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Abstract: In this paper, we have analyzed the mathematical model of various nonlinear oscillators
arising in different fields of engineering. Further, approximate solutions for different variations in
oscillators are studied by using feedforward neural networks (NNs) based on the backpropagated
Levenberg–Marquardt algorithm (BLMA). A data set for different problem scenarios for the super-
vised learning of BLMA has been generated by the Runge–Kutta method of order 4 (RK-4) with
the “NDSolve” package in Mathematica. The worth of the approximate solution by NN-BLMA is
attained by employing the processing of testing, training, and validation of the reference data set.
For each model, convergence analysis, error histograms, regression analysis, and curve fitting are
considered to study the robustness and accuracy of the design scheme.

Keywords: nonlinear oscillator; mass attached to a stretched elastic wire; large amplitude; damping;
Runge–Kutta method; neural networks; Levenberg–Marquardt algorithm; soft computing

1. Introduction

The study of nonlinear problems is of great importance in all areas of applied math-
ematics, engineering, and physics. Most of the phenomena occurring in these fields are
modeled as nonlinear differential equations. In general, exact or analytical solutions of
highly nonlinear differential equations do not always exist and hence most of the re-
searchers have used either approximate analytical techniques or numerical methods to
obtain approximate solutions. Only a few nonlinear systems can be directly solved; thus,
numerical methods, particularly the well-known Runge–Kutta method of the fourth or-
der, are commonly employed to derive approximate solutions [1]. Nonlinear oscillators
are considered fundamental equations that have gained the attention of researchers, and
many methods have been used to find approximate and numerical solutions to various
nonlinear oscillators [2–4]. Ji-Huan [5] proposed a new perturbation in contrast to other
traditional perturbation techniques for the solution of the Duffing equation with a high
order of nonlinearity. In their study, they constructed the homotopy with an imbedding
parameter p, which is used as a small parameter. Oliveira in [6] deal with the problems
in nonlinear mechanics by using the method of averaging. They discuss the develop-
ments of the method of averaging and construct the approximate solutions for oscillatory
models with small and large parameters. Amol Marathe [7] investigated the attenuation
of harmonic waves through a periodic and discrete structure with a frequency ostensi-
bly within the propagation zone due to mild damping. They used the matrix transform
method and adopted harmonic balance to study the linear and nonlinear damping. Hui
Li [8] developed an energy balance approach for calculating the frequency–amplitude
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relationships of nonlinear oscillators with large nonlinearities and discontinuous terms. M.
Heydari [9] combined the spectral method and variational iteration method to investigate
the famous strongly nonlinear oscillators. Liu Ming studied the oscillations in a pendulum
by modifying the Adomian decomposition method (ADM) [10].

In recent years, different nonlinear oscillatory problems have gained the attention of
the research community due to the stiffness and rigidness in the behavior of the mathe-
matical models [11,12]. Akuro [13] investigated the periodic oscillation and performed
bifurcation analysis of a pendulum with spinning support using the modified continuous
piecewise linearization method. Kargar [14] used He’s Energy Balance Method (HEBM)
and He’s Amplitude-Frequency Formulation method (HFAF) to perform the frequency
analysis of a rotational pendulum system with large-amplitude oscillation. Nonlinear
oscillation typified as a mass attached to an elastic wire was studied by [15]. S. Li [16] used
the harmonic balance method to analyze the Duffing oscillation of van der Pol oscillators.
An analysis of large-amplitude oscillations in triple wells of a non-natural system was
conducted by S. Lai [17]. Razzak [18] studied the phenomena of Duffing oscillators with
rational and irrational forces, while A. Koochi [19] investigated the nonlinear oscillations
of a CNT Nano-resonator based on nonlocal electricity using the energy balance method.
Qian and Liu [20,21] used the residue harmonic method to study the vibrations of a sys-
tem of cantilever beams carrying an intermediate lumped mass. All the above-discussed
techniques were developed to analyze the mathematical models under different scenarios.

