the channel.

A well-known approach for zero-delay transmission is the linear scheme, in other
words, the uncoded scheme that can achieve the minimum squared distortion for a Gaus-
sian source transmitted over an additive white Gaussian noise (AWGN) channel with an

Entropy 2021, 23, 1679. https://doi.org/10.3390/e23121679 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-7683-2933
https://doi.org/10.3390/e23121679
https://doi.org/10.3390/e23121679
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23121679
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23121679?type=check_update&version=2


Entropy 2021, 23, 1679 2 of 25

input power constraint [5]. In the point-to-point setting, the linear scheme is an alternative
to the optimal separate source and channel coding (SSCC). The linear scheme outperforms
SSCC in terms of simplicity and zero-delay, specifically in applications that include the
uncoded video transmission [6] and real-time control system for IoT [7]. However, at
times, the linear scheme is not sufficient for exploiting the additional degrees-of-freedom
available in the multi-terminal system. In many multi-terminal scenarios, both the SSCC
and linear schemes underperform in terms of optimality. In [8], Bross et al. proved that, for
the transmission of a memoryless bivariate Gaussian source over the Gaussian broadcast
channel (GBC), the uncoded scheme achieves the optimality whenever the channel signal-
to-noise ratio (CSNR) is below a certain threshold. To date, various zero-delay analog
mappings, including parametric and nonparametric mappings, have been proposed for
different scenarios [9–11]. In [12–14], hybrid digital and analog (HDA) schemes for zero-
delay transmission to obtain superior performances to the uncoded schemes in various
multi-terminal cases have been reported.

The analog-to-digital converter (ADC) plays an important role in the receiving antenna
as the key component of the front end of the digital receiver. The power consumption of
the ADCs increases exponentially with its resolution [15]. The above drawback leads to
a growing concern of the energy consumption of the receiving ends. In [16], Jeon et al.
proposed computationally efficient yet near-optimal soft-output detection methods for
coded millimeter-wave (mmWave) multiple input multiple output (MIMO) systems with
low-precision ADCs. The proposed method provides significant gains compared to the
existing techniques in the same setting with the use of low-precision ADCs. In [17],
Dong et al. analyzed the uplink performance of a multiuser massive MIMO system with
spatially correlated channels with low-precision ADCs. Herein, we consider an extreme
case, namely, one-bit ADCs, which can be realized by a simple threshold comparator,
regardless of the need for mechanical gain control [18,19].

The advantages of the one-bit ADC front end on the performance of a specific com-
munication system have been analyzed in the literature for numerous models. In [20], a
low-complexity, near-maximum-likelihood-detection (near-MLD) algorithm was presented
for an uplink massive MIMO system with one-bit ADCs, where the authors prove that the
proposed algorithm achieves near-MLD performance, while the computational complexity
was reduced compared with the existing method. In [21], supervised-learning technique in
machine learning is exploited to provide efficient and robust channel estimation and data
detection in massive MIMO systems with one-bit ADCs. In [22], conditional adversarial
networks in the channel estimation for a massive MIMO system with one-bit ADCs were
studied. Channel estimation algorithms were developed to exploit the low-rank property
of mmWave channels with one-bit ADCs at the receivers [23]. The proposed methods
achieve better channel reconstruction than compressed sensing-based techniques aiming
at exploitation of sparsity of mmWave channels. In [24], Morteza et al. considered the
zero-delay transmission of a Gaussian source over an AWGN channel with one-bit ADC
front end and correlated side information at the receiver. Numerical results demonstrate
the periodicity of the optimized encoder mapping.

Information transmission over broadcast channels is an appealing problem in multi-
terminal communications. Numerous efforts have been expended in recent studies that
focused on low/zero-delay transmission in this case. The asymptotic energy-distortion
performance of zero-delay communication was investigated in [25] under the setting of
Gaussian broadcasting. A constant lower bound on the energy-distortion dispersion pair is
derived as well. In [26], the authors focused on the optimization of parametric continuous
mappings that satisfy the individual quality of service requirements. By contrast [27],
Tian et al. provided a complete characterization of the achievable distortion region for
the above problem. In [28], Hassanin et al. proposed a low complexity, low delay, analog
JSCC system based on the extensions of nested quantization techniques. In [29], they
further presented the procedure for optimization of the decoding functions and analyzed
the assessed performance improvements. For the case of lossy transmission of a Gaussian
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source over a GBC in instances where there is correlated side information at the receiver, a
practical, low delay digital scheme was studied [30]. With the idea of layered superposition
transmission and the successive canceling method, the proposed scheme shows higher
accuracy of source reconstruction compared with SSCC. In [31], Saleh et al. studied the
tradeoff between the distortion of the sources and the error of the interference estimation
subject to the setting of the joint recovery of a bivariate Gaussian source and interference over
the two-user Gaussian degraded broadcast channel in the presence of a common interference.

In this work, considering extremely low delay and low energy consumption require-
ments, we focus on the zero-delay JSCC communications system for a bivariate Gaussian
source over a bandwidth-matched Gaussian broadcast channel with two receivers. Both of
the receivers are equipped with a one-bit ADC front end. To the best of our knowledge,
there are few works that have investigated this scenario. The main contributions of this
work are summarized as follows:

• Under mean squared error (MSE) distortion criterion, an outer bound on the condi-
tional distortion region is derived.

• Two types of nonparametric mappings are proposed. The first one is based on the
joint optimization between the encoder and decoder under an iterative algorithm. In
the second method, the implicit functions for the optimal encoder and decoder are
derived. Employing the necessary condition mentioned above, the optimized encoder
was obtained using the gradient descent method. To the best of our knowledge, there
is no previous work that derives the necessary condition of the optimal encoder for
the transmission of correlated Gaussian sources over the broadcast channel with one-
bit ADC front ends. Hence, our contribution lies in obtaining an encoder mapping
that satisfies the necessary derived condition numerically and reveals its structure in
three-dimensional space.

• Examining the optimized encoder obtained and imitating the property of its structure,
we propose a series of parametric function curves applied to the system model. These
mappings are easy to implement.

