
entropy

Article

Inequalities for Jensen–Sharma–Mittal and
Jeffreys–Sharma–Mittal Type f –Divergences

Paweł A. Kluza

����������
�������

Citation: Kluza, P.A. Inequalities for

Jensen–Sharma–Mittal and

Jeffreys–Sharma–Mittal Type

f –Divergences. Entropy 2021, 23, 1688.

https://doi.org/10.3390/e23121688

Academic Editors: Boris Ryabko and

Takuya Yamano

Received: 21 October 2021

Accepted: 14 December 2021

Published: 16 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin,
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1. Introduction

The Sharma–Mittal entropy was introduced as a new measure of information with
two parameters [1]. It has previously been studied in the context of multi-dimensional
harmonic oscillator systems [2]. This entropy could also be formulated in the form of
exponential families, to which many usual statistical distributions including the Gaussians
and discrete multinomials (that is, normalized histograms) belong. In physical applications
it plays a major role in the field of thermo-statistics [3].

The Sharma–Mittal entropy is also applied for the analysis of the results of machine
learning methods [4,5]. Additionally, the divergence based on considered entropy could be
a cost function in the context of so-called the Twin Gaussian Processes [6].

It was originally showed by [7] that the Sharma–Mittal entropy generalized both Tsallis
and Rényi entropy in the limiting cases of these two entropies. In [8], authors suggested a
physical meaning of Sharma–Mittal entropy, which is the free energy difference between
the equilibrium and the off-equilibrium distribution.

Recently, was published a manuscript showing, in opposition to the work [8], that
Sharma–Mittal entropy besides the convenient thermodynamic systems does not reduce
only to Kullback–Leibler entropy. In [9] Verma and Merigó present the use of Sharma–
Mittal entropy under intuitionistic fuzzy environment. Additionally, in [5] Koltcov et al.
demonstrate that Sharma–Mittal entropy is a tool for selecting both the number of topics
and the values of hyper-parameters, simultaneously controlling for semantic stability,
which none of the existing metrics can do.

Another applications of considered entropy are interesting results in the cosmological
setup, such as black hole thermodynamics [10]. Namely, it helps us to describe the current
accelerated universe by using the vacuum energy in a suitable manner [11]. In addition [12]
have established the relation between anomalous diffusion process and Sharma–Mittal en-
tropy.

This paper is based on publications in which we introduced new types of
f -divergences [13–16].
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In this paper we generalize Sharma–Mittal types divergences in order to obtain new
types of divergences and hence the inequalities from which it will be possible to derive
new results and generalizations for known divergences in order to estimate the lower and
upper bounds which determine the level of the uncertainty measure.

2. Sharma–Mittal Type Divergences

Throughout R+ and R++ denote the sets of non-negative and positive numbers,
respectively, i.e., R+ = [0, ∞) and R++ = (0, ∞).

Let p = (p1, . . . , pn) and q = (q1, . . . , qn) with pi, qi ≥ 0, i = 1, . . . , n. The relative
entropy (also called Kullback–Leibler divergence) is defined by (see [17])

H1(p, q) =
n

∑
i=1

pi log
pi
qi

. (1)

In the above definition, based on continuity arguments, we use a convention that
0 log(0/q) = 0 and p log(p/0) = +∞. Additionally 0 log(0/0) = 0.

Let f : R+ → R be a convex function on R+, and p = (p1, . . . , pn) ∈ Rn
++,

q = (q1, . . . , qn) ∈ Rn
+.

The Csiszár f -divergence is defined by (see [15])

C f (p, q) =
n

∑
i=1

pi f
(

qi
pi

)
. (2)

with the conventions 0 f
( 0

0
)
= 0 and 0 f

( c
0
)
= c lim

t→∞

f (t)
t , c > 0 (see [18–20]).

The Tsallis divergence of order α is defined by (see [17])

Tα(p, q) =
1

α− 1

(
n

∑
i=1

pα
i q1−α

i − 1

)
.