Oscillators are extremely important in physics because of their mathematical prop-
erties as expressed in the Fourier theorem. It represents the regular periodic change in a
system. Oscillations occur not only in mechanical systems but also in dynamical systems
and virtually in every area of science—for example, the periodic firing of nerve cells in
the brain, the beating of the human heart (for circulation), predator–prey population cy-
cles in ecology, business cycles in economics, the vibration of strings in guitars and other
string instruments, geothermal geysers in geology, and the periodic swelling of Cepheid
variable stars in astronomy. Testing and correctly interpreting the results of such nonlinear
oscillatory systems is inherently complex. Preconceived notions about how the system
would respond must be avoided at all costs, as this will often influence the types of tests
and processing techniques used. Due to the nonlinear and stiff nature of the mathematical
model of nonlinear oscillators, a number of semi-analytic methods, such as the iteration per-
turbation method (IPM), modified differential transform method (MDTM) [22], max-min
approach [23], linearized perturbation method (LPM) [24], modified simple equation (MSE)
scheme [25], Lindstedt–Poincare method [26], extended BKP–Boussinesq equation [27], and
homotopy analysis method (HAM) [28], have been developed. Besides their advantages,
these techniques are deterministic approaches and mostly require prior information about
the gradient and other essential parameters. In this study, a stochastic approach based on
supervised machine learning is utilized to find numerical solutions for various nonlinear
oscillators. These stochastic algorithms have various applications in different areas, in-
cluding biomathematics [29], civil engineering [30], petroleum engineering [31], wireless
communications [32], electrical engineering [33,34], and wire coating dynamics [35]. These
facts and their significance inspired the authors to exploit and explore the architecture of
neural networks to solve stiff and strongly nonlinear models of oscillators. Some potential
outcomes of the given study are summarized below.

• The main purpose of this study is to formulate mathematical models and investigate
the influence of variations in certain parameters of nonlinear oscillators such as a
rotational pendulum system, mass attached to an elastic wire, a uniform beam carrying
an intermediate lumped mass, a two-mass system with three springs, the van der Pol
equation, and a two-mass system with small damping.

• An integrated novel design of soft computing based on neural networks and the back-
propagated Levenberg–Marquardt algorithm is utilized to study the displacement,
velocity, and acceleration of the models.



Entropy 2021, 23, 1685 3 of 21

• The supervised learning of the NNs-BLM algorithm works effectively on the data set
generated by a numerical solution using the Runge–Kutta method.

• The performance of the design scheme is validated by conducting convergence analy-
sis based on mean square error, regression analysis, error histogram, and curve fitting
with reference data. Results demonstrate that the proposed algorithm is smooth and
easy to implement.

2. Proposed Methodology

In this section, a novel machine learning technique based on the supervised learning
of neurons in artificial neural networks (ANNs) is utilized to study the oscillations in
various systems. The control of oscillations in nonlinear systems is a serious challenge
for engineers. The destabilization in the oscillatory systems can create a serious thread.
Therefore, an automatic oscillation detection tool is required to quickly detect the frequency
and amplitude of oscillations in the systems. In this work, a new approach based on
machine learning for periodic solutions of the oscillatory systems has been proposed using
ANNs, in a multi-layer perceptron (MLP) configuration. The MLP, also known as the
Feed-Forward Neural Network (FNN), is a type of neural network that has a hidden layer
between the input and output layers. The ANN controller for a single neuron is shown in
Figure 1. Mathematically, an ANN model can be written as

Y = f

[
vo +

m

∑
j=1

h

(
λj +

n

∑
i=1

xiwij

)
vj

]
(1)

where Y and xi are the output and input data, vo is the output bias, m and n denote the
number of hidden and input neurons, respectively, λj is the hidden unit biases, and wij
are weights. h and f are activation functions at the hidden input layer and hidden output
layer, respectively. In this study, Log-sigmoid is used as an activation function between the
hidden and output layers, which is given as

f (x) =
1

1 + e−x , (2)

Further, the Feed-Forward Neural Network is optimized with a training algorithm such
as the backpropagated Levenberg–Marquardt algorithm. It is also known as the damped
least-squares (DLS) method and is used to minimize the nonlinear minimization problem
by using the least square fitting. The LM algorithm is used as a built-in function in various
applications to find a local minimum. It interpolates between the method of gradient
descent (GD) and Gauss–Newton method (GNM). Some recent applications of the LM
algorithm are the speed control of an induction motor drive [36] and short-term wind
speed prediction [37].

