
entropy

Article

Soft Compression for Lossless Image Coding Based on
Shape Recognition

Gangtao Xin 1,2 and Pingyi Fan 1,2,*

����������
�������

Citation: Xin, G.; Fan, P. Soft

Compression for Lossless Image

Coding Based on Shape Recognition.

Entropy 2021, 23, 1680. https://

doi.org/10.3390/e23121680

Academic Editors: Amelia Carolina

Sparavigna and Armando J. Pinho

Received: 31 October 2021

Accepted: 10 December 2021

Published: 14 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
xgt19@mails.tsinghua.edu.cn

2 Beijing National Research Center for Information Science and Technology (BNRist), Beijing 100084, China
* Correspondence: fpy@tsinghua.edu.cn; Tel.: +86-010-6279-6973

Abstract: Soft compression is a lossless image compression method that is committed to eliminating
coding redundancy and spatial redundancy simultaneously. To do so, it adopts shapes to encode an
image. In this paper, we propose a compressible indicator function with regard to images, which
gives a threshold of the average number of bits required to represent a location and can be used for
illustrating the working principle. We investigate and analyze soft compression for binary image,
gray image and multi-component image with specific algorithms and compressible indicator value.
In terms of compression ratio, the soft compression algorithm outperforms the popular classical
standards PNG and JPEG2000 in lossless image compression. It is expected that the bandwidth
and storage space needed when transmitting and storing the same kind of images (such as medical
images) can be greatly reduced with applying soft compression.

Keywords: lossless image compression; information theory; statistical distributions; compressible
indicator function; image set compression

1. Introduction

Image compression is to reduce the required number of bits as much as possible when
representing an image. In this process, the fidelity of the reconstructed image and original
image should be higher than the reference value. Image compression often consists of two
parts, encoding and decoding. Encoding is to convert the input image into a binary code
stream with a coding method, while decoding, the reverse process of encoding, aims to
restore the original image from the binary code stream.

There are two categories of image compression: lossy compression and lossless com-
pression. Lossy compression allows the reconstructed image to be different from the
original image, but it is still visually similar. However, lossless compression requires
the reconstructed image to be exactly the same as the original image, which leads to the
compression ratio being much smaller than that of lossy compression. Although the com-
pression ratio of lossy compression is higher, lossless compression is significant in many
fields. Lossless compression should be applied when errors cannot be tolerated or the
image has significant value, such as medical images, precious cultural relics, deep space
exploration, deep sea exploration and digital libraries.

Supposing that we regard an image as a random process, the minimum expected
codeword length per pixel L∗n will approach the entropy rate asymptotically, as shown in
Formula (1). However, for an actual image, the upper and lower bounds of Formula (1)
cannot be theoretically calculated because one cannot know the spatial correlation of pixels
clearly.

H(X1, X2, . . . , Xn)

n
≤ L∗n <

H(X1, X2, . . . , Xn)

n
+

1
n

(1)

where H(X1, X2, . . . , Xn) is the joint entropy of the symbol series {Xi, i = 1, 2, . . . , n}.

Entropy 2021, 23, 1680. https://doi.org/10.3390/e23121680 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-8168-6870
https://orcid.org/0000-0002-0658-6079
https://doi.org/10.3390/e23121680
https://doi.org/10.3390/e23121680
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23121680
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23121680?type=check_update&version=2


Entropy 2021, 23, 1680 2 of 22

It is impossible to reach the entropy rate for an image. All we can do is to make great
efforts to get close to it. Xin et al. [1] proposed soft compression based on information theory
and statistical distribution. It uses shapes and locations to reflect the spatial correlation of
an image, trying to achieve better compression performance.

In the literature, most of the image compression methods mainly consider three aspects
to reduce the required number of bits when representing an image: coding redundancy,
spatial redundancy and irrelevant information. Coding redundancy refers to the diverse
probability of each pixel value in an image so that the average length can be reduced from
the perspective of coding. Spatial redundancy means that pixels are spatially related. The
repeated information can be omitted because the pixel is similar to or depends on adjacent
pixels [2]. Irrelevant information refers to an image containing information irrelevant to
the human visual system or purpose, which leads to redundancy. Image compression
techniques usually improve the algorithm performance from one or several aspects.

1.1. Image Compression Method

Huffman coding [3] is an extraordinary method to eliminate coding redundancy for
a stream of data. Arithmetic coding [4] and Golomb coding [5] are also approaches to
eliminating coding redundancy. They all require accurate probability models of input
symbols. Run-length coding [6] represents runs of identical intensities by a new coding
value and length, but it may result in data expansion when there are few runs of identical
intensities [2]. LZW coding [7] is a method to remove spatial redundancy, assigning fixed-
length codewords to variable length sequences of source symbols, but it is easy to cause
data explosion, especially when the input is of a large size or irregular.

Image predictive coding is a means of transforming spatial redundancy into coding
redundancy through prediction error, which is an entry point of image compression. The
paper [8] applies prediction to discrete wavelet transform subbands. In [9], it predicts the
probability of a high-resolution image, conditioned on the low-resolution input, and uses
entropy coding to compress the super-resolution operator. The Consultative Committee
for Space Data Systems (CCSDS) [10] is a multi-national forum for the development of
communications and data systems standards for spaceflight, which has proposed several
excellent image lossless compression algorithms [11,12].

Transform coding [13–15] maps an image from the spatial domain to transform do-
main, and then encodes the coefficients of the transform domain to achieve the compression
effect. It reduces the irrelevant information in an image from the visual point of view. As
a tool of multi-resolution analysis, wavelet coding [16–18] has been widely concerned
and applied. In [19], it uses both wavelet and fractional transforms for lossless image
compression. In [20], it designs a reversible integer-to integer wavelet filter to achieve
the effect of lossless compression. In [21], it describes edge-based and prediction-based
transformations for image compression.