The Rényi divergence of order α is defined by (see [17,21])

Hα(p, q) =
1

α− 1
log

n

∑
i=1

pα
i q1−α

i .

The Sharma–Mittal divergence of order α and degree β is defined by (see [4])

SMα,β(p, q) =
1

β− 1

( n

∑
i=1

pα
i q1−α

i

) 1−β
1−α

− 1

, (3)

for all α > 0, α 6= 1 and β 6= 1.
Let g : I → R be a convex function on an interval I ⊂ R. Let x = (x1, . . . , xn) ∈ In

and pi ∈ [0, 1) for i = 1, . . . n.
The Jensen’s inequality is as follows (see [22])

g

(
n

∑
i=1

pixi

)
≤

n

∑
i=1

pig(xi). (4)

When the function k : R+ → R is convex and the function l : R+ → R is convex and
increasing then the composition of the functions k ◦ l : R+ → R is convex. We assume that
the probabilities pi ≥ 0 and qi > 0 for i = 1, . . . , n.

It is known (see [4]) that if

α = β→ 1 then SMα,β(p, q)→ H1(p, q),
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β→ 1 and α ∈ R then SMα,β(p, q)→ Hα(p, q),

β = α then SMα,β(p, q)→ Tα(p, q).

Let h : R→ R be the differentiable function. Then the Sharma–Mittal h-divergence is
defined as follows:

SMh,α,β(p, q) =

h

[ n
∑

i=1
pα

i q1−α
i

] 1−β
1−α

− 1

β− 1
, (5)

for all α > 0, α 6= 1 and β 6= 1.
If we assume that h = id then (5) becomes Sharma–Mittal divergence.
When for all t > 0, h(t) = log(te) then (5) becomes Rényi divergence of order α.

We substitute for t =
[

n
∑

i=1
pα

i q1−α
i

] 1−β
1−α

and we have

h(t) = h

[ n

∑
i=1

pα
i q1−α

i

] 1−β
1−α

 = log

[ n

∑
i=1

pα
i q1−α

i

] 1−β
1−α

e

 = log

[
n

∑
i=1

pα
i q1−α

i

] 1−β
1−α

+ 1.

Hence, from (5)

SMh,α,β(p, q) =
log
[

n
∑

i=1
pα

i q1−α
i

] 1−β
1−α

β− 1
=

1
α− 1

log
n

∑
i=1

pα
i q1−α

i = Hα(p, q).

Let Ψ : R+ ×R+ → R be a differentiable function with respect to β and

Ψ(α, β) = h

[ n

∑
i=1

pα
i q1−α

i

] 1−β
1−α

.

We assume that h′(1) = 1 and Ψ(α, 1) = 1. Then,

lim
β→1

Ψ(α, β)−Ψ(α, 1)
β− 1

= Ψ′(α, 1) = h′

[ n

∑
i=1

pα
i q1−α

i

] 1−β
1−α


|β=1

=

∂

∂β |β=1

h

[ n

∑
i=1

pα
i q1−α

i

] 1−β
1−α

 ∂

∂β |β=1

[ n

∑
i=1

pα
i q1−α

i

] 1−β
1−α

 ∂

∂β |β=1

(
1− β

1− α

)
=

h′(1)

(
n

∑
i=1

pα
i q1−α

i

) 1−1
1−α

log

(
n

∑
i=1

pα
i q1−α

i

)(
−1

1− α

)
=

h′(1)
1

α− 1
log

(
n

∑
i=1

pα
i q1−α

i

)
=

1
α− 1

log

(
n

∑
i=1

pα
i q1−α

i

)
.

Hence, the Sharma–Mittal h–divergence tends to Rényi divergence of order α.