The remainder of the paper is organized as follows. In Section 2, we introduce the system
model and explain the problem of interest. Section 3 focuses on the theoretical bounds under
the setting of infinite resolution ADC and one-bit ADC front end. In Section 4, the analysis
of the necessary conditions of the optimal encoder and decoder for the proposed system
model is presented, and the optimized encoder mappings obtained via the aforementioned
necessary condition with the use of two different algorithms are discussed. In Section 5,
several new parametric mapping structures are presented. In Section 6, numerical results
and analyses are provided and Section 7 concludes the paper.

Notation: Throughout the paper, the uppercase and lowercase letters denote random
variables and their realizations, respectively. p(·) and Pr(·) represent the probability
density function (pdf) and probability, respectively. The standard normal distribution and
its pdf are denoted by N (0, 1) and φ(·), respectively. Q(·) denotes the complementary
cumulative distribution function of the standard normal distribution.

2. Problem Formulation

We consider the transmission of correlated Gaussian sources over Gaussian broadcast
channels with one-bit ADC at the receivers. The setup is illustrated in Figure 1. Herein
X = (X1, X2) denotes a couple of memoryless and stationary bivariate Gaussian sources
with zero mean and variance σ2

X . The covariance matrix of the two sources is presented below,[
σ2

X ρσ2
X

ρσ2
X σ2

X

]
, (1)

where ρ ∈ [0, 1]. The source vector X is transformed into a one-dimensional channel input
V with the use of a nonlinear mapping function V = α(X1, X2). The Gaussian memoryless
broadcast channel is given by
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Yi = α(X1, X2) + Ni, i = 1, 2, (2)

as shown in Figure 1, where Yi is the channel output for channel i, and Ni is the AWGN,
independent of X1 and X2 for channel i, with zero mean and variance σ2

ni
. Without loss of

generality, we assume σ2
n1

< σ2
n2

. At the i-th receiver, the noisy signal Yi is quantized with a
one-bit ADC, Γ(.). The output of the ADC is

Zi = Γ(Yi) =

{
0 Yi ≥ 0

1 Yi < 0.
(3)

The decoder observing the ADC output reconstructs the source Xi as X̂i = βi(Zi) where
βi(·) denotes the i-th decoder.

In this paper, we assume that the encoding mapping α follows an average power
constraint,

E[‖ α(X1, X2) ‖2] ≤ P. (4)

The average MSE distortion measure is used, which is given by

D̄ = MSE =
1
2

2

∑
i=1

Di =
1
2

2

∑
i=1

E[(Xi − X̂i)
2]. (5)

Our target is to find the optimal source mapping function α and the decoding function βi
to minimize the average MSE in (5) subject to the average power constraint in (4).

Figure 1. Broadcasting bivariate Gaussian sources with one-bit ADC front end.

3. Preliminaries
3.1. The Average Distortion Bound When Infinite Resolution ADC Front Ends Are Adopted

In [27], the authors derived the characterization of the achievable distortion region
D(σ2

X , ρ, P, σ2
n1

, σ2
n2
). The minimum and maximum values of D1 are deduced as follows,

Dmin
1 =

σ2
n1

σ2
X

P + σ2
n1

, Dmax
1 = σ2

X
(1− ρ2)P + σ2

n1

P + σ2
n1

. (6)

Then, for each D1 ∈ [Dmin
1 , Dmax

1 ],

D2(P, D1, σ2
X , ρ, σ2

n1
, σ2

n2
) = min

(D1,d2)∈D(σ2
X ,ρ,P,σ2

n1 ,σ2
n2 )

d2. (7)

Subsequently, the average distortion can be obtained by D̄ = 1/2(D1 + D2) for this
distortion pair (D1, D2). We select the smallest average distortion D̄min as the bound of
average distortion for the setting of bivariate Gaussian sources over the broadcast channel
with infinite resolution ADC front ends.
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3.2. The Average Distortion Bound When One-Bit ADC Front Ends Are Adopted

The genie-aided distortion region for the transmission of correlated Gaussian sources
over a GBC with one-bit ADC front ends, DADC

c (σ2
X, ρ, P, σ2

n1
, σ2

n2
), consists of all pairs of

(DADC
1|2 , DADC

2 ) such that

DADC
1|2 ≥

σ2
X(1− ρ2)

2
2
(

h
(

Q
(√

γP/σ2
n1

))
−h
(

Q
(√

P/σ2
n1

))) , DADC
2 ≥

σ2
X

2
2
(

1−h
(

Q
(√

γP/σ2
n2

))) , (8)

for some γ ∈ [0, 1]. A proof of (8) is given in Appendix A.
In the same way as in Section 3.1, we can obtain the average distortion bound.

4. Nonparametric Mappings

In this section, we proceed to develop two types of nonparametric mappings using
the Lagrange multiplier method. We are going to study the optimal mapping such that the
average distortion is minimized subject to the average power constraint.

Using the Lagrange multiplier method, we turn the constrained optimization problem
of minimizing (5) subject to (4) into an unconstrained problem by forming the Lagrange
cost function,

J(α, β1, β2) =
2

∑
i=1

1
2

E
[(

Xi − X̂i
)2
]
+ λE

[
‖ α(X1, X2) ‖2

]
. (9)

Therefore, our target turns into minimizing the unconstrained problem as

min
α,β1,β2

J(α, β1, β2). (10)

For a given λ, if the solution of the unconstrained problem (10) satisfies the average
power constraint in (4), it is proven that the above solution also solves the constrained
problem [32].

Herein, MSEi is expressed as

MSEi =
∫ ∫

Pr(Zi = 0|X1 = x1, X2 = x2)× p(x1, x2)× (xi − βi(0))2dx2dx1

+
∫ ∫

Pr(Zi = 1|X1 = x1, X2 = x2)× p(x1, x2)× (xi − βi(1))2dx2dx1. (11)

The actual transmission power is expressed as

Pact =
∫ ∫

p(x1, x2)α(x1, x2)dx2dx1. (12)

4.1. Nonparametric Mapping I

Herein, we proceed in a way similar to the vector quantizer design [33] by formulat-
ing the necessary conditions for optimality with the use of the discretization operation.
This scheme is based on joint optimization with iteration between the mappings at the
transmitter and receiver.

Note that the minimization of (10) is still difficult to achieve owing to the interde-
pendencies between the components to be optimized. Therefore, we bypass this problem
by optimizing the problem iteratively, one component at a time, while we keep the other
components fixed.