With the development of neural networks, image compression methods based on
learning have received a lot of attention [15,22–24]. Recent works are mainly in the area
of lossy compression, which are based on convolutional neural networks (CNNs) [25–29],
recurrent neural networks (RNNs) [30], generative adversarial networks (GANs) [31] and
the context model [32–34]. Learning-based lossless image compression methods [35–39]
use neural networks instead of the traditional encoder and decoder to achieve image
compression. PixelCNN [40] and PixelCNN++ [41] as well as the methods based on
bits-back coding [42,43] and flow models [44,45] shorten the distance between information
theory and machine learning. In [46], it proposes a fully parallel hierarchical probabilistic
model with auxiliary feature representations. The neural network of long short-term
memory (LSTM) can also be used to build a predictor for lossless image compression [47].

As for image coding standards, there are some mature instances (PNG [48], JPEG
XR [49], JPEG-LS [50], and WebP [51]). JPEG [52] and JPEG2000 [53] are based on discrete
cosine transform [54] and wavelet transform [55], respectively. FLIF [56] is based on
meta-adaptive near-zero integer arithmetic coding.
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1.2. Related Work

Soft compression has two special properties. (1) It uses shapes and corresponding
locations to represent an image. (2) Its codebook is generated through data-driven means.
The earliest coding approaches with symbols and locations can be traced back to symbol-
based coding [57]. A picture is denoted as a set of frequently occurring sub-images, called
symbols. Storing repeated symbols only once can compress images significantly, especially
in document storage, where the symbols are usually character bitmaps that are repeated
many times. However, symbol-based coding is hard to generalize to other scenarios, owing
to the need of redesigning symbols. Some methods are also based on shape coding [58,59],
but none of them consider both shapes and locations at the same time. Fractal block
coding [60] relies on the assumption that image redundancy can be efficiently exploited
through self-transformability on a blockwise basis and it can approximate an original
image by a fractal image. However, it is mainly used in lossy compression because it is
tough to find a great deal of identical blocks from only one image.

Finding similar features from a database has been an active research topic in the field
of image compression in recent years. In [61], an off-the-shelf image database is used to
find patches that are visually similar to each region of interest of the unknown input image,
according to associated local descriptors. These patches are then warped into the input im-
age domain according to interest region geometry and seamlessly stitched together. In [62],
the authors make use of external image contents to reduce visual redundancy among
images with SIFT descriptors [63]. In [64], a method is proposed for cloud-based image
coding that no longer compresses images pixel by pixel and instead tries to describe images
and reconstruct them from a large-scale image database via the descriptions. In [65], the
authors adopt a semi-local approach to exploit inter-image correlation by using information
from external image similarities. In [66], a cloud storage system is proposed that reduces
the storage cost of all uploaded JPEG photos at the expense of a controlled increase in
computation mainly during the download of a requested image subset. In [67], it proposes
a novel framework for image set compression based on the rate-distortion optimized sparse
coding.

1.3. Soft Compression

Soft compression was first proposed in [1], using shapes and locations to represent a
binary image. The set of shapes used in soft compression is not designed by experts, but
searched from a dataset. Different datasets may have diverse codebooks, which ensures
the adaptability of soft compression. Moreover, the codebook corresponding to each
dataset is complete, containing all the possibilities of the smallest shape, which makes
soft compression workable. Due to the adaptability and completeness of codebooks of
soft compression, they can always achieve lossless compression for any image and any
codebook. When the codebook and image match well, it will result in a better compression
ratio.

The main idea of soft compression is to represent an image with a set of triplets
(xi, yi, Si), where (xi, yi) denotes the position of shape Si in an image. The set of shapes
is obtained by searching in the training set. After that, the set of codewords and the
codebook can be obtained by variable length coding for the set of shapes according to the
size and frequency of each shape. When an image is encoded, it is transformed into a set of
triplets (xi, yi, Ci) according to the codebook, where Ci is the codeword of shape Si. On the
other hand, we also require to decode the compressed data into a set of triplets (xi, yi, Si)
according to the codebook when decoding. Finally, we fill shapes in the corresponding
locations to reconstruct the original image.

Soft compression is instrumental in reducing storage space and communication band-
width in the process of transmitting and storing the same kind of images. When two sides
communicate, the transmitter only needs to send the compressed data instead of the whole
picture to the receiver in the case that both sides have identical codebooks.
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In this paper, we try to answer the following two fundamental problems for lossless
image compression and design a novel image coding algorithm based on soft compression,
outperforming the popular classical standards, PNG and JPEG2000.

¬ How do we detect an image to be compressible in theory? In other words, what is
the value of the compressible indicator function for an image?

 If one image is compressible, how do we find a way to compress it through increas-
ing the value of the compressible indicator function?

This paper is organized as follows. We first introduce a new concept, a compressible
indicator function with regard to images based on information theory. Then, we use it
to evaluate the performance of soft compression in Section 2. In Section 3, some soft
compression algorithms for binary image, gray image and multi-component image are
proposed. Then, we give the experimental results and theoretical analysis in Section 4.
Finally, we conclude this paper in Section 5.

2. Theory

Digital images have coding and spatial redundancy, which makes compression feasible.
Soft compression is committed to eliminating these two kinds of redundancy simultane-
ously by filling an image with shapes. In this section, we introduce the theory of soft
compression.

2.1. Preliminary
2.1.1. Information Theory

Information theory provides the answer to the lower bound of data compression. For
an image, the minimum number of bits required per pixel is given by formula (1), which is
the entropy rate of a random process.

Definition 1. Let Z be a discrete random variable with alphabet Z and probability mass function
p(z) = Pr{Z = z}, z ∈ Z . The entropy [68] H(Z) of a discrete random variable Z is defined as

H(Z) = − ∑
z∈Z

p(z) log p(z) (2)

Entropy is a measure of the average uncertainty of a random variable. Moreover, it
points out the minimum cost of encoding the random variable [69]. In this paper, we take
all logarithms to base 2 so that entropy is measured in bits unless otherwise specified.