Moreover, the implementation of NN-BLMA works in two phases. The detailed
workflow of the design algorithm is presented in Figure 2.

• An initial data set is generated by using an analytical solution or calculating a numeri-
cal solution by using the Runge–Kutta method of order 4 (RK-4), with the ND Solve
package in Mathematica.

• In the second phase, the BLM algorithm is executed by using “nftool” in the MAT-
LAB package with appropriate settings of hidden neurons and testing data. Further,
BLM uses a reference solution and implements the process of testing, training, and
validation to obtain approximate solutions for different cases of nonlinear oscillators.
Table 1 shows the parameter setting for the execution of the design scheme.
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Figure 1. Architecture of the basic ANN.

Figure 2. Working mechanism of NN-BLMA for solving strongly nonlinear oscillators.

The NN-BLM algorithm has a simple structure and is easy to use in handling and
processing the nonlinear problems. The NN-BLM algorithm is a gradient-free technique
and its speed of convergence is much higher than that of other machine learning algorithms
and state-of-the-art techniques. Further, to study the efficiency, stability, and convergence,
the following performance indices are defined:
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MSE =
1
m

m

∑
j=1

(
xj(t)− x̂j(t)

)2, (3)

R2 = 1−
∑m

j=1
(
x̂j(t)− x̄j(t)

)2

∑m
j=1
(
xj(t)− x̄j(t)

)2 , (4)

where xj, x̄j, and x̂j denote the reference, approximate, and mean of solution. m denotes
the grid points. For the perfect modeling of approximate solutions, values of MSE and AE
approach zero while the value of R2 is 1.

Table 1. Parameter setting for the implementation of the designed NN-BLM algorithm.

Testing Training Valiation Hidden Neurons Max. Ilteration Max. Validation
Fails

Performance
Function

75% 15% 15% 60 1000 6 Mean Square
Error

3. Numerical Experimentation and Discussion

In order to study the performance and efficiency of the design algorithm, various cases
of strongly nonlinear oscillators are formulated. Figure 3 presents a complete overview of
the different problems and cases studied in this paper.

Figure 3. A general view of different cases of nonlinear oscillators discussed in this paper.
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3.1. Rotational Pendulum

Consider a mechanical model that represents a simple pendulum as shown in Figure 4.
For large oscillation, at the neutral axis, a body of mass (m) is attached to a rotating base.
This system’s equation for the motion is modeled as a second-order differential equation,
which is given as [38]

d2u
dt2 + ω2

0 sin(u)(1−Λ cos(u)) = 0, u(0) = A ∈ (0◦, 180◦),
du
dt

(0) = 0, (5)

where u represents the angular displacement of the mass (m) in relation to time (t), and A
denotes the initial amplitude of oscillation. ω2

0 and Λ are defined as

ω2
0 =

g
l

, Λ =
Ω2g

l
, (6)

where ω, l, and g represent the angular velocity, length of weightless rod, and gravitational
acceleration, respectively. A simple pendulum oscillates between the symmetric intervals
[−a, a] when the revolver is pushed as a constant velocity. The range of values for Λ is
assumed to be taken from (0, 1). To study the effect of variations in Equation (5), the
following cases are considered based on the increase in the amplitude of oscillation. Case
I: A = 170◦, ω0 =

√
2, and Λ = 0.9. Case II: A = 140◦, ω0 =

√
1.5, and Λ = 0.5, Case III:

A = 110◦, ω0 =
√

1, and Λ = 0.1.

Figure 4. A schematic of a rotational simple pendulum.