Assuming that the decoders (β1, β2) are fixed, the optimal encoding mapping α can
be expressed as
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α = arg min
α

{
2

∑
i=1

1
2

E
[(

Xi − X̂i
)2
]
+ λE

[
‖ α(X1, X2) ‖2

]}
. (13)

Note that if the joint pdf p(x1, x2) in (12) is nonnegative, the optimization of (13) can be
modified in the following way,

α(x1, x2) = arg min
v∈R

{
1
2

2

∑
i=1

MSEi + λv2

}
. (14)

Assuming that the encoder α is fixed, the optimal decoder is the minimum MSE
(MMSE) estimator of Xi given Zi. The MMSE estimation for user i is given by

x̂i = βi(zi) = E[xi|zi] =
∫

xi p(Xi = xi|Zi = zi)dxi

=

∫ ∫
xi p(x1)p(x2|x1)Pr(Zi = zi|V = α(x1, x2))dx2dx1∫ ∫
p(x1)p(x2|x1)Pr(Zi = zi|V = α(x1, x2))dx2dx1

. (15)

The design procedure is given by Algorithm 1. This type of iterative procedure has
once been used in other scenarios [34,35]. It is worth noting that the following iterative
optimization does not generally guarantee convergence to the global optimum solution. A
good choice of initialization can contribute to the avoidance of poor local minima.

Algorithm 1: Nonparametric Mapping I
Data: Initial mapping of α(x1, x2), the noise for different channels, and δ, which

determines the instant at which the iterations will stop.
Result: Locally optimized (α, β1, β2).

1 Find the MMSE decoders (β1,β2).
2 Set the iteration index k = 0 and J(0) = ∞
3 while (J(k−1) − J(k))/J(k−1) > δ do
4 Set k = k + 1.
5 Find the optimal source mapping α by (14).
6 Find the MMSE decoders (β1,β2) by (15).
7 Evaluate the cost function J(k).
8 end

For any given λ, using Algorithm 1 above, we obtain a certain encoder mapping α.
The value of λ should be increased if the power E[α(x1, x2)

2] exceeds the power constraint
P, and vice versa.

For the actual implementation of (14) and (15), we implemented the following modifi-
cations and approximations owing to the fact that it is impossible to evaluate the formulas
in the real domain. We generate Monte-Carlo samples from the distribution of X, which is
denoted as the set X . We discretize the channel input by a set Y with finite modulation
points. The maximum/minimum values of set Y are denoted as ±d L−1

2 , where L deter-
mines the number of points in the set, and d denotes the resolution. As the resolution d
becomes smaller and the value L becomes larger, the set Y becomes closer to the analog.

The discretized version of (14) is given by

α(x1, x2)

= arg min
v∈Y

{
Pr(z1|v)×

(x1 − β1(z1))
2

2
+ Pr(z2|v)×

(x2 − β2(z2))
2

2
+ λ‖v‖2

}
. (16)
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The discretized version of (15) can be expressed as

x̂1 = β1(z1) =
∑x1∈X x1 ∑x2∈X2|x1

Pr(x2|x1)Pr(z1|α(x1, x2))

∑x1∈X ∑x2∈X2|x1
Pr(x2|x1)Pr(z1|α(x1, x2))

, (17)

and

x̂2 = β2(z2) =
∑x1∈X ∑x2∈X2|x1

x2Pr(x2|x1)Pr(z2|α(x1, x2))

∑x1∈X ∑x2∈X2|x1
Pr(x2|x1)Pr(z2|α(x1, x2))

. (18)

In our experiment, we use 104 samples to define the set X . We have also used
δ = 10−3, and kept d(L− 1)/2 = 4 based on the considerations of the power constraint
at the transmitter. The value L above is chosen depending on the noise variance, with
[1281, 2561] in our experiment, by taking into account the tradeoff between accuracy
and computational cost. Figure 2 shows the tradeoff between the value of L and the
computational cost. The y axis shows the runtime to obtain the result for one point in
Figure 8b when ρ, σ2

n1
, σ2

n2
are fixed. Its unit is hours.

0 500 1000 1500 2000 2500 3000

L

0.5

1

1.5

2

2.5
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u
n
ti
m

e
(h

)

Figure 2. The tradeoff between the value of L and the computational cost.

4.2. Nonparametric Mapping II

In the following subsection, we study the functional properties of the unconstrained
problem. We obtain an implicit equation for the optimal encoder mapping. Subsequently,
we derive the optimal mappings with the necessary conditions above via gradient de-
scent search.

Our system model is symmetrical to some extent, with respect to the nature of the
one-bit ADC output and the probability density distributions of the source and noise.
We derive below the optimal decoder with the ADC output being 0 and 1 for channel 1,
respectively.

X̂0
1 = E[X1|Z1 = 0]

=

∫ ∫
x1 p(x1, x2)Pr(Z1 = 0|V = α(x1, x2))dx2dx1

Pr(Z1 = 0)

=

∫ ∫
x1 p(x1, x2)

[
1−Q

(
α(x1,x2)

σn1

)]
dx2dx1

Pr(Z1 = 0)
(19a)

=
−
∫ ∫

x1 p(x1, x2)Q
(

α(x1,x2)
σn1

)
dx2dx1

Pr(Z1 = 0)
, (19b)
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We elaborate (19a) in detail as follows. While Z1 = 0, it means that Y1 ≥ 0. Hence
N1 ≥ −α(x1, x2). Then we have

Pr(Z1 = 0|α(x1, x2)) = Pr(N1 ≥ −α(x1, x2))

=
1√

2πσn1

∫ ∞

−α(x1,x2)
e
− x2

2σ2
n1 dx

= Q
(
(−1)α(x1, x2)

σn1

)
= 1−Q

(
α(x1, x2)

σn1

)
. (20)

In the same way, we could obtain X̂1
1 as

X̂1
1 = E[X1|Z1 = 1]

=

∫ ∫
x1 p(x1, x2)Pr(Z1 = 1|V = α(x1, x2))dx2dx1

Pr(Z1 = 1)

=

∫ ∫
x1 p(x1, x2)Q

(
α(x1,x2)

σn1

)
dx2dx1

Pr(Z1 = 1)
. (21)

Based on the results above, we can derive the following relationship,

X̂0
1 = −X̂1

1 , (22)

X̂0
2 = −X̂1

2 . (23)