Definition 2. Suppose that Z is a random variable with only two events, i.e.,

Z =

{
0 with probability p

1 with probability 1− p
(3)

Then the entropy of Z is given by

H(Z) = −p log p− (1− p) log(1− p)def
= H(p) (4)

Note that H(p) is a concave function of p and equals 1 when p = 0.5. In the case of
p = 0 or p = 1, H(p) reaches its minimum value of 0. Moreover, the random variable
becomes a constant due to the lack of randomness.

If each pixel in an image is independently and identically distributed, the minimum
expected number of bits required is the entropy. However, for an actual image, the
probability distribution of each pixel cannot be independently and identically distributed.
Due to the spatial correlation, the minimum expected number of bits required for a pixel is
the entropy rate of the random process corresponding to an image. How to evaluate it is
still an open problem in the literature.
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2.1.2. Image Fundamentals

Let I denote a digital image with intensity levels in the range [0, D− 1] whose row
and column dimensions are M and N, respectively. rk is the k-th intensity value. nk is the
number of pixels with intensity rk in the image I [2]. We define X as a discrete random
variable with probability mass function p(xk)

p(xk) = Pr{X = rk} =
nk

MN
k = 0, 1, 2, . . . , D− 1 (5)

X reflects the frequency distribution of pixel intensity values in an image.
We define Y as the same random variable as X, but Y removes event r0. Let p =

Pr{X = r0}, then

p(yk) =
p(xk)

1− p
k = 1, 2, . . . , D− 1 (6)

Y indicates the frequency distribution of remaining intensity values with removing r0
from X. When p = 1, X will change from a random variable to a constant. For this reason,
we mainly consider the case where p < 1.

Lemma 1. Let H(X) and H(Y) denote the entropy of X and Y, respectively. Then,

H(Y) =
H(X)− H(p)

1− p
(7)

where H(p) comes from Definition 2.

Proof.

H(Y) = −
D−1

∑
k=1

p(yk) log p(yk) (8)

= −
D−1

∑
k=1

p(yk) log p(xk) +
D−1

∑
k=1

p(yk) log(1− p) (9)

= −
D−1

∑
k=1

p(xk)

1− p
log p(xk) + log(1− p) (10)

=
1

1− p
[−

D−1

∑
k=1

p(xk) log p(xk)] + log(1− p) (11)

=
1

1− p
[H(X) + p log p] + log(1− p) (12)

=
H(X) + p log p + (1− p) log(1− p)

1− p
(13)

=
H(X)− H(p)

1− p
(14)

2.2. Soft Compression

Soft compression is a lossless image compression method which aims to fill images
with shapes and locations. The purpose of soft compression is to find essential and
representative shapes.

We define S and C as the finite set of shapes and codewords with soft compression,
respectively. Let T denote the total number of operations in the process of filling an image
I [1]. Let Si ∈ S , i = 1, . . . , T be the shape used in the i-th operation. Ci ∈ C, i = 1, . . . , T is
the codeword of Si. The location of shape Si is defined as the pixel coordinate pair (xi, yi).
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We use Fi(Si), i = 1, . . . , T to represent filling an image with shape Si at position (xi, yi) in
the i-th operation.

Then, soft compression can be formulated as the following optimization problem:

min
T

∑
i=1

[l(Ci) + l(xi, yi)]

s.t. I =
T

∑
i=1

Fi(Si)

(15)

where l(Ci) is the number of bits corresponding to Ci, and l(xi, yi) is the length of bits
needed to represent (xi, yi). The constraint reflects that the original image I can be recon-
structed with filling shapes through T operations. That is, soft compression is lossless. The
core goal of designing soft compression algorithm is to find S and C so as to encode images
efficiently and effectively.

Definition 3. We define the compressible indicator function (CIF) with respect to p as

C(p) = sup
k

H(p(xk))

1− p(xk)
k = 0, 1, 2, . . . , D− 1 (16)

Without loss of generality, we assume p = p(x0) = sup
k

p(xk). Then,

C(p) =
H(p)
1− p

p ∈ (0, 1) (17)

Moreover, we define compressible indicator value (CIV) as the value of CIF.

Compressible indicator function C(p) is derived from Lemma 1, which indicates the
sparsity of an image. The larger it is, the more capacity can be compressed. The basic
properties of the compressible indicator function can be summarized as follows.

Theorem 1. ¬ C(p) > 0
 C(p) is monotonically increasing.

Proof. ¬ 0 < p < 1 implies that H(p) > 0, which can reach the conclusion that C(p) > 0.
 The derivative of C(p) with respect to p is

C′(p) = − log p
(1− p)2 > 0 (18)

and therefore, C(p) is monotonically increasing.

Definition 4. We use Bnb to denote the number of bits required to encode an image with natural
binary code, Bh f for Huffman coding. Similarly, Bn

sc is for soft compression where the size of the
shapes ranges from 1 to n, i.e., soft compression with n order. Bh f ,min and Bn

sc,min represent the
minimum values of Bh f and Bn

sc, respectively.

Let Lh f be the average number of bits required to represent each pixel with Huffman
coding. L1

sc is for soft compression where the size of all shapes is one. Then,
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Bnb = MN log D (19)

Bh f = MNLh f (20)

B1
sc = MN(1− p)(L1

sc + LW) (21)

Bh f ,min = MNH(X) (22)

B1
sc,min = MN(1− p)(H(Y) + LW) (23)

where LW is the average number of bits required to represent a location with soft compres-
sion.

Theorem 2. If C(p) ≥ LW and H(X) > 0, the minimum number of bits needed with 1 order soft
compression is less than that with Huffman coding, i.e., B1

sc,min ≤ Bh f ,min. The relative compression
ratio R′ is

R′ = 1 + (1− p)
C(p)− LW

H(X)
(24)

Proof.