In this problem, the influence of variations in different parameters of the rotational
pendulum system has been investigated by using the NN-BLM algorithm. Approximate
solutions obtained by the proposed algorithm are compared with He’s Energy Balance
Method (HEBM) [39], as shown in Table 2. The results for displacement, velocity, and
acceleration are given in Table 3 and graphically shown in Figure 5. Periodic results show
that displacement decreases with the increase in time. To study the relation of velocity and
acceleration with time, three-dimensional surface graphs were plotted and are shown in
Figure 6. The results show that a decrease in the amplitude of oscillation causes a decrease
in the velocity and acceleration of the pendulum. Further, to study the effectiveness
of the solutions and the efficiency of the design algorithm, error histogram graphs and
performance graphs were plotted, as shown in Figures 7 and 8, respectively. The results
obtained by the design algorithm overlap with the analytical solution with minimum
absolute errors. The absolute error for each case lies around 10−5 to 10−7, 10−3 to 10−5, and
10−4 to 10−5, respectively. In addition, the values of performance function show the perfect
modeling of solutions as they lie around 6.5965× 10−11, 1.3117× 10−8, and 9.7788× 10−9,
respectively. Statistics of validation, testing, and training of the reference solution are
provided in Table 4. Regression analysis is given in Figure 9, which shows the accuracy of
the proposed algorithm in calculating approximate solutions.
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Table 2. Comparison of approximate solutions obtained by NN-BLM algorithm with He’s Energy Balance Method, Homotopy Analysis Method, Residue Harmonic Balance Method, and
Homotopy Perturbation Method.

Problem 1 Problem 2 Problem 3 Problem 5

t Exact HEBM NN-BLMA Exact HAM NN-BLMA Exact RHBM NN-BLMA Exact HPM NN-BLMA

0 2.96706 3.01652 2.96706 1.5 1.5 1.5 1 1 1 8 7.999 8
3 −2.15119 −2.25409 −2.15119 −0.33557 −0.33647 −0.33557 −0.99448 −0.99442 −0.99448 −5.69251 −5.69215 −5.69251
6 −1.13609 −1.13986 −1.13609 −1.27728 −1.218 −1.27728 0.97792 0.97364 0.97792 −5.01246 −5.01245 −5.01246
9 2.89554 2.99654 2.89554 0.97753 0.96723 0.97753 −0.95033 −0.95047 −0.95033 8.10448 8.10448 8.10448

12 −2.69881 −2.831 −2.69881 0.72292 0.722911 0.72292 0.91174 0.91177 0.91174 −6.08405 −6.08401 −6.08405
15 0.12032 0.12087 0.12032 −1.4209 −1.42119 −1.4209 −0.86222 −0.86245 −0.86222 −4.07551 −4.07555 −4.07551

Table 3. Approximate solutions for angular displacements of problems 1, 2, and 3.

Problem 1 Problem 2 Problem 3

t Case I Case II Case III Case I Case II Case III Case I Case II Case III

0 2.96706 2.44346 1.91986 0.5 1 1.5 1 0.5 0.2
3 −2.15119 −2.07124 −1.36661 −0.49397 −0.70011 −0.33557 −0.99448 −0.47592 −0.19447
6 −1.13609 0.8869 −0.14399 0.47604 0.00452 −1.27728 0.97792 0.40334 0.17801
9 2.89554 0.71232 1.53846 −0.44663 0.69344 0.97753 −0.95033 −0.2829 −0.15114

12 −2.69881 −1.97792 −1.90429 0.40645 −0.99995 0.72292 0.91174 0.12156 0.11487
15 0.12032 2.4389 1.16415 −0.35648 0.70671 −1.4209 −0.86222 0.06023 −0.07096
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Figure 5. (a) Approximate solutions by the design scheme for different cases of rotational pendulum system, while (b)
illustrates the phase plane between velocity and displacement of the system.

(a) Case I (b) Case II (c) Case III

Figure 6. Three-dimensional plots to study the influence of time in velocity and acceleration of rotational pendulum system.
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Figure 7. Error histogram analysis for each case of rotational pendulum.
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Figure 9. Regression analysis for different cases of problem 1.

3.2. Oscillations of a Mass Attached to a Stretched Elastic Wire

Consider the particle of mass (m) attached to the center of a stretched elastic wire, as
shown in Figure 10. The one-dimensional equation of motion for the mass moving in the
horizontal direction is given as [15]

m
d2x
dτ2 + 2kx− 2kax√

d2 + x2
= 0, (7)

subject to the initial conditions

x(0) = B,
dx
dt

(0) = 0, (8)

and dimensionless variables are defined in terms of u and t as

u =
x
d

, t =

√
2k
m

τ, (9)

where k is the coefficient of stiffness and 2d denotes the length of the elastic wire. Substitut-
ing Equation (9) into Equation (7), we obtain

ü + u− λu√
1 + u2

= 0 λ ∈ (0, 1], u(0) = A,
du
dt

(0) = 0 (10)

where λ = a
b and A = B

D . Further, the variations in A and λ are studied by considering the
following cases. Case I: A = 0.5 and λ = 0.01, Case II: A = 1.0 and λ = 0.5 and Case III:
A = 1.5 and λ = 1.0.