Herein, X̂i
j denotes the estimation when the ADC output is i for channel j, where i = {0, 1}

and j = {1, 2}.
The overall average distortion is given by

D̄ =
1
2

(
E
[(

X1 − X̂1
)2
]
+ E

[(
X2 − X̂2

)2
])

=
1
2

(
E
[(

X1 − X̂1
)
X̃1
]
+ E

[(
X2 − X̂2

)
X̃2
])

=
1
2

(
E
[
X1X̃1

]
+ E

[
X2X̃2

])
(24a)

=
1
2

(
E
[

X2
1 − X1X̂1

]
+ E

[
X2

2 − X̂2

])
=

1
2

(
σ2

X1
+ σ2

X2
− E

[
X1X̂1

]
− E

[
X2X̂2

])
(24b)

<
1
2

(
σ2

X1
+ σ2

X2

)
. (24c)

where (24a) is attributed to the orthogonality of the MMSE estimation. Xi denotes the
source samples, while X̂i and X̃i denote the estimation, and the difference between the
source and estimation, respectively. To be more specific, X̃i = Xi − X̂i.

Note that under the MSE distortion criterion, the optimal decoder is the MMSE
estimator. The estimation of source Xi, for example, X̂1 is obtained as follows,



Entropy 2021, 23, 1679 9 of 25

X̂1 = β1(z1) = E[X1|Z1 = z1] =
∫

x1Pr(X1 = x1|Z1 = z1)dx1

=

∫
x1Pr(Z1 = z1|X1 = x1)p(x1)dx1

Pr(Z1 = z1)

=

∫ ∫
x1 p(x1, x2)Pr(Z1 = z1|X1 = x1, X2 = x2)dx2dx1∫ ∫

p(x1, x2)Pr(Z1 = z1|X1 = x1, X2 = x2)dx2dx1

=

∫ ∫
x1 p(x1, x2)Q

(
(−1)z1+1α(x1,x2)

σn1

)
dx2dx1∫ ∫

p(x1, x2)Q
(
(−1)z1+1α(x1,x2)

σn1

)
dx2dx1

. (25)

where (25) is attributed to the fact that Pr(Z1 = 0|V = α(x1, x2)) = Q
(
(−1)α(x1,x2)

σn1

)
while

Pr(Z1 = 1|V = α(x1, x2)) = Q
(

α(x1,x2)
σn1

)
. See (20).

In a similar way, X̂2 is obtained as,

X̂2 = β2(z2) =

∫ ∫
x2 p(x1, x2)Q

(
(−1)z2+1α(x1,x2)

σn2

)
dx1dx2∫ ∫

p(x1, x2)Q
(
(−1)z2+1α(x1,x2)

σn2

)
dx1dx2

. (26)

Herein, z1, z2 ∈ {0, 1}. Furthermore, we also notice that the estimation X̂i is constant once
zi is determined.

Owing to the orthogonality principle of the MMSE estimation, we can verify that
Di = σ2

xi
−E[XiX̂i]. According to it, we can rewrite the Lagrangian cost function and drop

the constants that are independent of α,

L(α) = −1
2

E[X1X̂1]−
1
2

E[X2X̂2] + λE[‖ α(X1, X2) ‖2]. (27)

Herein, we would like to reemphasize that we use φ(·) to denote the pdf of standard
normal distribution and φ(·, ·) to denote the bivariate normal distribution. Q(·) denotes
the complementary cumulative distribution function of the standard normal distribution.

By expanding (27), we proceed with the following process,

−1
2
E
[
X1X̂1

]
− 1

2
E
[
X2X̂2

]
+ λE

[
‖ α(X1, X2) ‖2

]
=

2

∑
i=1

−1
2σx1 σx2 σni

( ∫ ∫ ∫ −α(x1,x2)/σni

−∞
xiβi(1)φ

( x1
σx1

,
x2
σx2

)
φ(

ni
σni

)dx1dx2dni

+
∫ ∫ ∫ ∞

−α(x1,x2)/σni

xiβi(0)φ
( x1

σx1

,
x2
σx2

)
φ(

ni
σni

)dx1dx2dni

)
+

λ

σx1 σx2

×
∫∫

φ

(
x1
σx1

,
x2
σx2

)
α2(x1, x2)dx2dx1 (28a)

=
−1

2σx1 σx2

×
∫∫

x1

(
β1
(
1
)
Q
(α(x1, x2)

σn1

)
+ β1(0)Q

(−α(x1, x2)

σn1

))
× φ

(
x1
σx1

,
x2
σx2

)
dx2dx1

+
−1

2σx1 σx2

×
∫∫

x2

(
β2(1)Q

(α(x1, x2)

σn2

)
+ β2(0)Q

(−α(x1, x2)

σn2

))
× φ

(
x1
σx1

,
x2
σx2

)
dx2dx1

+
λ

σx1 σx2

∫∫
φ

(
x1
σx1

,
x2
σx2

)
α2(x1, x2)dx2dx1 (28b)

=
1

σx1 σx2

×
∫∫ [
− x1

2

(
β1(1)Q

(α(x1, x2)

σn1

)
+ β1(0)Q

(−α(x1, x2)

σn1

))
− x2

2

(
β2(1)Q

(α(x1, x2)

σn2

)
+ β2(0)Q

(−α(x1, x2)

σn2

))
+ λα(x1, x2)

2
]

φ

(
x1
σx1

,
x2
σx2

)
dx2dx1. (28c)



Entropy 2021, 23, 1679 10 of 25

Given that X̂i is a discrete random variable with two values: βi(0) and βi(1), the first
part of (28a) holds since

E[XiX̂i]

=
∫

xiβi(0)Pr
(
X̂i = βi(0)|Xi = xi

)
p(xi)dxi

+
∫

xiβi(1)Pr
(
X̂i = βi(1)|Xi = xi

)
p(xi)dxi

=
∫

xiβi(0)Pr
(
Zi = 0|Xi = xi

)
p(xi)dxi +

∫
xiβi(1)Pr

(
Zi = 1|Xi = xi

)
p(xi)dxi

=
1

σx1 σx2 σn1

∫ ∫ ∫ ∞

−α(x1,x2)/σni

xiβi(0)φ
(

x1

σx1

,
x2

σx2

)
φ(

ni
σni

)dx1dx2dni

+
∫ ∫ ∫ −α(x1,x2)/σni

−∞
xiβi(1)φ

(
x1

σx1

,
x2

σx2

)
φ(

ni
σni

)dx1dx2dni

where ic = {1, 2}\i.
Equation (28b) holds due to the following fact that

1
σni

∫ −α(x1,x2)/σni

−∞
βi(1)φ(

ni
σni

)dni +
1

σni

∫ −∞

−α(x1,x2)/σni

βi(0)φ(
ni
σni

)dni

= βi(1)Q
(

α(x1, x2)

σni

)
+ βi(0)Q

(
−α(x1, x2)

σni

)
.