B1
sc,min = MN(1− p)(H(Y) + LW) (25)

= MN(1− p)[
H(X)− H(p)

1− p
+ LW ] (26)

= MN[H(X)− H(p) + (1− p)LW ] (27)

= Bh f ,min + MN[(1− p)LW − H(p)] (28)

Equation (26) uses Lemma 1.
To obtain the result B1

sc,min ≤ Bh f ,min, we can reach the conclusion that

H(p)
1− p

= C(p) ≥ LW (29)

From Theorem 1, we know that C(p) increases monotonically in (0, 1). Due to the
non-negativity of entropy and the trivial case for H(X) = 0, we mainly consider the case
where H(X) > 0, then

R′ =
Bh f ,min

B1
sc,min

(30)

=
B1

sc,min −MN[(1− p)LW − H(p)]

B1
sc,min

(31)

= 1− MN[(1− p)LW − H(p)]
B1

sc,min
(32)

= 1− MN[(1− p)LW − H(p)]
MNH(X)

(33)

= 1 +
H(p)− (1− p)LW

H(X)
(34)

= 1 + (1− p)
C(p)− LW

H(X)
(35)

It completes the proof.

Theorem 2 provides the threshold relationship between LW and C(p). When LW is less
than this threshold, the minimum number of bits needed to represent an image with soft
compression is lower than that of Huffman coding. In general, we use the minimum value
to approximately replace the actual value needed for compression, which is convenient
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for theoretical analysis. Theorem 2 indicates that for an image whose C(p) ≥ LW , soft
compression is better than Huffman coding in terms of the compression ratio. It also points
out that the higher the compressible indicator value, the higher the compression ratio.

Figure 1 illustrates the relationship between compressible indicator function C(p)and
p. Theorem 2 points out the suitability of applying soft compression. Given an image,
we should first evaluate the compressible indicator value according to p, and then judge
whether it is suitable for soft compression. That is to say, if (p, LW) is in the gray area, the
minimum number of bits required with 1 order soft compression is less than that with
Huffman coding. As shown in Figure 1, it answers the first fundamental problem of lossless
image compression.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

0

2

4

6

8

10

12

C
(p

)

(p*,L
W

)

Figure 1. Compressible indicator function versus p.

Lemma 2. Let Yn represent the frequency distribution of a shape whose size is n in an image, then

H(Yn) ≤ nH(Y) (36)

Proof. From the independence bound on entropy, one can come to this conclusion.

Theorem 3. If LW is a constant for different orders of soft compression, then Bn
sc,min ≤ B1

sc,min.

Proof. We use N1 to represent the number of shapes with size 1, and Nn is the number of
shapes with size n. The derivation can be seen from (37) to (41).

Bn
sc,min = N1[H(Y) + LW ] + N2[H(Y2) + LW ] + . . . + Nn[H(Yn) + LW ] (37)

≤ [N1 + 2N2 + . . . + nNn]H(Y) + [N1 + N2 + . . . + Nn]LW (38)

≤ [N1 + 2N2 + . . . + nNn][H(Y) + LW ] (39)

= MN(1− p)[H(Y) + LW ] (40)

= B1
sc,min (41)

Theorems 2 and 3 inspire us that in image compression, we can improve the compres-
sion ratio from two aspects: one is to increase the compressible indicator value of an image,
and the other is to reduce the number of bits required to represent locations. On the one
hand, the compressible indicator value can be increased by predictive coding. On the other
hand, Golomb coding may be a promising method for encoding the distance between each
location and the previous location.

3. Implementation Algorithm

In this section, we try to answer the second problem mentioned in Section 1, finding
some efficient ways to improve the compression ratio with raising the compressible in-
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dicator value. We introduce the soft compression algorithm for different image formats,
including binary image, gray image and multi-component image. In fact, three different
algorithms vary in specific steps but all try to fill images with shapes and corresponding
locations.

3.1. Binary Image

The binary image is quite suitable for encoding with soft compression because each
pixel has only two intensity values. The probability of r0 can always be greater than or
equal to 0.5 (through reverse operation), which ensures that the compression indicator
value is greater than or equal to 2.

The soft compression algorithm for a binary image was proposed in [1], which had
excellent compression performance. Although [1] introduced the algorithm, they did not
provide the theoretical analysis. We analyze the experimental results with compressible
indicator function in Section 4.

3.2. Gray Image

One of the most important steps of the soft compression algorithm for a gray image
is to divide the images into two layers, the shape layer and detail layer. In fact, the
compressible indicator value of the shape layer is usually higher, so the combinations of
shapes and locations are used to encode. Meanwhile, the compressible indicator value of
the detail layer is relatively lower, and other common coding methods can be adopted for
encoding. The soft compression algorithm for a gray image consists of predictive coding,
negative-to-positive mapping, layer separation, shape search, codebook generation and so
on. We first introduce the overall architecture, followed by the vital steps.

3.2.1. Overall Architecture

For soft compression algorithms, the codebook is very important. It directly deter-
mines the efficiency and performance of image compression. The algorithm consists of two
parts, training and testing. The purpose of the training phase is to generate the codebook.
In the testing phase, codebooks are used to encode and decode images to evaluate the
performance of the algorithm. Figure 2 summarizes the overall architecture of the soft
compression algorithm for a gray image. We design the set of shapes firstly, and then
update the frequency of each candidate shape in the training set. After obtaining the final
set of shapes and corresponding frequency, we generate the codebook for the shape layer.
In training, we also acquire the codebook for the detail layer at the same time. Codebooks
are used in the encoder and decoder, which are stored or transmitted for subsequent usage.

 !"#$
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Figure 2. The overall procedure of soft compression algorithm for gray image including training and testing. The shape
design, frequency search, shape update, detail acquisition, codebook generation, and saved codebook are the training stage.
On the other hand, the encoder and decoder are the testing stage.

In testing, the image is compressed through the encoder. When the sender wants to
communicate with the receiver, it firstly transmits the codebooks. After both sides of the
communication have the same codebook, the transmitted content can be the compressed
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data instead of the original image. The receiver receives the compressed data after storage
or transmission. Due to the completeness of codebooks, the recovered image is exactly the
same as the original image, which ensures lossless compression.

3.2.2. Predictive Coding and Negative-to-Positive Mapping

Predictive coding is an efficient way to transform spatial redundancy into coding
redundancy with prediction. The core idea of predictive coding is to calculate the prediction
value according to the spatial correlation, which aims to encode the prediction error.
Negative-to-positive mapping maps the prediction error from negative to positive for layer
separation.