Figure 10. Mass attached to the center of elastic wire.
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The design algorithm NN-BLMA is executed to study the influence of variations in
oscillations of a mass attached to an elastic wire. Statistics of approximate solutions for
angular displacement, velocity, and acceleration obtained by the proposed algorithm are
given in Table 3. Approximate solutions and the phase plane curves between the angular
velocity and displacement are shown in Figure 11. Moreover, from Figure 12, it can be
observed that the amplitude of oscillations increases but the periodic curves decrease with
an increase in time, which causes the decreases in angular displacement and velocity of the
system. Further, to study the effectiveness of the solutions, convergence, error histogram,
and regression analysis were carried out, as shown in Figures 13 and 14, respectively.
Numerical results show that the NN-BLM algorithm overlaps with the analytical solution
with minimum absolute errors that lie around 10−3 to 10−5, 10−4 to 10−5, and 10−5 to
10−6, respectively. Table 4 represents the states of computational complexity of the design
scheme in obtaining results for the nonlinear oscillator.
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(a) Approximate solutions

-1.5 -1 -0.5 0 0.5 1 1.5
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(b) Velocity and displacement curves

Figure 11. (a) Approximate solutions obtained by proposed algorithm for the system. (b) shows the phase plane between
velocity and displacement of the stretched elastic wire.

(a) Case I (b) Case II (c) Case III

Figure 12. Three-dimensional plots to study the influence of time in velocity and acceleration of mass attached to a stretched
elastic wire.
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Figure 13. Error histogram analysis for each case of mass attached to stretched elastic wire.
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Figure 14. Convergence of performance function in terms of mean square error for each case of problem 2.

Table 4. Statistics of performance measures for obtaining solutions to problems 1 and 2.

Mean Square Error

Case Neurons Training Validation Testing Gradient Mu Epochs Regression Time

I 60 2.22× 10−11 6.60× 10−11 3.49× 10−11 9.98× 10−8 1.00× 10−11 985 1 2 s
II 60 2.67× 10−8 1.31× 10−8 3.72× 10−8 6.64× 10−6 1.00× 10−11 472 1 0.01 s
III 60 1.93× 10−9 9.78× 10−9 2.55× 10−8 2.08× 10−6 1.93× 10−9 1000 1 2 s
I 60 1.36× 10−8 3.58× 10−8 9.19× 10−9 9.98× 10−8 1.00× 10−10 620 1 0.03 s
II 60 8.57× 10−8 3.16× 10−8 1.04× 10−7 3.23× 10−6 1.00× 10−9 162 1 1s
III 60 1.68× 10−10 3.31× 10−10 3.40× 10−10 9.92× 10−8 1.00× 10−9 699 1 0.02 s

3.3. Large-Amplitude Free Vibration of a Restrained Uniform Beam Carrying an Intermediate
Lumped Mass

In this problem, we consider a beam with uniform length l and mass (m) per unit
length, hinged at the bottom of a rotational spring with stiffness Kr, as shown in Figure 15.
The thickness of the beam is considered to be significantly smaller than the length of the
beam; therefore, the effects of shear deformation and rotational inertia are neglected [20].
Inclination in the beam due to lumped mass in denoted by θ and displacement of the beam
is given by a = b/l. Euler–Lagrange differential equations are used to derive a fifth-order
Duffing-type model for the motion of the uniform beam carrying an intermediate lumped
mass, which is given as

ü + u + ε1u2ü + ε1uu̇2 + ε2u4ü + 2ε2u3u̇2 + ε3u3 + ε4u5 = 0, (11)

with initial conditions
u(0) = A,

du
dt

(0) = 0, (12)

where u denotes the dimensionless deflection of the beam at the tip, A is the maximum
amplitude, and ε1, ε2, ε3, ε4 are positive constants. Table 5 represents different cases of
Equation (11) depending on the values of A and positive constants.