Define F(α(x1, x2), x1, x2) as:

F(α(x1, x2), x1, x2)

=
1

σx1 σx2

(
− x1

2

(
β1(1)Q

(α(x1, x2)

σn1

)
+ β1(0)Q

(−α(x1, x2)

σn1

))

− x2

2

(
β2(1) · Q

(α(x1, x2)

σn2

)
+ β2(0) · Q

(−α(x1, x2)

σn2

))
+ λα2(x1, x2)

)
. (29)

Then after putting F(α(x1, x2), x1, x2) into (28c), we can apply the necessary condition
as below,

min
α

L(α) ,
∫∫

F(α(x1, x2), x1, x2)φ

(
x1

σx1

,
x2

σx2

)
dx2dx1. (30)

According to the conclusion in Section 7.5 of [36], when the partial derivative of the
function F with respect to α, denoted by Fα(α(x1, x2), x1, x2) is equal to 0, the function L(α)
reaches the minimum. The partial derivative of the function F with respect to α is obtained
as follows,

Fα(α(x1, x2), x1, x2)

=
1

σx1 σx2

×
(
− x1

2

(
β1(1)

(
− 1√

2πσn1

)
+ β1(0)

( 1√
2πσn1

))
e
− α(x1,x2)

2

2σ2
n1

− x2

2

(
β2(1)

(
− 1√

2πσn2

)
+ β2(0)

( 1√
2πσn2

))
e
− α(x1,x2)

2

2σ2
n2 + 2λα(x1, x2)

)
. (31)

After the deformation of (31), the optimal encoder mapping α subject to the MSE
distortion criterion must satisfy the implicit equation as below,
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4
√

2πλα(x1, x2) =
x1

σn1

e
− α(x1,x2)

2

2σ2
n1

(
β1(0)− β1(1)

)
+

x2

σn2

e
− α(x1,x2)

2

2σ2
n2

(
β2(0)− β2(1)

)
. (32)

To find the optimal encoder mapping, we perform the steepest descent search in the
opposite direction of the functional derivative of the Lagrangian with respect to the encoder
mapping α(x1, x2) as,

αi+1(x1, x2) = αi(x1, x2)− µ∇αL(αi(x1, x2)), (33)

where i is the iteration index, and µ > 0 is the step size.
Hereafter, the gradient of the Lagrangian function L(α) over α is denoted as

∇αL = 4
√

2πλα(x1, x2)−
x1

σn1

e
− α2(x1,x2)

2σ2
n1

(
β1(0)− β1(1)

)
− x2

σn2

e
− α2(x1,x2)

2σ2
n2

(
β2(0)− β2(1)

)
. (34)

The overall design procedure for gradient descent search is given by Algorithm 2.

Algorithm 2: Nonparametric Mapping II
Data: Initial mapping of α(x1, x2), and the noise for different channels.
Result: Locally optimized (α, β1, β2).

1 Find the MMSE decoders (β1,β2).
2 Set the iteration index k = 0.
3 while J(k−1) > J(k) do
4 k = k + 1.
5 Evaluate the functional derivative ∇αL by using (34).
6 while J(k−1) > J(k) do
7 k = k + 1.
8 Update the encoder α by using (33).
9 Evaluate the total cost by using (9).

10 Update the functional derivative ∇αL by using (34).
11 end
12 k = k + 1.
13 Find the MMSE decoders (β1,β2) by using (15).
14 Evaluate the total cost by using (9).
15 end

5. Parametric Mappings

Compared with the nonparametric mappings, parametric mappings have obvious
advantages in terms of their lower computational cost and fixed functional structures.
Moreover, they could be updated according to the variations of the signal properties and
channel conditions by adjusting their parameters.

Figures 3 and 4 show plots of the optimized encoder mapping with Algorithms 1 and 2,
respectively. Herein and in the sequel, we define the CSNR as

CSNR = 10log10

(
NP

∑N
i=1 σ2

ni

)
. (35)
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Figure 3. Optimized encoder mapping with Algorithm 1 for σ2
n1

= 0.32, σ2
n2

= 1, P = 1 and
ρ = 0.7. The (a) shows the curved surface while the (b) shows the corresponding two-dimensional
representation. The (c) shows the curve while X1 = X2.
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Figure 4. Optimized encoder mapping with algorithm 2 for σ2
n1

= 0.32, σ2
n2

= 1, P = 1 and
ρ = 0.7. The (a) shows the curved surface while the (b) shows the corresponding two-dimensional
representation. The (c) shows the curve while X1 = X2.
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Although the structures of the two nonparametric mappings are not exactly the
same, we can still summarize some common characteristics. There exist two flat layers
in both nonparametric mappings. Different degrees of deformation can be observed in
the middle part of two nonparametric mappings surfaces. While fixing X1 = X2, the
curve of α(X1, X2) with respect to X1 is shown as Figures 3c and 4c. The shapes of the two
nonparametric mappings obtained above inspire us to propose several different parametric
encoding schemes.

After examining the nonparametric mappings mentioned above for different CSNRs
and the correlation coefficient ρ, we also notice that due to the symmetry of the system, if
ρ = 1 and σn1 = σn2 , the problem studied becomes the point-to-point problem presented
in [37]. When it comes to the case of ρ = 1, σn1 = σn2 together with the infinite resolution
front end, the problem reduces to the one in [38].

5.1. Linear Transmission

In [8], the linear scheme for the transmission of bivariate Gaussian sources over a GBC
is proposed. The encoder mapping for the linear transmission is given by

V =

√
P

σ2
X(ω

2 + ζ2 + 2ωζρ)
(ωX1 + ζX2), (36)

where ω ∈ [0, 1], and ζ = 1−ω.
Closed-form expression of the average distortion D̄ of linear transmission is hard to

be obtained. We choose to substitute (32) into (15) to obtain D̄.