Remark 1. If, additionally, α tends to 1 then based on the proof of the Equation (11) from [16],
Sharma–Mittal h-divergence tends to relative entropy (called Kullback–Leibler divergence).
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Now we define a new generalized (h, φ) Sharma–Mittal divergence as follows

SMh,φ,α,β(p, q) =

h

[ n
∑

i=1
qiφ
(

pi
qi

, α
)] 1−β

1−α

− 1

β− 1
, (6)

where φ : (0,+∞)×R+ → R+ is an increasing, non-negative and differentiable function
for β > 1.

We assume that F = { fα : (0, ∞) → R : α ∈ R} is a given family of functions such

that
n
∑

i=1
qi fα|α=1

(
pi
qi

)
= 1 for α = 1 and which are increasing, non-negative for α > 1 and

such that for every t ∈ (0,+∞) the function α 7−→ fα(t) is differentiable.
According to [16] if we substitute the function fα(

pi
qi
) from the family F for φ( pi

qi
, α)

then it stands that
lim
β→1

SMh,φ,α,β(p, q) = Rh, fα
(p, q).

We assume that h(1) = 1. Then,

lim
β→1

SMh,φ,α,β(p, q) = lim
β→1

h

[ n
∑

i=1
qiφ
(

pi
qi

, α
)] 1−β

1−α

− 1

β− 1
=

h′

[ n

∑
i=1

qiφ

(
pi
qi

, α

)]0
 · [ n

∑
i=1

qiφ

(
pi
qi

, α

)]0[
log

n

∑
i=1

qiφ

(
pi
qi

, α

)]
−1

1− α
=

h′(1)
1

α− 1
log

n

∑
i=1

qiφ

(
pi
qi

, α

)
=

1
α− 1

log
n

∑
i=1

qiφ

(
pi
qi

, α

)
=

1
α− 1

log
n

∑
i=1

qi fα

(
pi
qi

)
= Rh, fα

(p, q). (7)

Remark 2. If in (6) β → 1 and φ( pi
qi

, α) = fα(
pi
qi
) then the generalized (h, φ)–Sharma–Mittal

divergence tends to generalized (h,F )–Rényi divergence.

The function φ is the generalization of the function fα(
pi
qi
) which is used for example in

Csiszár f -divergence. Condition β→ 1 means that the limit of generalized Sharma–Mittal
divergence is equal to generalized (h,F )–Rényi divergence. Hence we have implications
for generalized forms of entropies.

Remark 3. Additionally, when in (6) α→ 1 and φ( pi
qi

, α) =
(

pi
qi

)α
then the generalized (h, φ)–

Sharma–Mittal divergence tends to Kullback–Leibler divergence, because we have from Remark 2

lim
(α,β)→(1,1)

SMh,φ,α,β(p, q) = lim
α→1

log
n
∑

i=1
qiφ
(

pi
qi

, α
)
− log 1

α− 1
=

∂

∂α |α=1
log

n

∑
i=1

qi

(
pi
qi

)α

=
1

n
∑

i=1
pi

n

∑
i=1

qi
pi
qi

log
pi
qi

=
n

∑
i=1

pi log
pi
qi

= H1(p, q).

Remark 4. In (6), when the parameter β = α, the function h = id and φ( pi
qi

, α) =
(

pi
qi

)α
then

the generalized (h, φ)–Sharma–Mittal divergence tends to the Tsallis f -divergence or order α.
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This work is more theoretical than practical. Therefore, the implications are formulated
in the mathematical area that is from constructing general model which gives known
specific cases.

3. Jensen–Sharma–Mittal and Jeffreys–Sharma–Mittal Divergences

The Jensen–Shannon divergence (Jensen–Shannon entropy) is defined as follows
(see [17]):

Jen (p, q) =
1
2

SM
(

p,
p+q

2

)
+

1
2

SM
(

q,
p+q

2

)
.

The Jeffreys divergence (Jeffreys entropy) is defined as follows (see [17]):

Jef (p, q) = SM(p, q) + SM(q, p).

