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Abstract: We prove that, within the class of pair potential Hamiltonians, the excess entropy is a
universal, temperature-independent functional of the density and pair correlation function. This
result extends Henderson’s theorem, which states that the free energy is a temperature dependent
functional of the density and pair correlation. The stationarity and concavity of the excess entropy
functional are discussed and related to the Gibbs–Bugoliubov inequality and to the free energy. We
apply the Kirkwood approximation, which is commonly used for fluids, to both fluids and solids.
Approximate excess entropy functionals are developed and compared to results from thermodynamic
integration. The pair functional approach gives the absolute entropy and free energy based on
simulation output at a single temperature without thermodynamic integration. We argue that a
functional of the type, which is strictly applicable to pair potentials, is also suitable for first principles
calculation of free energies from Born–Oppenheimer molecular dynamics performed at a single
temperature. This advancement has the potential to reduce the evaluation the free energy to a simple
modification to any procedure that evaluates the energy and the pair correlation function.

Keywords: entropy; free energy; entropy functional; pair correlation function; pair distribution
function

1. Introduction

The Helmholtz free energy, A(N, V, T), is central to the description of stable and
metastable equilibrium (number of atoms, N, volume, V, and temperature, T). It is also
the starting point for the treatment of relaxation toward equilibrium and the responses of
systems near equilibrium to perturbations. Furthermore, local representations of A(N, V, T)
are fundamental to spatial and temporal coarse graining of materials dynamics. We propose
a functional approach to A(N, V, T) that will be useful for a wide range of materials,
chemistry, and molecular biology problems.

The evaluation of A(N, V, T) is usually achieved by thermodynamic integration over
temperature from the ideal gas or the harmonic crystal, or by integration over a parameter,
λ, that continuously transforms one Hamiltonian with known free energy, Aλ=0, into the
Hamiltonian of interest with free energy, Aλ=1 [1]. Methods for determining the free energy,
such as thermodynamic integration, can be cumbersome [2], particularly for first principles
Hamiltonians [3–12] and for experiments. In many studies, where knowledge of the free
energy would be valuable, it is not calculated because of the complexity or computational
expense involved in evaluation of the entropy. Alternative approaches should be explored.
One approach employed for the treatment of fluids, referred to as “direct evaluation
of the entropy” [13–16], is based on expansions of the probability density to increasing
orders in the correlation functions and powers of the density, in which a limited set of
terms is retained. Stopping at the pair level, the pair correlation functions (see typical
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pair correlation functions in Figures 1–3) from simulations give an easily evaluated first
approximation of the fluid entropy; if greater accuracy is sought, triplet correlations can
be calculated and the triplet terms that contribute to the entropy can be evaluated [16,17].
Similarly, in the study of substitutional alloys, a cluster expansion of the configurational
entropy is often evaluated by the cluster variation method (CVM) [18] in a process that
includes increasingly higher levels of correlation to achieve the desired accuracy.

Here, we take a different approach. We prove the existence an excess entropy func-
tional of the pair correlation, a universal functional that is valid for all systems. Our
work falls within a long tradition of universal functional approaches (see Appendix A).
Functional methods generally exploit stationary properties (see Appendix B).

Systems in equilibrium are characterized by time independent correlation functions as
defined by Hansen and McDonald [19,20], i.e., the density, ρ(r), the pair correlation function
(PCF), g(r1, r2), and higher order correlation functions, g(n)(r1, r2 . . . rn). The correlation
functions are defined in terms of the probability density, Pr(r1...rN). Pr(r1...rN)dr1...drN is
the probability that particle-n is in drn for all n = 1, n = 2, ..., n = N. In Equation (1) the
atom coordinates appear in an ordered list from 1 to N. P is symmetric under interchange
of r1...rN ; however, it is useful to assign specific ordering (see Appendix C) to the atomic
positions. The correlation functions are:

g(n)(r1...rn) =
N!

Πn
i=1ρ1(ri)(N − n)!