5.2. Sigmoid-like Function

From Figures 3 and 4, we can observe that there exists a flat platform in the optimized
encoding mapping. This feature is similar to the sigmoid function to some extent. Therefore,
we propose to adopt the sigmoid-like function, which is defined as

α(x1, x2) =
1

1 + e−(a1x1+a2x2)
− 1

2
, (37)

where a1 and a2 jointly control the offset angle of the mapping on the X-Y plane and the
extension of the mapping surface.

The optimization step can be achieved by an exhaustive search on the parameter
space to jointly determine the optimal values for a1 and a2. The results are obtained via
Monte-Carlo optimization of parameters a1 and a2 in (37) so that the SDR is maximized.

5.3. Sinh-like Function

The parametric sine-like mapping in [26] is proposed to satisfy individual quality
of service requirements in Gaussian broadcast channels. We adapt the parametric curve
structure in our setting and propose the new mapping as indicated below,

cb1,b2(t) = UΣ1/2s(t), (38)

s(t) = [sx(t) sy(t)]T =

(
t2sinh(b1t)

b2sinh(b1t)

)
, (39)

where UHΣU is the eigendecomposition of the covariance matrix, with U the matrix
consisting of the eigenvectors as columns, and Σ = diag{η1, η2}, η1 > η2.

The optimization of b1 and b2 is achieved by exhaustively searching the parame-
ter space.
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5.4. Shannon-Kotel’nikov-like Function

Shannon-Kotel’nikov (S-K) mappings are studied in previous works such as [39,40].
For the 2:1 bandwidth reduction scenario, the spiral curve is given by

s(t) = ±∆
π
(cos(ϕ(ct))i + sin(ϕ(ct))j), (40)

where

ϕ(ωt) =

√
c|t|
∆η

.

We implement the following modifications to the S-K mapping function so that the
pitch of the mapping curve varies. In other words, the (radial) distance between the two
spiral arms varies all along instead of keeping constant as in previous works.

s(t) = ± t2

π
(cos(c|t|)i + sin(c|t|)j). (41)

The optimization of c in (41) is achieved by exhaustively searching the parameter
space as well.

The curved surfaces of the sigmoid-like function, sinh function, S-K-like function
and uncoded scheme are depicted in Figure 5a–d, respectively. Their corresponding
two-dimensional representations are depicted in Figure 6a–d, respectively. While fixing
X1 = X2, the curves of α(X1, X2) with respect to X1 are shown in Figure 7a–d.

(a) (b)

(c) (d)

Figure 5. Curved surfaces of the sigmoid-like function, sinh function, S-K-like function and uncoded
scheme with optimized parameters for σ2

n1
= 0.32, σ2

n2
= 1, P = 1 and ρ = 0.7. (a): sigmoid-like

function, (b): sinh-function, (c): S-K-like function, (d): uncoded scheme.



Entropy 2021, 23, 1679 15 of 25

(a) (b)

(c) (d)

Figure 6. The two-dimensional representations of the curved surfaces of the sigmoid-like function,
sinh function, S-K-like function and uncoded scheme with optimized parameters for σ2

n1
= 0.32,

σ2
n2

= 1, P = 1 and ρ = 0.7. (a): sigmoid-like function, (b): sinh-function, (c): S-K-like function,
(d): uncoded scheme.
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Figure 7. When X1 = X2, the curves of the sigmoid-like function, sinh function, S-K-like function
and uncoded scheme with optimized parameters for σ2

n1
= 0.32, σ2

n2
= 1, P = 1 and ρ = 0.7.

(a): sigmoid-like function, (b): sinh-function, (c): S-K-like function, (d): uncoded scheme.
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6. Numerical Results

In this section, we present the performances and validate the effectiveness of the
nonparametric and parametric mappings introduced in the previous sections. In the
following experiments, the overall MSE is still defined as D̄ = 1

2 (D1 + D2), and signal-to-
distortion rate (SDR) is defined as 10 log10(σ

2
X/D̄). The average distortion bound when

the infinite resolution ADC front ends are adopted is denoted as bound A, and as bound B
when one-bit ADC front ends are adopted.

According to (35), we change the values of CSNR by fixing the channel noise and
by varying the values of transmitting power or vice versa. In the following experiments,
without loss of generality, σX is set to 1 as in the cases of other values for σX , normalization
can be adopted.

Under the average distortion criterion, we compare the parametric mappings men-
tioned in Section 5 with two state-of-the-art parametric mappings proposed for the broad-
cast channel with infinite resolution ADC front ends, the sine-like curve [26] and the
alternating sign-scalar quantizer linear coder (AS-SQLC) [28] for different values of CSNR,
as shown in Figure 8a. The performance of the sigmoid-like mapping is superior to all the
other parametric schemes. Compared with the AS-SQLC scheme and the sine-like scheme,
with the exception of the uncoded transmission scheme, the proposed parametric schemes
inspired by optimal functional properties yeild better performances.

In Figure 8b, we compare the sigmoid-like function (37) and the two nonparametric
mappings with the conditional outer bound under one-bit ADC and the outer bound in the
case of an infinite resolution ADC front end. Figure 8b shows the performance curves of
the proposed parametric sigmoid-like function and two nonparametric mappings in terms
of SDR versus CSNR with correlation coefficient ρ = 0.7. Herein, to vary CSNR, the values
of σ2

n1
and σ2

n2
in (35) are fixed to 0.56 and 1, respectively, while the average transmitting

power is varied. The bound for the scenario with one-bit ADC front end and the bound for
the scenario with an infinite resolution front end are indicated in this figure with purple
squares and blue circles, respectively.
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Figure 8. Average distortion performance for σ2
n1

= 0.32, σ2
n2

= 1, ρ = 0.7 by the relevant schemes
at different values of P. (a): Performance comparisons of all the relevant parametric mappings,
(b): Performance comparisons of sigmoid-like function, non-parametric mappings and the bounds.

We observed that with the increase in CSNR, the bound for an infinite resolution front
end is increasingly ahead of the bound under the one-bit ADC front end. Two nonparamet-
ric mappings outperform the parametric sigmoid-like mappings, where the nonparametric
mapping I leads to the nonparametric mapping II. Meanwhile, the performances of two
nonparametric mappings approach the bound under one-bit ADC front end.