Let I(x, y),IP(x, y) and IE(x, y) be the pixel intensity value, predictive value, predic-
tion error at position (x, y) in an image I, respectively. We utilize the gradient adjusted
prediction method [70] based on the gradient of the intensity function, which is shown in
Formulas (42) and (43) (for simplicity, we use Ix,y for I(x, y)). Figure 3 illustrates the spatial
correlation between pixels.

 !"#$%&'  !"#$%&()'

 !"#)%&#)'

 !"%&#)'

 !"#)%&'  !"#)%&()'

 *!"%&' !"%&#$'

Figure 3. The spatial correlation between pixels with predictive coding.

After obtaining the predictive value, one can calculate the prediction error with
Formula (44). The range of the prediction error is [−D + 1, D− 1], which is different from
the pixel intensity value [0, D− 1]. We use Formula (45) to map the prediction error from
negative to positive, which is conducive to the subsequent procedures.

dh = |Ix,y−1 − Ix,y−2|+ |Ix−1,y − Ix−1,y−1|+ |Ix−1,y − Ix−1,y+1|
dv = |Ix,y−1 − Ix−1,y−1|+ |Ix−1,y − Ix−2,y|+ |Ix−1,y+1 − Ix−2,y+1|
ds = dv − dh

(42)

IP(x, y) =



Ix−1,y if ds < −80
1
4

Ix,y−1 +
3
4

Ix−1,y +
1
8

Ix−1,y+1 −
1
8

Ix−1,y−1 if − 80 ≤ ds < −32

3
8

Ix,y−1 +
5
8

Ix−1,y +
3

16
Ix−1,y+1 −

3
16

Ix−1,y−1 if − 32 ≤ ds < −8

1
2

Ix,y−1 +
1
2

Ix−1,y +
1
4

Ix−1,y+1 −
1
4

Ix−1,y−1 if − 8 ≤ ds ≤ 8

5
8

Ix,y−1 +
3
8

Ix−1,y +
3

16
Ix−1,y+1 −

3
16

Ix−1,y−1 if 8 < ds ≤ 32

3
4

Ix,y−1 +
1
4

Ix−1,y +
1
8

Ix−1,y+1 −
1
8

Ix−1,y−1 if 32 < ds ≤ 80

Ix,y−1 if ds > 80

(43)

IE(x, y) = I(x, y)− IP(x, y) (44)

I′(x, y) =

{
2IE(x, y) IE(x, y) ≥ 0

− 2IE(x, y)− 1 IE(x, y) < 0
(45)
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The proportion of r0 increases with predictive coding and mapping, which also leads
to the increase in the compressible indicator value. The images will be more conducive
to encoding with the soft compression algorithm. Another reason for adopting predictive
coding and mapping is that the same image will have the same result after these two
operations. The reversibility of each step ensures the losslessness of the soft compression
algorithm.

3.2.3. Layer Separation

Soft compression is suitable for images with a large compressible indicator value. After
the previous steps, the compressible indicator value of an image is greatly improved. We
continue to improve it. On the one hand, we observe that the probability of the prediction
error decreases as the value increases. On the other hand, through a proper separation,
one part with a higher compressible indicator value and another with a lower value can be
generated.

Layer separation and bit-plane coding [71] are similar, but there are essential dif-
ferences. Bit-plane coding focuses on decomposing a multilevel image into a series of
binary images and compressing each binary image via one of several well-known binary
compression methods. Bit-plane coding produces many layers. However, layer separation
produces only two layers, shape layer I′S and detail layer I′D.

I′ is divided into shape layer I′S and detail layer I′D via Formulas (46) and (47).

I′S(x, y) = I′(x, y) // 2l (46)

I′D(x, y) = I′(x, y) % 2l (47)

where // and % represent the quotient and remainder operation, respectively. Layer
interface l is a constant between 0 and log D, which can be given in advance with searching
or experience.

Because the compressible indicator value of the shape layer is usually higher, the
combinations of locations and shapes are used for encoding. The compressible indicator
value of the detail layer is relatively lower, and other coding methods, such as block coding
and arithmetic coding, can be used for compression.

3.2.4. Shape Search and Codebook Generation

The set of shapes with the soft compression algorithm directly determines the com-
pression performance and coding efficiency of images. How to find the shape is vital. A is
an m× n matrix whose components are in [0, 2D− 2]. ui and vj are vectors, representing
the i row and j column of A, respectively. The matrix whose ui and vj follow (48) and (49)
is suitable for designing shapes.

||ui||0 ≥
n
2
∀ 1 ≤ i ≤ m (48)

||vj||0 ≥
m
2
∀ 1 ≤ j ≤ n (49)

Formulas (48) and (49) indicate that the number of non-zero elements in all rows and
columns must be no less than half of the row size and column size, respectively. By keeping
only the non-zero value blocks in a matrix and removing the zero value blocks, one can
obtain the candidate shape. This method can avoid the situation that different matrices
generate the same shape.

As illustrated in Figure 4, there is a part of shapes. These shapes are classified by
size without considering intensity values. Combining them with the error intensity value
[1, 2D− 2] can generate the shapes in actual use.
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Figure 4. Shapes generated without considering intensity values according to the criteria (classified
by the number of pixels). These are not all shapes in the set but only a part of it.

However, not all shapes appear in the final shape set. In fact, only a small number of
shapes can be retained all the time. In training, the set of shapes is updated dynamically.
The shape with less frequency is deleted in order to ensure that the size of shape set is
controllable.

After obtaining the set of shapes, the codebook for the shape layer can be generated
according to the frequency and size of each shape. While searching for the shape set, we
also count the frequency distribution of the pixel intensity value in the detail layer so as
to generate the codebook for the detail layer. The process of the training phase is visually
shown in Algorithm 1, which connects the steps in Sections 3.2.2–3.2.4. When both sides of
communication have the same codebook prior to the message exchanges, the transmitter
can directly send compressed data instead of the whole image to the receiver, which is
able to reduce the communication quantity and storage space. That is, it can save the
communication bandwidth while keeping the same message change rate.