Figure 15. Geometry and coordinate system for a beam with rotational spring and a lumped mass.
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Table 5. Values of parameters involved in mathematical model of restrained uniform beam carrying
an intermediate lumped mass.

Cases Amplitude (A) ε1 ε2 ε3 ε4

I 1 0.326845 0.129579 0.232598 0.087584
II 0.5 1.642033 0.913055 0.313561 0.204297
III 0.2 4.051486 1.665232 0.281418 0.149677

In this problem, the designed technique is applied to study the variations in ampli-
tude and positive parameters on the deflection of uniform beam carrying an intermediate
lumped mass. Table 3 lists the statistics of the approximate solutions in terms of displace-
ment for each case of problem 3. Phase plane analysis of velocity against displacement is
shown in Figure 16. The results show that deflection in the beam increases with an increase
in the amplitude A. In addition, the oscillation in acceleration and velocity also increases,
as shown in Figure 17. Absolute errors between targeted data and results obtained by the
NN-BLM algorithm for different cases of Equation (11) are shown in Figure 18. The values
of AE for each case lie around 10−4 to 10−6, 10−5 to 10−6, and 10−4 to 10−6, respectively.
Table 6 presents the measure of convergence for each testing, validation, training, gradient,
and mu. Complexity analysis in terms of the time taken by the system to achieve the
desired results shows the robustness of the designed technique. It can be seen that the
values for the gradient for each case lie around 9.97× 10−8 to 9.98× 10−8. Values of mu
lie around 10−8 to 10−12. It can be seen from Figure 19 that the MSE for each case is
approaching zero, which shows the accuracy of the proposed algorithm.
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Time (t)
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-0.5

0

0.5

1

u
 (

t)

Case I
Case II
Case III

(a) Approximate solutions (b) Velocity and displacement curves

Figure 16. (a) Approximate solutions obtained by proposed algorithm for the system. (b) Phase
plane analysis between velocity and displacement for mathematical model of restrained uniform
beam carrying an intermediate lumped mass.

(a) Case I (b) Case II (c) Case III

Figure 17. Three-dimensional plots to study the influence of time in velocity and acceleration of mathematical model given
in Equation (6).
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Figure 18. Error histogram analysis for each case of restrained uniform beam carrying an intermediate lumped mass.
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Figure 19. Convergence of performance function in terms of mean square error for each case of problem 3.

Table 6. Statistics of performance measures for obtaining solutions to problems 3 and 4.

Mean Square Error

Case Neurons Training Validation Testing Gradient Mu Epochs Regression Time

I 60 3.67 × 10−10 1.26 × 10−9 9.37 × 10−10 9.98 × 10−8 1.00 × 10−11 992 1 0.02 s
II 60 2.61 × 10−10 6.69 × 10−10 1.35 × 10−10 9.97 × 10−8 1.00 × 10−11 283 1 0.01 s
III 60 9.69 × 10−11 4.27 × 10−10 4.63 × 10−10 9.97 × 10−8 1.00 × 10−11 281 1 0.01 s
I 60 3.76 × 10−10 2.36 × 10−9 3.16 × 10−9 9.95 × 10−8 1.00 × 10−12 100 1 0.005 s
II 60 5.27 × 10−8 2.08 × 10−7 2.99 × 10−7 1.72 × 10−5 1.00 × 10−9 1000 1 2 s
III 60 1.02 × 10−4 9.57 × 10−4 6.91 × 10−4 6.09 × 10−3 1.00 × 10−8 340 1 0.02 s

3.4. Van der Pol Equations

In this problem, we have considered van der Pol equations, which were introduced in
1920 by van der Pol to study the triode electric circuit and their self-sustained oscillations.
The mathematical model for self-excited oscillations is given as

ü− µ
(

1− u2
)

u̇ + u = 0, u(0) = A, u̇(0) = B, (13)

where µ is a scaling parameter that represents the length of damping and degree of
nonlinearity. For µ, Equation (13) reduces to the equation of simple harmonic motion.
Moreover, for u > 1 and µ(1− u2) > 0, the system behaves as a damped one. To study the
mathematical model of van der Pol oscillators, we have considered the following cases
depending on different values of the scaling parameter, i.e., µ = 0.1, 1.0 and 10.