∫
drn+1...drN Pr(r1...rN), (1)

where
ρ1(r1) = N

∫
dr2...drN Pr(r1...rN) =< ∑

j=1,N
δ(r1 − rj) > . (2)

For homogeneous systems ρ1 = ρ = N/V. When n = 2 Equation (2) the pair correlation
function is obtained; it is closely related to scattering experiments on liquids, glasses, and
crystals [21].

1 
 

 
(A) (B) 

 
Figure 1. The pair correlation function, ḡ(r), as defined by Equation (1) for BCC iron at 600 K as
simulated with the Johnson potential [22]: (A) on a plane that passes through an atom at the origin
and the four second nearest neighbors and (B) on a plane that passes through the four nearest
neighbors of the atom at the origin. Sigma = 2.2143Å is the Sigma associated with the Lennard–Jones
potential that very nearly matches the Johnson potential.

According to generalizations of Henderson’s theorem [23,24], systems in equilibrium
at T with interaction potentials of order n are completely characterized by the corre-
lation functions up to g(n). This follows from the fact that the set of n-body interac-
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tions V̄ = {v(1), v(2), . . . v(n)} are determined uniquely by the set of correlation functions
g(1), g(2) . . . g(n). If the pair and all higher order interactions are specified and fixed, e.g.,
v(2) = 1/r and v(n) = 0 for n > 2, then the density, g(1)(r) ≡ ρ(r)/ρ determines the
point potential, v(1)(r), and hence all other properties. The implication that A(N, VT)
is a functional of the density is the basis of classical density functional theory [25]. The
reader familiar with classical density functional theory or with electron density functional
theory will be comfortable with this statement and may feel that because in nature the
interactions are fixed there is no need to go beyond functionals of the density. However,
expressions for the functional dependence of A(N, V, T) can be improved and the process
for their development for different pair interactions can be streamlined. Currently, a new
functional of the density must be introduced each time a system with a new pair potential
is explored [26–29]. Functionals of pair correlations may be useful for these objectives.

Figure 2. The second nearest neighbor peak (the peak closest to the origin in Figure 1A) of the pair
correlation function ḡ(r) at 600 K.

Furthermore, functionals of the pair correlation may be useful in a wider context. For
example, consider that the pair correlation can be defined and measured as a function of
time for non-equilibrium ensembles that may have dynamics whose governing equations
can be derived from functional derivatives of the excess entropy, Sx, and A(N, V, T) [30].
The formalism presented here may thus have a wider range of application, beyond equilib-
rium. In this context the correlation functions provide a set of coordinates for coarse-grained
dynamics [31] that may extend the time and spatial extent of simulation. Rather than elab-
orate on our vision for the use of this functional approach we simply make the surprising
observation that the determination of the excess entropy requires only one quantity, the
pair correlation function. For example, if the pair correlation function is known the excess
entropy can be determined without knowledge of the temperature. This observation is
sufficient to motivate our discussion. We also propose preliminary approximations to
the universal excess-entropy functional of the density and pair correlation that require
no knowledge of the interaction potentials or the temperature. We add the caveat that
for the functional to be strictly applicable the Hamiltonian must be of pair potential form.
However, we argue that higher order interactions are often small enough that they can
be ignored because they affect the entropy only in second order (Appendix D). In this
manuscript N, V, and T are assumed fixed and will be dropped from arguments henceforth.
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The paper proceeds as follows. Section 2 describes properties of a variational form
of the free energy. This form is combined with a constrained search to achieve a free
energy functional of the density and pair correlation function. In Section 3 that part of
the free energy that is independent of potentials and has an explicit linear dependence
on T is identified with the excess-entropy, pair-density functional, Sx[g]; its properties are
discussed for the homogeneous pair potential case. In Section 4 approximations to Sx[g]
that are suitable for all phases are developed. In developing these approximations we begin
with the conventional Kirkwood approximation for fluid probability densities [1]. We then
propose a modified Kirkwood approximation that is suitable for crystals and fluids. For the
crystal a connection is made between the modified Kirkwood approximation, conditional
pair probabilities, and harmonic approximations. Concluding remarks in Section 5 are
followed by appendices. Appendix A gives a brief survey of universal functionals that will
remind the reader of the similarities and differences between several uses of this type of
construct. The relationship between the variation of the free energy and the pair interaction
is discussed in Appendix B. Appendix C covers organizing the list of atomic coordinates.
Appendix D shows that the effect on the excess entropy of higher order interactions is
second order in their strength. Appendix E describes simulation that provide PCFs and
excess entropy that are compared to the output of excess entropy functionals. The results
are for the Johnson potential [22]; they include the construction of an essentially exact
target excess entropy as a function of temperature. Finally, the variance of the crystalline
separation vectors within the classical Debye model is given in Appendix F.
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Figure 3. The pair correlation function gs(|r|) for BCC iron as simulated with the Johnson potential
at 600, 4000, and 200,000 K.