Algorithm 1 The training part of the soft compression algorithm for gray image.

Input: W images with size M× N
Output: The codebook for the shape layer and detail layer
Preprocess: predictive coding, negative-to-positive mapping and layer separation

for Z← 1 to W do do
for matrx size (u, v)← 1× 1 to m× n, image coordinate (i, j)← 1× 1 to M× N do

if I′S[i, j : i + u, j + v] satisfies (48) and (49) then
Get the shape S := I′S[i, j : i + u, j + v]
if S in the codebook then

Update the frequency of S in the codebook
else

Add S to the codebook
end if

end if
end for
Remove low-weight shapes based on frequency and size
Count the distribution of pixel values in the detail layer I′D

end for
Generate the codebooks

3.2.5. Golomb Coding for Locations

A set of locations are generated when the shape layer is encoded. We use Golomb
coding to encode the distance difference between each location and the previous location.
Golomb coding [5] was designed for non-negative integer input with geometric probability
distribution. We use it in the following steps.
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• Step 1. Calculate the distance difference ∆ from the previous location.
• Step 2. Get a positive integer m by giving or searching in advance.
• Step 3. Form the unary code of quotient b∆/mc. (The unary code of an integer q is

defined as q 1s followed by a 0.)
• Step 4. Let k = dlog2 me, c = 2k−m, r = ∆ mod m, and compute truncated remainder

r′ such that

r′ =

{
r truncated to k− 1 bits 0 ≤ r < c

r + c truncated to k bits otherwise
(50)

• Step 5. Concatenate the results of steps 3 and 4.

The location difference obtained with the soft compression algorithm approximately
obeys geometric probability distribution. Figure 5 shows the empirical frequency distribu-
tion on Fashion-MNIST dataset with the soft compression algorithm for gray image. Under
the prior information, Golomb coding reduces the space for storing location differences.
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Figure 5. The frequency distribution of location difference on Fashion-MNIST dataset with soft
compression algorithm for gray image.

3.2.6. Encoder and Decoder

Encoder starts with preprocessing, which consists of the steps mentioned before
(predictive coding, negative-to-positive mapping and layer separation). Secondly, two
codebooks are used to encode the shape layer and detail layer, respectively. Thirdly,
locations of the shape layer are encoded with Golomb coding. Finally, the compressed data
can be obtained by connecting the coding results of the two layers. Figure 6 shows the
entire process of the encoder.
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Figure 6. The procedure of encoder. It uses two different codebooks to encode the shape layer and the detail layer,
respectively.
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Figure 7 illustrates the composition of the compressed data. The header part contains
information about the height and width of an image, as well as the layer interface. The
shape layer data and detail layer data carry the encoding results of these two layers,
respectively.

The decoder adopts the opposite structure to the encoder. The original image can be
reconstructed through decoding. Firstly, the shape Si is obtained according to the codebook
for the shape layer, and then the shape Si is filled in the location (xi, yi). The shape layer I′S
is acquired by repeating T operations. Secondly, the detail layer I′D is decoded from the
compressed data with the codebook for the detail layer. Finally, the original image can
be reconstructed by merging I′S and I′D, positive-to-negative mapping and anti-predictive
coding.

 !"#$%&"'$(%)"*"

+"%,$*%-.%*(/#0$*,1
2$"3$(

4

4!$%5-6#($,,$3%)"*"

)$*"/0%&"'$(%)"*"

Figure 7. The composition of compressed data.

3.2.7. Concrete Example

In order to describe the algorithm more intuitively, we use a specific example to illus-
trate the encoding process of the shape layer, in other words, how it changes from a digital
image to the binary data. Figure 8 illustrates the process of filling an image with shapes in
the codebook. The image on the left is an 8× 8 shape layer. It is divided into several shapes.
Each shape is marked with a different color, as shown on the right. We use the coordinate of
the pixel in the upper left corner to represent the location of the whole shape. Therefore, the
locations of these shapes are {(xi, yi) : (0, 0), (0, 6), (3, 5), (4, 2), (5, 4), (6, 0), (6, 5)}. Using
relative values to represent locations can reduce coding costs. In this case, the locations can
be re-expressed as {(xi, yi) : (0, 0), 6, 23, 5, 10, 4, 5}. Except for the first location, the rest are
represented by relative values (difference from the previous location).
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Figure 8. An example of the split of the shape layer. The image on the left is the original 8× 8 shape
layer. By filling the image with shapes in the codebook, it is divided into several shape regions. Each
shape is marked with a different color, as shown on the right.

After the image is divided into shapes and their corresponding locations, it is neces-
sary to convert them into binary data. We use natural binary coding for the first location
and Golomb coding (Section 3.2.5) for the rest locations. Therefore, the binary data for each
location are {(xi, yi)bit : 000000, 1010, 11111011, 1001, 11010, 1000, 1001|m = 4}. In training,
we assign a one-to-one corresponding codeword to each shape in the codebook. There
are seven shapes in Figure 8, two of which are the same. We need to find the codeword
corresponding to each shape from the codebook, which is the binary data representation.
For example, the result of combining each codeword and location may be {((xi, yi)bit, Ci) :
(000000, 000), (1010, 001), (11111011, 010), (1001, 011), (11010, 100), (1000, 100), (1001, 101)}.
The second item in each bracket represents the codeword corresponding to the shape. Con-
necting all the small binary fragments is the binary data of the shape layer. On the other
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hand, for clearly showing the compression ratio improvement, we use a complete image
encoding example. Figure 9 illustrates its compression ratios with soft compression, PNG,
JPEG2000 and JPEG-LS. The compression ratios are 2.53, 1.85, 2.41 and 2.45, respectively.
This example indicates the improvement in the compression ratio of soft compression.

Figure 9. An example of image encoding with soft compression, PNG, JPEG2000 and JPEG-LS. It
is a dermoscopic image from medical datasets. The compression ratios are 2.53, 1.85, 2.41 and 2.45,
respectively.