In this problem, the effect of variations in µ has been investigated by the NN-BLM
algorithm. Results obtained by the designed scheme for displacement, velocity, and
acceleration are compared with RK-4, as shown in Figure 20. The results of the designed
scheme overlap with the analytical solutions, with AEs that lie around 10−4 to 10−7. The
performance of the fitness function in terms of mean square error is given in Table 7.
The best values of the fitness function for each case are 2.357× 10−9, 2.0835× 10−7, and
9.5689× 10−5 at epoch 100, 1000, and 340, respectively. Values of the gradient and mu for
each case lie around 6.09× 103 to 9.95× 10−8 and 10−3 to 10−8, respectively. Regression
values for each case are exactly 1, as shown in Figure 21.
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Figure 20. (a–c) Comparison of approximate solutions obtained by designed algorithm with RK-4. (d–f) show the analysis
of phase plane between velocity and acceleration for van der Pol equation.
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Figure 21. Regression analysis for different cases of problem 4.

Table 7. Approximate solutions for displacement of problems 4, 5, and 6.

Problem 4 Problem 5 Problem 6

t Case I Case II Case III
Case I Case II Case I

u(t) v(t) u(t) v(t) u(t) v(t)

0 0.01 0.01 0.01 8 10 5 1 1 0.5
3 −0.0099 −0.02498 1.50214 −5.69251 −3.7239 −3.07566 −4.7436 −0.84116 −0.42692
6 0.00925 −0.00824 0.44609 −5.01246 −3.13545 2.24812 4.25251 0.67892 0.36974
9 −0.00791 0.42076 −1.83206 8.10448 9.83682 −2.90897 1.08233 −0.51973 −0.327
12 0.00571 −1.03501 −1.56265 −6.08405 −4.53945 0.00641 1.33001 0.37165 0.29367
15 −0.00244 1.39666 −1.03589 −4.07551 −2.75077 1.67698 −0.64469 −0.24233 −0.26364
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3.5. Two-Mass System with Three Springs

In this problem, we consider a system of two equal masses (m) attached with fixed
support and three springs with stiffness k1, as shown in Figure 22. The equation for the
motion of this system in generalized coordinates u and v is given as{

mü + k1u + k2(u− v) + k3(u− v)3 = ε f1(u, u̇, v, v̇),
mv̈ + k1v + k2(v− u) + k3(v− u)3 = ε f2(u, u̇, v, v̇),

(14)

subject to the initial conditions

u(0) = Au, v(0) = Av,
du
dt

(0) = 0,
dv
dt

(0) = 0, (15)

where k2 and k3 are the spring elasticity and cubic nonlinearity, respectively, while ε f1
and ε f2 are small nonlinearities. To briefly study the system, the following two cases are
considered. Case I: m = 2.0, k1 = 1.0, k2 = 3.0, k3 = 5.0, ε = 0.0, Au = 8.0, Av = 10. Case II:
m = 1.0, k1 = 1.0, k2 = 3.0, k3 = 1.0, ε = 0.0, Au = 5.0, Av = 1.0.

Figure 22. Schematic of two masses attached with three springs and fixed support.

In this problem, the influence of variations in different parameters of mass attached
to three springs has been investigated by using the NN-BLM algorithm. Approximate
solutions obtained by the designed scheme are compared with targeted data generated
from RK-4, as shown in Figure 23. It can be seen that the analytical solution overlaps
with the approximate solutions, with minimum absolute errors that lie around 10−3 to
10−6. The results show that a decrease in mass increases the oscillations in the spring.
Furthermore, the convergence plots for each case of problem 5 in terms of validation, testing,
and training are shown in Figure 24. Statistics of the training parameters are provided
in Table 8. Values of performance function for each case are 7.3939× 10−6, 7.4597× 10−6,
5.0906× 10−6, and 7.0236× 10−6 at epoch 520 and 1000, respectively. Analysis based on
regression for each case is shown in Figure 25.

(a) u(t) (b) Error Histogram

Figure 23. Cont.



Entropy 2021, 23, 1685 16 of 21

(c) v(t) (d) Error Histogram

(e) u(t) (f) Error Histogram

(g) v(t) (h) Error Histogram

Figure 23. Approximate solution and histograms of u(t) and v(t) for Case I and II of problem 5.