We also compare the average distortions by relevant schemes with the increase in
CSNR when ρ = 0.6 and ρ = 0.2 in Figures 9 and 10, respectively. Similarly, the sigmoid-
like mappings perform best within all parametric mappings while nonparametric mapping
I performs better than nonparametric mapping II.
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Figure 9. Average distortion performance for σ2
n1

= 0.32, σ2
n2

= 1, ρ = 0.6 by the relevant schemes
at different values of P. (a): Performance comparisons of all the relevant parametric mappings,
(b): Performance comparisons of sigmoid-like function, non-parametric mappings and the bounds.
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Figure 10. Average distortion performance for σ2
n1

= 0.32, σ2
n2

= 1, ρ = 0.2 by the relevant schemes
at different values of P. (a): Performance comparisons of all the relevant parametric mappings,
(b): Performance comparisons of sigmoid-like function, non-parametric mappings and the bounds.

In Figures 11 and 12, we plot the SDR versus correlation coefficient ρ when CSNR
is equal to 1.8 and 11.8dB, respectively. Herein, we have kept the transmitting power
P = 1, while we change the channel noise, with σ2

n1
= 0.32 and σ2

n2
= 1 in Figure 11, and

σ2
n1

= 0.032 and σ2
n2

= 0.1 in Figure 12.
When CSNR is significantly low (e.g., 1.8 dB) as shown in Figure 11, sigmoid-like

mapping outperforms all the other parametric mappings at different correlation coefficient
values while the sinh mapping and SK-like mapping are both superior to the remaining
parametric ones. With the increase in correlation coefficient ρ, the uncoded scheme lags
behind the AS-SQLC scheme and the sine-like scheme.

When CSNR increases to 11.8 dB as shown in Figure 12, the sigmoid-like mapping
still yields the best performance within all the parametric mappings, and is inferior to the
nonparametric ones, while the gap shrinks with the increase in the correlation coefficient ρ.
For large values of the coefficient ρ, the performances of the AS-SQLC and sine-like scheme
become closer to those of the proposed parametric mappings, while the uncoded scheme
gradually lags behind the AS-SQLC and the sine-like schemes.
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Figure 11. Average distortion performance for σ2
n1

= 0.32, σ2
n2

= 1, P = 1 with optimized values
of parameters at different values of ρ. (a): Performance comparisons of all the relevant parametric
mappings, (b): Performance comparisons of sigmoid-like function, non-parametric mappings and
the bounds.
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Figure 12. Average distortion performance for σ2
n1

= 0.032, σ2
n2

= 0.1, P = 1 with optimized values
of parameters at different values of ρ. (a): Performance comparisons of all the relevant parametric
mappings, (b): Performance comparisons of sigmoid-like function, non-parametric mappings and
the bounds.

As observed in the mentioned figures, the proposed sigmoid-like mapping always
yields a better performance than the AS-SQLC mapping and sine-like mapping, which
are particularly designed for a broadcast channel with infinite resolution ADC front end.
When the correlation coefficient ρ decreases, both the gap between the performances of
the nonparametric mappings and parametric ones and the gap between the performances
of parametric mappings proposed in this work and the AS-SQLC as well as the sine-like
scheme expand.

Note that the nonparametric mapping I has a slight lead in the performance compared
to the nonparametric mapping II. This is due to the fact that Algorithm 1 has a higher
degree-of-freedom to place points in the channel space than Algorithm 2. The above gain
comes at the expense of the computational cost.

As CSNR increases, the parametric sigmoid-like mapping approaches more closely
to two nonparametric mappings, indicating less gain from the nonparametric algorithms.
We attribute this performance to the fact that as the communication condition improves,
the influence of the one-bit ADC front end becomes larger, and becomes harder to be com-
pensated by nonparametric mapping algorithms. In low-CSNR cases, when the influence
of channel noise outweighs the impact of the one-bit ADC front end, the performance
promotions of the two nonparametric mapping algorithms become more obvious.
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Figures 13–15 plot the achievable distortion bounds for three parametric mappings, the
bound with infinite resolution ADC front ends and the conditional outer bound with one-
bit ADC front ends when different values are assigned to ρ. We would like to emphasize
that the bounds we discuss here are not average distortion bounds in previous figures.
These bounds are obtained by searching for minimal attainable D2 for given D1, as shown
in (7). They characterize the attainable distortion regions. To plot the D1-D2 curves for
the proposed parametric encoders in Figures 13–15, we varied the parameters to obtain a
database for D1-D2 pairs. Then for a given value of D1, we document the corresponding
minimal value of D2. (It is hard to keep D1 constant in the practical experiments. We obtain
the values of D1 around the given one and document the corresponding D2s. Then the
minimum D2 is found within these D2s.) Finally, we could plot the complete D1-D2 curves
for the proposed parametric encoders.
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Figure 13. Distortion regions (D1, D2) for σ2
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= 0.32, σ2
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= 1, P = 1, ρ = 0.2 for three parametric
mappings and two bounds.
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Figure 15. Distortion regions (D1, D2) for σ2
n1

= 0.32, σ2
n2

= 1, P = 1, ρ = 0.7 for three parametric
mappings and two bounds.

We observe that the bound for an infinite resolution ADC front end is relatively closer
to the bound for a one-bit ADC front end with larger ρ values. The sigmoid-like mapping
outperforms the other two parametric mappings and is close to the bound for a one-bit
ADC front end when ρ is relatively lower.

Figures 16 and 17 show the encoder structures of the nonparametric mapping I at
two CSNR levels, respectively. As our system model can be approximated as a symmetric
one, it is an interesting result that the optimized encoder mappings are odd as well.
As CSNR increases, the structure of the encoder mapping is gradually distorted. The
deformation above indicates the advantage of the nonparametric mappings compared with
the parametric ones, since the former ones have a higher degree-of-freedom for placing
points in the channel space rather than being restrained within a fixed structure.
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Figure 16. Optimized encoder nonparametric mapping I with CSNR = 0 dB and ρ = 0.7.
(a) shows the curved surface, while the (b) shows the corresponding two-dimensional representation.
The (c) shows the curve while X1 = X2.