3.3. Multi-Component Image

Considering a multi-component image, the soft compression algorithm for a gray
image can be used for each component. In this case, the soft compression algorithm for
a multi-component image is equivalent to the combination of several gray images. In
addition, the compressed data are also a combination of several components.

4. Experimental Results and Theoretical Analysis

In this section, we reveal the experimental results and theoretical analysis of the soft
compression algorithm for a binary image, gray image and multi-component image.

Definition 5. Suppose that b and b′ represent the required number of bits to store the same image
with natural binary code and other coding methods, respectively. The compression ratio R is
defined as

R =
b
b′

(51)

and Ravg is defined as the average compression ratio of a class of images.

The average compression ratio Ravg reflects the performance of different encoding
methods. We adopt it as an significant criterion to measure the image compression algo-
rithm.

4.1. Binary Image

We tested the soft compression algorithm for a binary image [1] on the MNIST [72]
dataset. As expected, it had excellent results. In this subsection, we analyze the experimen-
tal results theoretically. The MNIST dataset has 10 classes. Each category of images may
have a different compressible indicator value. Although they are of different classes, the
compressible indicator value is generally subject to the normal distribution.

Table 1 illustrates the experimental results of the MNIST dataset with the soft compres-
sion algorithm for a binary image (each class uses the same codebook). CIV and Ravg are
strongly related, and their Pearson correlation coefficient is 0.977. The larger the average
compressible indicator value, the greater the average compression ratio. The results are
consistent with the theoretical analysis in Theorem 2. It enlightens us to the fact that soft
compression is suitable for compressing images with a large compressible indicator value.
Although the compression ratio is not only determined by this factor, the compressible
indicator value is the key element affecting the compression performance.
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Table 1. Average compressible indicator value and compression ratio of MNIST dataset with soft
compression algorithm for binary image (each class uses the same codebook).

Class 0 1 2 3 4 5 6 7 8 9

CIV 3.87 5.14 4.09 4.17 4.42 4.30 4.17 4.51 4.06 4.37
Compression ratio 2.84 6.02 3.17 3.20 3.77 3.40 3.20 4.05 2.81 3.52

4.2. Gray Image and Multi-Component Image

In this subsection, we obtain the experimental results on different datasets with
the soft compression algorithm. The compression ratio is one of the most important
criteria to evaluate the performance of the encoding algorithm. Table 2 illustrates the
average compression ratio of each class in Fashion-MNIST [73] with different methods.
We emphasize the difference in percentage to soft compression for each other method
in green if soft compression outperforms the other method. Our algorithm outperforms
the widely-used PNG on all classes, which is a 24% improvement, on average. It also
outperforms JPEG2000 and JPEG-LS, with 48% and 6.8% improvements, respectively.

Moreover, Table 3 shows the experimental results on datasets with larger images.
The DRIVE [74] dataset is obtained from a diabetic retinopathy screening program to
study skin lesions. PH2 [75] is a dermoscopic image database. PNG, JPEG2000 and JPEG-
LS are the most popular methods in lossless image compression. L3C [46] is a novel
learned lossless image compression system based on deep neural networks. We compare
soft compression with these algorithms. In terms of the average compression ratio, soft
compression outperforms any other method. On the other hand, soft compression and
other methods have their own advantages for the maximum and minimum. The results
of Tables 2 and 3 indicate that the soft compression algorithm is better than some known
classical methods, PNG, JPEG2000, JPEG-LS and L3C, in terms of the compression ratio.
For the same kind of image, it is better to choose soft compression to encode.

Table 4 illustrates the average compression ratio of the soft compression algorithm
for a gray image on Fashion-MNIST. It is the result of cross validation. The first column
denotes codebooks, which are generated by the training set of each class separately. The
first row represents each category of the testing set. The value on (i, j) denotes the average
compression ratio Ravg of the j-th class of the testing set by using the codebook generated by
the i-th class of the training set. For example, the value on (Trouser, T-shirt) is the average
compression ratio of T-shirt’s testing set, whose codebook is trained on Trouser’s training
set. It is observed that the values on the diagonal are higher than those of the same column,
which suggests that soft compression is related to the matching degree between the dataset
and the codeook. The higher the matching degree, the higher the compression ratio.

Table 2. Average compression ratio of Fashion-MNIST with different image compression methods
(images are gray and all methods are lossless compression).

Class
Method

Soft Compression PNG JPEG2000 JPEG-LS

T-Shirt 1.53 1.23 +24% 1.06 +44% 1.47 +4.1%
Trouser 2.30 1.50 +53% 1.32 +74% 2.13 +8.0%
Pullover 1.48 1.12 +32% 1.02 +45% 1.36 +8.8%

Dress 1.85 1.41 +31% 1.20 +54% 1.79 +3.4%
Coat 1.45 1.14 +27% 1.03 +41% 1.36 +6.7%

Sandals 1.95 1.82 +7.1% 1.33 +47% 1.82 +7.1%
Shirt 1.42 1.14 +25% 1.03 +38% 1.34 +6.0%

Sneaker 2.07 1.88 +10% 1.39 +49% 1.89 +9.5%
Bag 1.50 1.32 +14% 1.07 +40% 1.42 +5.6%

Ankle boots 1.66 1.46 +14% 1.14 +46% 1.52 +9.2%
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Table 3. The compression results of DRIVE and PH2 datasets with different image compression methods (all methods are
lossless compression). DRIVE is divided into training set and testing set according to the original division method. PH2 was
not divided before, so the training set and testing set are divided in a 5:3 manner. L3C selects the best performing model
among the provided models.