2. Free Energy Properties

A is usually expressed in terms of the partition function. In order to arrive at a
form that is stationary with respect to variations of the probability density about its
equilibrium value [25,32], we rewrite A in terms of the Hamiltonian and the probability
density, P(pN, rN), where rN and pN are the N positions and momenta respectively [33].

AH [P] = Tr{P(H + kBT ln(P)) + kBT ln(N!h3N)} (3)
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The stationarity of this functional with respect to perturbation of the probability density,
δP, about the equilibrium probability density, PH

0 , for Hamiltonian, H, follows from

δAH = Tr{δP(H + kBT ln(P)}+ Tr{δPkBT}|P=PH
0
= 0, (4)

where Tr{δP} = 0, PH
0 = exp(− H

kBT )/ZH , and ZH = Tr{exp(− H
kBT )} have been used to

obtain the second identity. It is easily verified that substituting PH
0 into Equation (3) gives

the usual expression for free energy in terms of the partition function, QH = 1
N!h3N ZH :

A0
H = AH [PH

0 ] = −kBT ln(QH) (5)

When evaluating AH at a probability that differs from PH
0 by an amount ∆P that preserves

the normalization of P0, i.e., Tr{∆P} = 0, we observed:

AH [PH
0 + ∆P] = Tr{(PH

0 + ∆P)(H + kBT ln PH
0 )} (6)

+ kBT
(

ln(N!h3N) + Tr{(PH
0 + ∆P)(ln(PH

0 + ∆P)− ln(PH
0 )}

)
By the Gibbs inequality, the second trace in Equation (6) is positive; therefore, A is

minimized by PH
0 .

AH [PH
0 + ∆P] ≥ AH [PH

0 ] (7)

To summarize, evaluating the free energy functional, Equation (3), at a probability that
differs from the exact probability, PH

0 , always increases the result.
From Equation (7) we can derive upper and lower bounds for the free energy associ-

ated with Hamiltonian, H, that are based on the free energies of approximate Hamiltonians,
Ha that have know free energies (possibly analytic free energies). The Gibbs–Bogoliubov
inequality [34], provides an upper bound which relates the change in free energy to the
difference between the Hamiltonian of interest, H = Ha + ∆V̄ and the approximate Hamil-
tonian, Ha. This follows immediately from Equation (7) by setting H = Ha + ∆V̄ and
∆P = PHa

0 − PH
0 :

AHa+∆V̄[P
H
0 + ∆P] ≥ AH [PH

0 ]

AHa [P
Ha
0 ] + Tr{∆V̄PHa

0 } ≥ AH [PH
0 ] (8)

A lower bound may be found by interchanging the perturbed and unperturbed
quantities in Equation (8) [35]; i.e., Ha 
 H = Ha + ∆V̄, PHa

0 
 PH
0 , and V̄a − V̄ 
 V̄− V̄a

or equivalently −∆V̄ 
 +∆V̄

AH [PH
0 ]− Tr{∆V̄PH

0 } ≥ AHa [P
Ha
0 ]

AHa [P
Ha
0 ] + Tr{∆V̄PH

0 } ≤ AH [PH
0 ] (9)

An interesting situation emerges when all terms dependent on V̄ are moved to the right-
hand side:

AHa [P
Ha
0 ]− Tr{V̄aPH

0 } ≤ AH [PH
0 ]− Tr{V̄PH

0 }

SH(PH
0 ) ≤ − 1

T
(AHa [P

Ha
0 ]− Tr{PH

0 V̄a}) (10)

If the trial Hamiltonian, Ha,{ci}, is specified by adjustable interactions, V̄a,{ci}, with parame-
ters, {ci}, e.g., V̄a,c(r) = c

r , then:

SH(PH
0 ) ≤ min

{ci}
− 1

T
(AHa,{ci}

[P
Ha,{ci}
0 ]− Tr{(PH

0 )(V̄a,{ci})}) (11)
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Looking back at Equation (7), the minimum property of the free energy functional,
we see that it also allows the following exact, explicit expression for the free energy that
invokes two levels of minimization. First, for given momentum density, m(r), number
density, ρ(r), and the pair correlation function, g(r, r′), minimization is performed over
all P that integrate to m(r), ρ(r), and g(r, r′). Second, A is minimized over m(r), ρ(r), and
g(r, r′);

AH [m, ρ, g] ≡ min
P→m,ρ,g

Tr{P(H + kBT ln(P) + kBT ln(N!h3N))}; (12)

AH = min
m,ρ,g

AH [m, ρ, g]. (13)

Equation (12) summarizes the process of searching over all probability densities that give
the specific m, ρ, and g and selecting the one that minimizes the trace. This is similar to
the constrained search treatment of electron density functional theory [36]. Minimization
over the momentum density (Equation (13)) can be easily performed because it is set by
the temperature and can be removed from consideration because the probability density is
separable, P(pN , rN) = Pp(pN)Pr(rN) = Pp(pN)V−N Pr(rN)VN . Of all Pp(pN) that yield a
specific m we choose Pp(pN) that gives the lowest A and further choose the m = mmin that
gives the lowest A. As a result, the free energy of the ideal gas, Aid, appears as a separate
term in the total free energy .

AH = Tr{PpHp + PrHr + kBTPp ln(PpV−N) + kBTPr ln(PrVN)}+ kBT ln(N!h3N)

AH = Aid + Tr{PrHr + kBTPr ln(PrVN)} (14)

Aid = (−1 + ln ρΛ3)NkBT (15)

where Λ =
√

2πh̄2

mkBT and the trace operation is understood to act on p or r according to

context. Specializing to pair potential Hamiltonians, V̄ = {v(1)(r), v(2)(r, r′)}:

Av[ρ, g] ≡ A[mmin, ρ, g] = Aid +
∫

drv(1)(r)ρ(r) +
1
2

∫
drdr′ρ(r)g(r, r′)v(2)(r, r′)ρ(r′)

+ T max
Pr→ρ,g

Tr{kBPr ln PrVN} (16)

The “v(1) term” is the external potential energy; the “v(2) term” is the interaction
energy. Subtracting these two potential energy terms from the excess free energy leaves the
excess entropy term which has explicit dependence on T and implicit dependence through
g. Dividing the “entropy term” by −T removes all explicit dependence on T and gives the
excess entropy functional, Sexact

x [ρ, g]:

Sexact
x [ρ, g] = − max

Pr→ρ,g
Tr{kBPr ln PrVN}. (17)

Specializing to v(1) = 0, fixed N, and fixed V (ρ = N/V) gives,

Sexact
x [g] = −max

Pr→g
Tr{kBPr ln PrVN}. (18)

This is our main result. Equation (18) gives an exact but unusable expression for the
excess entropy; maximizing over all Pr is not feasible. Equation (18) does, however, prove
that in any simulation (or experiment) the excess entropy depends on parameters such
as temperature, particle mass, and pair potential only through their impact on g. Sx[g] is
a universal functional of the PCF; this simply means that it works without modification
when applied to any pair potential simulation. In the sections below we address questions
about the properties of the exact universal functional: (1) Can any properly normalized g
be inserted into the functional? (2) What is the curvature of the functional? (3) How much
does the value returned by the functional change when small changes to δg(r), are made in
g(r)? (4) Is every g obtainable from a potential; is g “v representable”? Our development
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exactly parallels the development of electron density functional theory (see Appendix A).
The next steps are to build upon theoretical and simulation results for the purpose of
constructing useful approximations to the unusable exact functional and to compare the
approximate values of the entropy to accurate values from thermodynamic integration of
simulation results.