We introduce a new generalized (h, φ) Jensen–Sharma–Mittal divergence defined by

Jen SMh,φ
α,β(p, q) =

1
2

SMh,φ,α,β

(
p,

p+q
2

)
+

1
2

SMh,φ,α,β

(
q,

p+q
2

)
(8)

with assumptions as before.
We similarly introduce a new generalized (h, φ) Jeffreys–Sharma–Mittal divergence

as follows
Jef SMh,φ

α,β(p, q) = SMh,φ,α,β(p, q) + SMh,φ,α,β(q, p). (9)

Taking into account inequality from [17]:

0 ≤ Jen (p, q) ≤ 1
2

Jef (p, q),

describing the relation between the Jensen–Shannon and Jeffreys divergences, we could
formulate the following:

0 ≤ Jen SMh,φ
α,β(p, q) ≤ 1

2
Jef SMh,φ

α,β(p, q). (10)

We define the Jensen–Sharma–Mittal h-divergence where, in (8), φ
(

pi
qi

, α
)
=
(

pi
qi

)α
. Then,

it takes the form:

Jen SMh
α,β(p, q) =

1
2

SMh,α,β

(
p,

p+q
2

)
+

1
2

SMh,α,β

(
q,

p+q
2

)
(11)

In the same way, we define the Jeffreys–Sharma–Mittal h–divergence:

Jef SMh
α,β(p, q) = SMh,α,β(p, q) + SMh,α,β(q, p). (12)

Additionally, if the function h(t) = t then we define the Jensen–Sharma–Mittal and
the Jeffreys–Sharma–Mittal divergences of order α and degree β, respectively.

Jen SMα,β(p, q) =
1
2

SMα,β

(
p,

p+q
2

)
+

1
2

SMα,β

(
q,

p+q
2

)
, (13)

Jef SMα,β(p, q) = SMα,β(p, q) + SMα,β(q, p). (14)

When in (8) and (9) β → 1 and we substitute for φ
(

pi
qi

, α
)

= fα

(
pi
qi

)
then we ob-

tain, defined in [16], the generalized (h,F ) Jensen–Rényi and Jeffreys–Rényi divergences,
respectively:

Jen SMh, fα

α,1 (p, q) = Jen Rh, fα
(p, q) =

1
2

Rh, fα

(
p,

p+q
2

)
+

1
2

Rh, fα

(
q,

p+q
2

)
,
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Jef SMh, fα

α,1 (p, q) = Jef Rh, fα
(p, q) = Rh, fα

(p, q) + Rh, fα
(q, p). (15)

The following theorem is the generalization and refinement of the inequalities for some
known divergences and provides lower and upper bounds for the generalized (h, φ) Jeffreys–
Sharma–Mittal divergence in order to a more accurate estimation of its uncertainty measure.

Theorem 1. Let p = (p1, . . . , pn) and q = (q1, . . . , qn) be two discrete probability distributions
with pi > 0, qi > 0, qi

pi
∈ I0, pi

qi
∈ I0, i = 1, . . . , n, where I0 ⊂ R is an interval, such that

1 ∈ I0. Let φ : I0×R+ → R+ be an increasing, non-negative and differentiable function for which
n
∑

i=1
qiφ
(

pi
qi

, α
)
≥ 1 and

n
∑

i=1
piφ
(

qi
pi

, α
)
≥ 1 where 1 < β ≤ α, α ∈ R+\{1} and h : I0 → R be a

convex and increasing function on I0.
Then, the following inequalities are valid:

1
α− 1

log
n

∏
i=1

(
φ

(
pi
qi

, α

))qi
(

φ

(
qi
pi

, α

))pi

≤ Jef SMh,φ
α,β(p, q) ≤

1
β− 1

(
Jef Ch◦φ(p, q)− 2

)
. (16)

Proof. Taking into account the assumptions, we could formulate the following inequality:

[
n

∑
i=1

qiφ

(
pi
qi

, α

)] 1−β
1−α

≤
n

∑
i=1

qiφ

(
pi
qi

, α

)
. (17)

The function h is increasing and convex, therefore, from (4) and (17) we obtain inequalities:

h

[ n

∑
i=1

qiφ

(
pi
qi

, α

)] 1−β
1−α

 ≤ h

(
n

∑
i=1

qiφ

(
pi
qi

, α

))
≤

n

∑
i=1

qi(h ◦ φ)

(
pi
qi

, α

)
. (18)

In the same way, we obtain the following inequalities:

h

[ n

∑
i=1

piφ

(
qi
pi

, α

)] 1−β
1−α

 ≤ h

(
n

∑
i=1

piφ

(
qi
pi

, α

))
≤

n

∑
i=1

pi(h ◦ φ)

(
qi
pi

, α

)
. (19)

From (9) we have

Jef SMh,φ
α,β(p, q) = SMh,φ,α,β(p, q) + SMh,φ,α,β(q, p) =

h

[ n
∑

i=1
qiφ
(

pi
qi

, α
)] 1−β

1−α

− 1

β− 1
+

h

[ n
∑

i=1
piφ
(

qi
pi

, α
)] 1−β

1−α

− 1

β− 1

Taking into account (2), (18), (19) and the definition of Jeffreys divergence, it stands that:

Jef SMh,φ
α,β(p, q) ≤

n
∑

i=1
qi(h ◦ φ)

(
pi
qi

, α
)
− 1

β− 1
+

n
∑

i=1
pi(h ◦ φ)

(
qi
pi

, α
)
− 1

β− 1
=

n
∑

i=1
qi(h ◦ φ)

(
pi
qi

, α
)
+

n
∑

i=1
pi(h ◦ φ)

(
qi
pi

, α
)
− 2

β− 1
=

Jef Ch◦φ(p, q)− 2
β− 1

. (20)
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The above inequality is the upper bound for generalized (h, φ) Jeffreys–Sharma–Mittal
divergence.

By using the convexity of the function h with h(1) = 1 the following inequality is
valid for β > 1:

h

[ n
∑

i=1
qiφ
(

pi
qi

, α
)] 1−β

1−α

− 1

β− 1
≥ ∂

∂β |β=1

h

[ n

∑
i=1

qiφ

(
pi
qi

, α

)] 1−β
1−α

. (21)

From (7) the above derivative function is equal to: 1
α−1 log

n
∑

i=1
qiφ
(

pi
qi

, α
)

.

The function f (t) = log t is concave and increasing. Then, it stands that:

1
α− 1

log
n

∑
i=1

qiφ

(
pi
qi

, α

)
≥ 1

α− 1

n

∑
i=1

qi log
(

φ

(
pi
qi

, α

))
. (22)

Hence, from (21) and (22) we have the inequality:

h

[ n
∑

i=1
qiφ
(

pi
qi

, α
)] 1−β

1−α

− 1

β− 1
≥ 1

α− 1

n

∑
i=1

qi log
(

φ

(
pi
qi

, α

))
. (23)

Similarly, we obtain the second inequality:

h

[ n
∑

i=1
piφ
(

qi
pi

, α
)] 1−β

1−α

− 1

β− 1
≥ 1

α− 1

n

∑
i=1

pi log
(

φ

(
qi
pi

, α

))
. (24)

We have from (6), (23) and (24) that:

SMh,φ,α,β(p, q) ≥ 1
α− 1

n

∑
i=1

qi log
(

φ

(
pi
qi

, α

))
,

SMh,φ,α,β(q, p) ≥ 1
α− 1

n

∑
i=1

pi log
(

φ

(
qi
pi

, α

))
.