Dataset Statistic
Method

Soft Compression PNG JPEG2000 JPEG-LS L3C

DRIVE [74]
565 × 584 px

Mean 3.201 2.434 +32% 2.972 +7.7% 3.064 +4.5% 2.989 +7.1%
Minimum 2.893 2.331 +24% 2.790 +3.7% 2.731 +5.9% 2.841 +1.8%
Maximum 4.171 2.760 +51% 3.671 +14% 3.941 +5.8% 3.604 +16%
Variance 0.0657 0.0072 0.0333 0.0632 0.0287

PH2 [75]
767 × 576 px

Mean 2.570 1.727 +49% 2.450 +4.9% 2.488 +3.3% 2.300 +12%
Minimum 1.686 1.501 1.812 1.737 1.790
Maximum 3.388 2.021 +68% 2.975 +14% 3.045 +11% 2.920 +16%
Variance 0.1538 0.0108 0.0749 0.0835 0.1047

Table 4. Average compression ratio of Fashion-MNIST dataset with soft compression algorithm for
gray image (each class has its own codebook).

Class T-Shirt Trouser Pullover Dress Coat Sandals Shirt Sneaker Bag Ankle Boots

T-shirt 1.55 2.19 1.50 1.83 1.48 1.90 1.44 2.00 1.51 1.65
Trouser 1.48 2.35 1.43 1.82 1.41 1.91 1.38 2.03 1.46 1.61
Pullover 1.55 2.20 1.50 1.82 1.48 1.88 1.44 1.99 1.51 1.65

Dress 1.54 2.32 1.48 1.87 1.46 1.96 1.43 2.08 1.51 1.66
Coat 1.54 2.20 1.50 1.83 1.48 1.88 1.44 2.00 1.51 1.65

Sandals 1.53 2.27 1.47 1.85 1.45 2.01 1.42 2.11 1.51 1.68
Shirt 1.55 2.20 1.50 1.83 1.48 1.89 1.44 2.00 1.51 1.65

Sneaker 1.52 2.27 1.46 1.84 1.45 1.99 1.41 2.11 1.51 1.67
Bag 1.55 2.25 1.49 1.84 1.47 1.94 1.44 2.06 1.53 1.67

Ankle boots 1.54 2.24 1.49 1.84 1.47 1.94 1.43 2.06 1.51 1.67

In practice, it is better to adopt a corresponding codebook for the specific category
of images. However, imperfect matching may reduce the compression ratio, but will not
cause any loss of information. In fact, codebooks of soft compression are complete. That is
to say that for any codebook and any picture, lossless compression can always be achieved.
The difference lies in diverse compression ratios. From Table 4, we can draw a conclusion
that the compression ratio is both related to images and codebooks. This corresponds to the
compressible indicator value and the similarity between images and codebooks. The larger
the compressible indicator value, the higher the similarity between images and codebooks,
and the higher the compression ratio.

For a multi-component image, its process is the combination of several gray images.
Figure 10 illustrates an example with the soft compression algorithm for a multi-component
image. Subfigure (a) is a multi-component original image, whose components are B, G
and R, respectively, as shown in (b), (c) and (d). After dividing each component into the
shape layer and detail layer, respectively (binarization was made for a clearer appearance),
one can obtain subfigures (e) to (j). Furthermore, the compressed file can be generated by
adopting the above-mentioned encoding method for the shape layer and detail layer. The
reconstructed subfigure (k) can be obtained through decoding, which is the same as the
original subfigure (a).
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(a) Original Image (b) B-component (c) G-component (d) R-component

(e) Y-component’s Shape Layer (f) Y-component’s Detail Layer (g) U-component’s Shape Layer (h) U-component’s Detail Layer

(i) V-component’s Shape Layer (j) V-component’s Detail Layer (k) Reconstructed Image

Figure 10. An example of DRIVE dataset with soft compression algorithm for multi-component image. (a) The original RGB
image. (b) B-component image obtained by separation. (c) G-component image obtained by separation. (d) R-component
image obtained by separation. (e) The shape layer (binarization) of Y-component. (f) The detail layer (binarization) of
Y-component. (g) The shape layer (binarization) of U-component. (h) The detail layer (binarization) of U-component. (i) The
shape layer (binarization) of V-component. (j) The detail layer (binarization) of V-component. (k) The reconstructed image.

4.3. Implementation Details

The architecture of the soft compression algorithm is shown in Figure 2. Detailed
implementation can be found in the code. The algorithm is implemented with Python on a
single Intel i7-9700K CPU. The batch size is 10 for Fashion-MNIST and 1 for the other two
datasets. In addition, the shape degree is set to 0.1 for Fashion-MNIST and 0.5 for the other
three datasets.

The encoding and decoding complexity are both related to the image size and the
number of shapes in the codebook, i.e., O(MN|S|). Moreover, the average encoding and
decoding times of an image are shown in Table 5.

Table 5. Average encoding and decoding times of images with soft compression algorithm.

Fashion-MNIST [73]
28 × 28 px

DRIVE [74]
565 × 584 px

PH2 [75]
767 × 576 px

Encoding 5.7 × 10−2 s 7.79 s 24.98 s
Decoding 4.1 × 10−3 s 5.31 s 6.80 s
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5. Conclusions

In this paper, we investigated how to apply soft compression to encode images in the
lossless mode. It uses shapes to encode an image, which aims to eliminate coding redun-
dancy and spatial redundancy at the same time. Due to the adaptability and completeness
of codebooks with soft compression, it can always achieve lossless compression for any
image and any codebook.

In theory, we also proposed a new concept, the compressible indicator function with
regard to images, and theoretically illustrated the working principle. The compressible
indicator function points out the suitable scenarios of soft compression. In addition, it
also gives a threshold about the required number of bits to represent a location with soft
compression.

Moreover, we designed soft compression algorithms for a binary image, gray image
and multi-component image. These algorithms were tested on the datasets. Experimental
results indicated that soft compression has significant effects on lossless image compression,
which outperform classical systems PNG and JPEG2000, especially for images which have
a large compressible indicator value.

This paper focuses on lossless compression. However, soft compression can also be
combined with other transformation methods, such as wavelet transform. Lossy compres-
sion can be realized by using soft compression for the coefficients of transform domain.
Soft compression can also be combined with channel coding to enhance the effect of joint
source-channel coding.

It is expected that this work may have excellent applications when errors cannot be
tolerated or where there is critical social or scientific value, such as CT image processing
for the diagnosis and treatment of medical image files, digital libraries and so on.
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