3. Excess Entropy Pair Density Functional

The subject of this paper, entropy in terms of correlation, is most clearly addressed by
treating homogeneous pair potentials, v(2)(r1, r2) = v(r = r2 − r1) = v(r) of finite range
in the homogeneous case, v(1) = 0. When v(1) = 0 it may be assumed, without loss of
generality, that ρ(r) = ρ = N

V ; crystallization takes place through spontaneous symmetry
breaking in g(r, r′). The free energy functional for a particular v(2) = v(r) separates into
the potential energy, which has a simple explicit dependence on the potential, and the
remaining kinetic and entropy terms; these remaining entropy terms form a universal
functional of the pair correlation function. The form of the excess entropy is remarkable in
having no explicit temperature dependence; knowledge of g and only g determines the
excess entropy!

Ax
v [g] = Av[g]− Aid =

ρ

2

∫
dr1drg(r1, r1 + r)v(r)− TSx[g] (19)

=
N
2

∫
drḡ(r)v(r)− TSx[g]

ḡ(r) ≡ 1
V

∫
dr1g(r1, r1 + r).

We have introduced ḡ, an auxiliary functional of g(r, r′) that will be used in development of
entropy functionals. In most cases, v(r) = v(|r|) = v(r); therefore, it is often a useful simpli-
fication to use the functional, gs(|r|) ≡ 1

4π

∫ π sin(θ)dθ
∫ 2π dφḡ(r, θ, φ). In a homogeneous,

isotropic fluid g = ḡ = gs.

Ax
v [g] =

N
2

∫
drgs(|r|)v(r)− TSx[g] (20)

Sx is the exact, temperature independent excess-entropy functional of g:

Sx[g] = max
Pr→g

Tr{−kBPr ln PrVN}. (21)

The maximum excess entropy, Equation (18), a quantity with roots in statistical me-
chanics and information theory [37–39], with a constraint specified by g, is the excess
entropy functional of g. This functional is defined over the domain of all g that can be
derived from an N particle probability density, P(r1, . . . rN) by Equation (1)

ρg(r1, r2)ρ = N(N − 1)
∫

dr3...rN P(r1...rN) (22)

or if the density is treated as inhomogeneous [40]:

ρ(r1)gr(r1, r2)ρ(r2) = N(N − 1)
∫

dr3...rN P(r1...rN). (23)

The relationship between g and gr is:

gr(r1, r2) =
g(r1, r2)

g∞(r1, r2)

g∞(r1, r2) =
ρ(r1)ρ(r2)

ρ2 . (24)
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We will often use simply g; if ambiguity is possible a specific subscript will be added, gr

Equation (23) or gH for Equation (22).
What are the properties of the excess entropy functional? Are there only special g that

form its domain or is the domain extensive and continuous? Can variations with respect to
g be defined on the domain for the purpose of maximizing with respect to g or for finding
the change in entropy associated with modification of g. Is the concavity determined over
the domain so that if a maximum is found it is known to be the absolute maximum? Are
all pair correlation functions related to at least one P(r1...rN) by Equation (24)?

For any g1 and g2 that are in the domain of Sx then ḡλ = (1− λ)g1 + λg2 is in the
domain. Furthermore, Sx can be demonstrated to be concave, i.e., Sx[ḡλ] ≥ (1− λ)Sx[g1] +
λSx[g2]. This is shown by utilizing probability densities, P1 and P2, that are associated
with g1 and g2 through the maximization process in Equation (18). We also introduce
P̄λ = (1 − λ)P1 + λP2, which importantly is not guaranteed to maximize the trace in
Equation (18); therefore:

Sx[ḡλ] ≥ Tr{−kB P̄λ ln P̄λVN}. (25)

Furthermore,

Tr{−kB P̄λ ln P̄λVN} = (1− λ)Sx(g1) + λSx(g2) (26)

+ kB((1− λ)Tr{P1 ln P1 − P1 ln P̄λ}+ λTr{P2 ln P2 − P2 ln P̄λ})

The traces on the right hand side of Equation (26) are positive definite; therefore, Sx is
concave.