Table 8. Statistics of performance measures by NN-BLMA for obtaining solutions to problems 5 and 6.

Mean Square Error

Case Neurons Training Validation Testing Gradient Mu Epochs Regression Time

I
60 1.03 × 10−7 7.39 × 10−6 7.68 × 10−6 2.63 × 10−5 1.00 × 10−10 526 1 0.06 s
60 5.48 × 10−8 7.46 × 10−6 4.58 × 10−6 2.17 × 10−5 1.00 × 10−9 1000 1 2 s

II 60 1.43 × 10−6 5.09 × 10−6 9.57 × 10−6 1.54 × 10−4 1.00 × 10−8 1000 1 2 s
60 1.46 × 10−6 7.02 × 10−6 7.38 × 10−6 2.55 × 10−5 1.00 × 10−8 1000 1 2 s

I
60 4.96 × 10−11 3.42 × 10−8 8.76 × 10−8 2.58 × 10−7 1.00 × 10−12 1000 1 2 s
60 6.18 × 10−7 8.63 × 10−6 9.52 × 10−6 1.13 × 10−6 1.00 × 10−11 57 1 0.001 s
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Figure 24. Analysis of performance function in terms of mean square error for different cases of
problem 5.

(a) Case I u(t) (b) Case I v(t) (c) Case II u(t) (d) Case II v(t)

Figure 25. Regression plots for different cases of mass attached to three springs.

3.6. Two-Mass System with Small Damping

In this problem, we consider the special case of problem 5 when there exists small
damping. The model of the scenario is shown in Figure 26. The governing equations of
motion for the system are given as{

mü + k1u + k2(u− v) + k3(u− v)3 = −εdu̇,
mv̈ + k1v + k2(v− u) + k3(v− u)3 = −εdv̇,

(16)

with initial conditions

u(0) = Au, v(0) = Av,
du
dt

(0) = 0,
dv
dt

(0) = 0 (17)
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To find approximate solutions, we consider the case when m = k1 = k3 = Au = 1, k2 =
4, εd = 0.1, Av = 0.5.

Figure 26. Schematic of two masses attached with three springs and fixed support.

The designed scheme is exploited to determine the fitting of the approximate solutions
with numerical results. The curve fitting of the approximate solutions by NN-BLMA for
example 6 is plotted in Figure 27. The results are in good agreement with the analyti-
cal solutions as the absolute errors of u(t) and v(t) lie around 103 to 105, respectively.
The performance of the objective function in terms of MSE for obtaining the best fitting is
shown in Figure 28. The best validated performance of MSE is 8.6294× 10−6, 3.4195× 10−8,
respectively. It is observed that the value of regression is one, which reflects the accuracy
of the solutions obtained by the designed algorithm.

(a) u(t) (b) EH

(c) v(t) (d) EH

Figure 27. Approximate solution and histograms of u(t) and v(t) for problem 6.
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Figure 28. Performance state of training parameters and convergence of fitness function for example 6.

4. Conclusions

In this paper, an intelligent technique based on artificial neural networks is utilized
to investigate the mathematical models of various nonlinear oscillators arising in physics,
mechanics, and applied mathematics, such as a rotational pendulum system, mass at-
tached to an elastic wire, a uniform beam carrying an intermediate lumped mass, van der
Pol equation, a two-mass system with three springs, and a two-mass system with small
damping. Furthermore, soft computing based on supervised learning of neural networks
in used to calculate the displacements, velocity, and acceleration of nonlinear oscillators
under the influence of different variations. A reference solution is generated by using the
RK-4 method, which is then evaluated by the training, testing, and validation process of
the Levenberg–Marquardt algorithm. The results obtained by the proposed algorithm
are compared with He’s Energy Balance Method, Homotopy Analysis Method, Residue
Harmonic Balance Method, and Homotopy Perturbation Method. Extensive graphical
and statistical analysis shows that the designed algorithm is accurate and efficient as the
approximate solutions overlap with the analytical solutions, with minimum absolute errors
as compared to the state-of-the-art techniques. In addition, the values of performance
indicators are approaching zero, which shows the perfect modeling of the results.
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