Then, by using the definition (9) we have:

Jef SMh,φ
α,β(p, q) ≥ 1

α− 1

(
log

n

∏
i=1

(
φ

(
pi
qi

, α

))qi

+ log
n

∏
i=1

(
φ

(
qi
pi

, α

))pi
)

=

1
α− 1

log
n

∏
i=1

(
φ

(
pi
qi

, α

))qi
(

φ

(
qi
pi

, α

))pi

. (25)

This result is the lower bound of the generalized (h, φ) Jeffreys–Sharma–Mittal divergence.
Combining (20) and (25) we obtain the expected inequalities (16).

Corollary 1. When we substitute for φ
(

pi
qi

, α
)
=
(

pi
qi

)α
then from (16) we obtain the inequalities

for Jeffreys–Sharma–Mittal h-divergence:

1
α− 1

log
n

∏
i=1

(
pi
qi

)α(qi−pi)

≤ Jef SMh
α,β(p, q) ≤
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n
∑

i=1
qih
((

pi
qi

)α)
+

n
∑

i=1
pih
((

qi
pi

)α)
− 2

β− 1
.

We now formulate the theorem thanks to which the estimation of the generalized
(h, φ) Jensen–Sharma–Mittal divergence will be possible.

Theorem 2. Let p = (p1, . . . , pn) and q = (q1, . . . , qn) be two discrete probability distributions
with pi > 0, qi > 0, qi

pi
∈ I0, pi

qi
∈ I0, i = 1, . . . , n, where I0 ⊂ R is an interval such that

1 ∈ I0. Let φ : I0 ×R+ → R+ be an increasing, non-negative and differentiable function for

which
n
∑

i=1

pi+qi
2 φ

(
2pi

pi+qi
, α
)
≥ 1 and

n
∑

i=1

pi+qi
2 φ

(
2qi

pi+qi
, α
)
≥ 1 where 1 < β ≤ α, α ∈ R+\{1}

and h : I0 → R be a convex and increasing function on I0.
Then, the following inequalities are valid:

1
2(α− 1)

log
n

∏
i=1

(
φ

(
2pi

pi + qi
, α

)
φ

(
2qi

pi + qi
, α

)) pi+qi
2
≤ Jen SMh,φ

α,β(p, q) ≤

n
∑

i=1
(pi + qi)

[
(h ◦ φ)

(
2pi

pi+qi
, α
)
+ (h ◦ φ)

(
2qi

pi+qi
, α
)]
− 4

4(β− 1)
(26)

Proof. Let’s consider the function

h

[ n
∑

i=1

pi+qi
2 φ

(
pi

pi+qi
2

, α

)] 1−β
1−α

− 1

β− 1
. (27)

Using the assumptions that the function h is differentiable, convex and h(1) = 1 we
could formulate the following inequality:

h

[ n
∑

i=1

pi+qi
2 φ

(
pi

pi+qi
2

, α

)] 1−β
1−α

− 1

β− 1
≥ ∂

∂β |β=1

h

[ n

∑
i=1

pi + qi
2

φ

(
pi

pi+qi
2

, α

)] 1−β
1−α

. (28)

Then, (28) is equal to:[
log

n

∑
i=1

pi + qi
2

φ

(
pi

pi+qi
2

, α

)](
−1

1− α

)
=

1
α− 1

log
n

∑
i=1

pi + qi
2

φ

(
pi

pi+qi
2

, α

)
.

Taking into account concavity of the function log, we have that:

1
α− 1

log
n

∑
i=1

pi + qi
2

φ

(
pi

pi+qi
2

, α

)
≥ 1

α− 1

n

∑
i=1

pi + qi
2

log

(
φ

(
pi

pi+qi
2

, α

))
.