We can construct at least one proper probability density, the Kirkwood probability
density [1], PK. The Kirkwood product is symmetric and positive definite.

PK(rN) =
ρ(r1)ρ(r2)... ρ(r∞)

N!
ΠN(N−1)/2

i,j g(ri, rj)

or

PHT
K (rN) =

ρ(r1)ρ(r2)... ρ(r∞)

N!
ΠN(N−1)/2

i,j (g(ri, rj)(1−
1
N
)) (27)

The factors appearing in the first and second forms of the Kirkwood probability density
in Equation (27) differ by terms or of order 1

N . In the second form, PHT
K (rN), the factor

(1− 1
N ) assures the correct High T limit, limT→∞ PHT(rN) = ρN N!

NN through first order in
1
N [13,41–44]. Integrating over ”dr3...drN” gives g(1, 2) because g(r) = 1 for an amount
of integration volume in r3...rN that becomes infinite in the thermodynamic limit. The
domain of the excess entropy functional is extensive; every g yields at at least one physically
admissible probability density and therefore is within the domain of the entropy functional.
Therefore, given any g a physically admissible probability can be constructed.

The first of Equations (27) is written below in a more informative way; it applies to
both fluids and crystals:

N!PK = g(0, 1)ρ(1)g(1, 2)ρ(2)g(2, 3)ρ(3)g(3, 4) ... g(N − 2, N − 1)ρ(N − 1) (28)

g(0, 2) g(1, 3) g(2, 4) ... g(N − 2, N − 1)

g(0, 3) g(1, 4) ... g(N − 2, N − 1)

g(0, 4) ... g(N − 2, N − 1).

If the atoms are ordered along a chain as described in Appendix C, we can think of the
first line of Equation (28) as representing a path from nearest neighbor to nearest neighbor;
the second line goes from second neighbor to second neighbor (second neighbors along the
chain but not necessarily in the structure). Let us look carefully at the entropy of the crystal.
An exact expression for the probability density based on conditional pair probabilities [45]
serves as a good starting point. Pcrystal is given in terms of conditional probability densities,
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e.g., the probability that an atom is at r2 given that an atom is at r1 and with the condition
that there is an atom at r0, g(1, 2|0)ρ(2):

Pcrystal =
1

N!
g(0, 1)ρ(1)g(1, 2|0)ρ(2)g(2, 3|0, 1)ρ(3)g(3, 4|0, 1, 2)ρ(4)... (29)

Removing the conditions on each factor results in a non-symmetric approximation of the
crystal probability (compare to Equation (28)):

Pcrystal
non =

1
N!

g(0, 1)ρ(1)g(1, 2)ρ(2)g(2, 3)ρ(3)g(3, 4)ρ(4)... (30)

Comparing Equations (29 and (30) to the Kirkwood probability in Equation (28), we can
identify the first line of Equation (28) with removal of conditions as in Equation (30). Each
column in Equation (28) can be thought of as an approximation of a conditional probability
in Equation (29); e.g.,

g(2, 3|0, 1) ≈ g(2, 3)g(1, 3)g(0, 2) (31)

4. Developing Approximations to the Entropy Functional
4.1. Kirkwood Entropy

The fact that the excess entropy is a universal functional allows us to propose approx-
imations to P in terms of g and then to set parameters to give accurate entropies over many
different pair potential simulations. In this paper we follow this approach; however, our
dataset is very limited; we used simulation results for only the Johnson potential [22,46]
from T = 100 to T = 107K. Simulations used to obtain g(r) and the target entropy are
described in Appendix E.