Entropy 2021, 23, 1679 21 of 25

(a) (b)

-4 -3 -2 -1 0 1 2 3 4

X
1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(X
1
,X

2
)

(c)

Figure 17. Optimized encoder nonparametric mapping I with CSNR=4dB and ρ = 0.7. (a) shows
the curved surface, while the (b) shows the corresponding two-dimensional representation. The (c)
shows the curve while X1 = X2.

7. Conclusions

In this work, we consider the transmission of bivariate Gaussian sources over Gaussian
broadcast channels with one-bit ADC front ends. The conditional distortion outer bound
for this scenario is derived. Two algorithms are proposed to design the nonparametric
mappings. The nonparametric mapping I is achieved based on the iterative optimization
between the encoder and the decoder. The nonparametric mapping II is achieved by
gradient descent search based on the necessary conditions for the optimal encoder. Based
on the characteristics of the optimal encoder mappings, we propose several parametric
mappings. Despite a certain extent of performance degradation, the parametric mappings
proposed herein can be used in place of the nonparametric mappings as they require lower
computational cost and are more adaptable to the channel condition variations. Future
extensions of this work include the derivation of the closed-form approximations for the
mapping distortion, further design of parametric mappings applied to the system with
fading channels, and investigations of the performance of the system with higher level
ADC front ends.
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Appendix A. Proof for Bound under One-Bit ADC Front End

Herein, we derive the genie-aided outer bound while Xn
2 is known at both the trans-

mitter and receiver 1. On the basis of the data processing inequality (DPI), we have

I(Xn
1 ; X̂n

1 |Xn
2 ) ≤ I(Xn

1 ; Zn
1 |Xn

2 ). (A1)

The conditional rate-distortion function under the assumption that Xn
2 is known to both

encoder and receiver 1, implies the following inequality

I(Xn
1 ; X̂n

1 |Xn
2 ) ≥

n
2

log
σ2

X(1− ρ2)

DADC
1|2

. (A2)

Due to the existence of the Markov chain relationship (Xn
1 , Xn

2 ) ↔ Vn ↔ Zn
1 , mutual

information I(Xn
1 ; Zn

1 |Xn
2 ) can be expressed as

I(Xn
1 ; Zn

1 |Xn
2 ) = H(Zn

1 |Xn
2 )− H(Zn

1 |Xn
1 , Xn

2 )

= H(Zn
1 |Xn

2 )− H(Zn
1 |Vn). (A3)

Furthermore, we have the following inequality

H(Zn
1 ) ≥ H(Zn

1 |Xn
2 ) ≥ H(Zn

1 |Vn). (A4)

As shown in Lemma 2 of [41], since the quantizer is symmetric, it would not lose the opti-
mality to restrict attention to symmetric input distributions. In doing so, as the quantizer
and the noise are already symmetric, the probability mass function (PMF) of Z is also
symmetric. Hence, H(Z1) = 1.

With the one-bit symmetric quantization, the quantized channel output is

Zn
1 = Γ(Vn + Nn

1 ). (A5)

Since Z1 is binary, it holds that

H(Z1|V) = E
[
− Pr(Z1 = 0|V)logPr(Z1 = 0|V)− Pr(Z1 = 1|V)logPr(Z1 = 1|V)

]
,

then it is easy to derive that

H(Z1|V) = E
[

h
(

Q
(

V
σn1

))]
, (A6)

where Q(x) = 1√
2π

∫ ∞
x exp(−t2/2)dt, and h(·) denotes the binary entropy function

h(p) = −plog(p)− (1− p)log(1− p), 0 ≤ p ≤ 1.

The conclusion is also presented in [41].
Since h(Q(·)) is an even function, we have

H(Z1|V) = E
[

h
(

Q
(

V
σn1

))]
= E

[
h
(

Q
(
|V|
σn1

))]
.

According to [41], the function h(Q(
√
·)) is a convex function. Jensen’s inequality

thus implies

H(Z1|V) ≥ h
(

Q
(√

P/σ2
n1

))
= h

(
Q
(√

CSNR1

))
. (A7)

with equality iff V2 = P.
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On the other hand, h(Q(
√

0× P/σ2
n1
)) = 1, hence there exists γ ∈ [0, 1] such that

H(Z1|X2) = h
(

Q
(√

γP/σ2
n1

))
.

Therefore,

I(Xn
1 ; X̂n

1 |Xn
2 ) ≤ I(Xn

1 ; Zn
1 |Xn

2 )

= H(Zn
1 |Xn

2 )− H(Zn
1 |Vn)

=
n

∑
k=1

[
H
(

Z1,k|Xn
2 Zk−1

1

)
− H

(
Z1,k|VnZk−1

1

)]
(a)
=

n

∑
k=1

[H(Z1,k|X2,k)− H(Z1,k|Vk)]

≤ n
(

h
(

Q
(√

γP/σ2
n1

))
− h
(

Q
(√

P/σ2
n1

)))
, (A8)

where γ ∈ [0, 1] and (a) follows by the sample-by-sample (zero-delay) encoding assumption.
As a result, the following inequality holds

1
2

log
σ2

X(1− ρ2)

DADC
1

≤ 1
2

log
σ2

X(1− ρ2)

DADC
1|2

≤ h
(

Q
(√

γP/σ2
n1

))
− h
(

Q
(√

P/σ2
n1

))
. (A9)

On the other hand, applying the data processing inequality at receiver 2, we obtain
the following inequality

n
2

log
σ2

X
DADC

2
≤ I(Xn

2 ; X̂n
2 ) ≤ I(Xn

2 ; Zn
2 ). (A10)

Additionally, the mutual information can be expressed as

I(Xn
2 ; Zn

2 ) = H(Zn
2 )− H(Zn

2 |Xn
2 )

= n− nH(Z2|X2). (A11)

Note that

H(Zn
2 |Xn

2 ) = nh
(

Q
(√

γP/σ2
n2

))
, (A12)

we can thus have

1
2

log
σ2

X
DADC

2
≤ 1− h

(
Q
(√

γP/σ2
n2

))
. (A13)

Based on (A9) and (A13), we have

DADC
1 ≥

σ2
X(1− ρ2)

2
2
(

h
(

Q
(√

γP/σ2
n1

))
−h
(

Q
(√

P/σ2
n1

))) , (A14)

DADC
2 ≥

σ2
X

2
2
(

1−h
(

Q
(√

γP/σ2
n2

))) . (A15)
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