Then, we obtain that (27) is greater than

1
α− 1

log
n

∏
i=1

(
φ

(
pi

pi+qi
2

, α

)) pi+qi
2

. (29)
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We do the same with the function

h

[ n
∑

i=1

pi+qi
2 φ

(
qi

pi+qi
2

, α

)] 1−β
1−α

− 1

β− 1
. (30)

Hence, we have that (30) is greater than

1
α− 1

log
n

∏
i=1

(
φ

(
qi

pi+qi
2

, α

)) pi+qi
2

. (31)

Then, combining (27), (29)–(31), and using the definition (8) the following inequality
occurs

Jen SMh,φ
α,β(p, q) ≥ 1

2(α− 1)
log

n

∏
i=1

(
φ

(
2pi

pi + qi
, α

)
φ

(
2qi

pi + qi
, α

)) pi+qi
2

(32)

and it is the lower bound of the generalized (h, φ) Jensen–Sharma–Mittal divergence.
When we consider the function

h

[ n

∑
i=1

pi + qi
2

φ

(
pi

pi+qi
2

, α

)] 1−β
1−α

 (33)

with 1 < β ≤ α then for the convex and increasing function h we have from (4) that (33) is
smaller than

h

(
n

∑
i=1

pi + qi
2

φ

(
pi

pi+qi
2

, α

))
≤

n

∑
i=1

pi + qi
2

(h ◦ φ)

(
pi

pi+qi
2

, α

)
. (34)

In a similar way we conclude the following inequality for the function

h

[ n

∑
i=1

pi + qi
2

φ

(
qi

pi+qi
2

, α

)] 1−β
1−α

 (35)

and we have

h

(
n

∑
i=1

pi + qi
2

φ

(
qi

pi+qi
2

, α

))
≤

n

∑
i=1

pi + qi
2

(h ◦ φ)

(
qi

pi+qi
2

, α

)
. (36)

Then combining (33)–(36) and the definition (8) with the proper transformations we
obtain the inequality

Jen SMh,φ
α,β(p, q) ≤

n
∑

i=1
(pi + qi)

[
(h ◦ φ)

(
2pi

pi+qi
, α
)
+ (h ◦ φ)

(
2qi

pi+qi
, α
)]
− 4

4(β− 1)
(37)

which is the upper bound of the generalized (h, φ) Jensen–Sharma–Mittal divergence.
When we take into account (32) and (37), then we obtain (26).
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Corollary 2. When we substitute for φ
(

2pi
pi+qi

, α
)
=
(

2pi
pi+qi

)α
and for φ

(
2qi

pi+qi
, α
)
=
(

2qi
pi+qi

)α

then from (26) we obtain the inequalities for Jensen–Sharma–Mittal h–divergence:

1
2(α− 1)

log
n

∏
i=1

[
4piqi

(pi + qi)2

] α(pi+qi)
2
≤ Jen SMh

α,β(p, q) ≤

n
∑

i=1
(pi + qi)

[
h
((

2pi
pi+qi

)α)
+ h
((

2qi
pi+qi

)α)]
− 4

4(β− 1)
.

Remark 5. It could be seen that the lower bounds for both Jeffreys (25) and Jensen (32) Sharma–
Mittal (h, φ) divergences are independent of the function h.

Remark 6. Taking into account the inequality (10) we obtain the alternative upper bound for
the Jensen–Sharma–Mittal and the lower bound for the Jeffreys–Sharma–Mittal generalized (h, φ)
divergences, respectively.

Jen SMh,φ
α,β(p, q) ≤

h

[ n
∑

i=1
qiφ
(

pi
qi

, α
)] 1−β

1−α

+ h

[ n
∑

i=1
qiφ
(

pi
qi

, α
)] 1−β

1−α

− 2

2(β− 1)
,

Jef SMh,φ
α,β(p, q) ≥

h

[ n
∑

i=1

pi+qi
2 φ

(
2pi

pi+qi
, α
)] 1−β

1−α

− 1

β− 1
+

h

[ n
∑

i=1

pi+qi
2 φ

(
2qi

pi+qi
, α
)] 1−β

1−α

− 1

β− 1
.

4. Applications

In this section we show how our theory works.