Our choices for approximations are informed by three interrelated approaches:

1. The Kirkwood approximation for Pr in terms of products of PCFs; Equation (28).
2. The exact expression for Pr in terms of conditional probabilities (or gs); Equation (29).
3. The Morris–Ho method of entropy calculation in terms of simulated correlation [35].

Approximations to P(rN) in terms of g can be directly inserted into Equation (18) to
generate approximate functionals [47]. Substituting the Kirkwood probability density into
Equation (18):

sx
K[g] = −1− 1

2
{
∫

V
dr1

∫
V

dr2(P(2)(r1r2) ln g(r1, r2)}, (32)

Simplifying to a homogeneous fluid gives the Kirkwood entropy as proposed by Green
and Wallace [1,13–15,41–44,48]:

sx
K[g] = −1 + lim

R→∞
−1

2
{−1 + ρ

∫ ∞

0
drḡ(r)(ln ḡ(r)− (ḡ(r)− 1))}. (33)

Equation (33) has three problems:

1. Due to a normalization problem it does not go to the correct limit at high tempera-
ture [49].

2. It underestimates the entropy just above melting.
3. It grossly underestimates the entropy below melting; it gives −∞ for the crystal.

These shortcomings will undermine accuracy when applied to most systems. We un-
derstand the source of these shortcomings. The normalization problem at high temperature
is addressed by the replacement g→ g exp (φ[g]); φ is a parameterized functional of g. The
cause of the Kirkwood overestimation of the entropy drop around melting is clear from
Equation (27); in the fluid, where ḡ(r) has broad peaks (Figure 3), multiple products are
needed to maintain separation between atoms. For example, atoms that form a triangle
could overlap if only two spherical gs were included in the product. However, in the
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low-temperature-crystal ḡ(r) approaches a sum of delta functions (Figure 1); in this limit
Equation (27) should be replaced by an expression with fewer constraining factors. The
N(N − 1)/2 factors in the Kirkwood approximation (count the factors in Equation (27))
should be continuously reduced as the liquid cools toward crystallization, they should tend

toward (N − 1) factors. Raising g to a fractional power, g→ g
1

γ[g] , effectively reduces the
number of factors of g appearing in Pr; γ[g] is a parameterized functional of g. The choice
γ = N

2 is equivalent to reducing the number of factors of g to exactly N− 1. Combining the

effects of φ and γ gives g→ g
1

γ[g] eφ[g] Notice that in the thermodynamic limit it is immate-

rial whether the replacement g→ g
1

γ[g] eφ[g] is applied to all g occurring in Equation (28) or
if those on the first row are excluded from the substitution. Keep in mind that γ[g] and φ[g]
are independent of r and T; however, they can depend on whether g has a form associated
with a particular underlying crystal or fluid.

4.2. Modified Kirkwood Entropy Applied to Fluid Pair Correlation Functions

For the fluid, where ρ = N/V, the replacement, g→ g
1

γ[g] exp φ[g], gives:

PM
K = (34)

ρN

N!
(g(0, 1)1/γ[g(0,1)]eφ[g(0,1)]g(1, 2)1/γ[g(1,2)]eφ[g(1,2)]g(1, 3)1/γ[g(2,3)]eφ[g(2,3)] ...

g(0, 2)1/γ[g(0,2)]eφ[g(0,2)]g(1, 3)1/γ[g(1,3)]eφ[g(1,3)] ...

g(0, 3)1/γ[g(0,3)]eφ[g(0,3)] ... )

Using the modified Kirkwood probability density, PM
K , to approximate the maximizing

Pr in the argument of the ln in Equation (18) gives an entropy functional that we refer to as
the modified Kirkwood entropy, s̃x

K[g].
Specializing to a homogeneous phase and collapsing the effect of φ into a term, 1

2 φ̃
gives:

s̃x
K[g] =

1
2

φ̃[g]− 1 + lim
R→∞

−1
2
{−1 +

ρ

γ

∫ R

0
dr(ḡ(r) ln g(r)− ḡ(r) + 1)} (35)