4.1. Bounds for Sharma–Mittal Divergences

For the functions h(t) = t, φ(t, α) = tα and based on Theorems 1 and 3 we obtain
the lower and upper bounds for Jeffreys–Sharma–Mittal and Jensen–Sharma–Mittal diver-
gences, respectively, as follows

1
α− 1

log
n

∏
i=1

(
pi
qi

)α(qi−pi)

≤ Jef SMα,β(p, q) ≤

n
∑

i=1
(piqi)

α
(

q1−2α
i + p1−2α

i

)
− 2

β− 1
(38)

1
2(α−1) log

n
∏
i=1

(
2
√

piqi
pi+qi

)α(pi+qi) ≤ Jen SMα,β(p, q) ≤

n
∑

i=1

(
pi+qi

2

)1−α
(pα

i +qα
i )−2

2(β−1) . (39)

Remark 7. The above lower bounds (38) and (39) are the same for Rényi types divergences because
they are independent of the parameter β which in that case approaches 1.

Remark 8. Substituting different values for the parameters α, β, such that 1 < β ≤ α and taking
into account the assumptions from the Theorems 1 and 3 about the functions h and φ we could
formulate new types of divergences and related inequalities which are based on the generalized (h, φ)
Sharma–Mittal divergence.
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4.2. Bounds for Tsallis Divergences

When we make the same assumptions as for Sharma–Mittal divergences with addi-
tional that β = α we obtain the bounds for Tsallis type divergences as follows

1
α− 1

log
n

∏
i=1

(
pi
qi

)α(qi−pi)

≤ Jef Tα(p, q) ≤

n
∑

i=1
(piqi)

α
(

q1−2α
i + p1−2α

i

)
− 2

α− 1

1
2(α− 1)

log
n

∏
i=1

(
2
√

piqi

pi + qi

)α(pi+qi)

≤ Jen Tα(p, q) ≤

n
∑

i=1

(
pi+qi

2

)1−α(
pα

i + qα
i
)
− 2

2(α− 1)
.

4.3. Bounds for Kullback–Leibler Divergences

When we have the same situation as in case of Tsallis divergence that is h(t) = t,
φ(t, α) = tα, α = β and additionally both α and β approach 1 then we obtain new upper
bounds for Jeffreys and Jensen–Shannon divergences, respectively.

Jef S(p, q) ≤
n

∑
i=1

(pi + qi) log piqi,

Jen S(p, q) ≤
n

∑
i=1

[pi log pi + qi log qi − (pi + qi) log(pi + qi)].

The last inequality is equivalent to Jen S(p, q) ≥ 2log2.

5. Summary

In this paper, new types of entropy have been defined, which are generalizations of
others known and used so far in information theory.

The manuscript deals more with issues in the field of pure mathematics, therefore the
standard axioms of entropy used in thermodynamics could, in this case, be extended by
other assumptions and properties.

These divergences have been introduced for new physical interpretations which could
be generated.

Generalized Sharma–Mittal and consequently Jensen–Sharma–Mittal and Jeffrey–
Sharma–Mittal divergences have been defined for obtaining better estimates for known
entropies, which will allow to more accurately determination of the dispersion measure of
different distributions.

The derived inequalities have both upper and lower limits for the considered f-
divergences. As a consequence, we obtain specific estimates for some new order measures.
Hence they provide much wider interpretation possibilities in comparing probability
distributions in the sense of mutual distances in different spaces.

In the era of advancing quantum mechanics, scientists are striving to build a quantum
computer with very high computing power. The obtained results, despite their mathemati-
cal and analytical complexity, will very quickly generate specific numerical intervals which
are an estimation of new introduced entropies. Therefore, such results as in this paper will
be very useful in developing information theory issues.

This work is from the area of pure mathematics, therefore it is more theoretical
than practical and makes it possible to find the existing known entropies by means of
new defined generalizations. These generalizations can be used for interpreting various
physical phenomena. The aim of this manuscript was to provide some new theoretical
solutions for physicists who, with their knowledge and experience, will be able to look for
new applications.
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