The term 1
2 φ̃ will be selected to give the correct result for the Johnson Potential

when g is almost independent of r, as it is at extremely high temperature. The value
of φ̃ should approach one at extremely high temperature where gs(|r|) = (1 − 1/N).
Let us follow the behavior of gs for large r as the temperature is increased. Starting at
melting and extending to a high temperature we observe that limr→∞ gs(|r|) = 1, then
at an extremely high temperature, Tt, the large r value of gs undergoes a transition to,
limr→∞ gs(|r|) = (1− 1/N) (this limit is easily reached because we use a potential that is
finite at r = 0 [46]). Up to Tt the excluded atom (ρ

∫
drḡ = N − 1) is compensated within

the first few neighbor shells. Above Tt the excluded atom is spread over the whole volume.
At infinite T the excluded atom is spread evenly over the total volume. We characterize φ̃
by the amount of the excluded atom that is inside the sphere inscribed in the simulation
box, Rin. The fractions of the volume inside and outside the sphere are: fin = 4π

3V R3
in and

fout = 1− fin. Define:

Q[g] =
1− Ndiff

fout
, (36)

where Ndiff ≡ N fin − ρ
∫ Rin

0 drgs. Q characterizes the large r behavior of g; it transitions
from zero at low temperature (Q is zero for the crystal) to one in the extreme high tem-
perature range. We selected a form for φ̃ that is parameterized in terms of Q by q1 and
q2:

φ̃[g] = Q + q1Q(1−Q) + q2Q2(1−Q) (37)
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This form of φ̃[g] guarantees that φ̃ = 0 for the crystal and gives the proper behavior for
the entropy in the extreme high temperature limit.

If the functionals γ[g] and φ[g] are constructed on physical grounds, they could
provide a reasonable starting point for a universal excess entropy functional, even though
they are fitted to limited data. We define some simple functionals upon which we can build
parameterized forms for γ[g]. Observing ḡ(r), it is straight forward to determine whether
it corresponds to a crystal or to a fluid; if it corresponds to a crystal the particular crystal is
also easy to determine (see Figure 1). We define the functional, Ip[g] to be BCC, FCC, HCP,
etc., or fluid.

The Kirkwood entropy overestimates the gradual drop in entropy above melting
and overestimates the drop in entropy at melting. Therefore, we need a T-independent
functional of g that indicates the approach to crystallization so that we can use it to
construct a universal excess entropy functional with the correct entropy reduction near
melting. Consider the functional:

κ[g] =
ρ

4π

∫
drG2(r) (38)

G(r) = 4πrh(r)

h(r) = gs(|r|)− 1

The functional κ[g] increases in the fluid as T is reduced and diverges at crystallization [50].
Note that κ provides a monitor of the level of long-range correlation and the approach to
crystallization. It can be used to construct an entropy functional that changes as crystalliza-
tion is approached. For the fluid we restrict the dependence of γ on g to be through κ, i.e.,
γ(κ[g]). When Ip = fluid we choose a form,γ[g] = 1 + q0κ4, parameterized by q0(ρ) [51].

γ[g] = 1 + q0κ[ḡ]4 fluid (39)

4.3. Kirkwood Entropy Applied to Crystal Pair Correlation Functions

A functional described by Equation (35) is intended to apply to fluid and crystalline
phases. As the excess entropy functional has no explicit dependence on T it should apply
as a system changes phase from fluid to crystal. At crystallization, entropy drops abruptly;
the entropy change is referred to as the entropy of fusion. For crystals the PCFs are peaked
at separation vectors that are difference vectors of the lattice. For the Johnson potential,
these peaks are well represented by spherical Gaussians (Figures 1 and 2). The PCF, gH ,
is characterized by Gaussians of width, λ0i at the separations equal to Ri of the average
lattice [52–54].

Gλ0i (Ri, r) =
exp(−| r−Ri

λ0i
|2)

ρ(π)3/2λ3
0i

(40)

gH(r) =
Ri<Rin

∑
i

Gλ0i (Ri, r) (41)

The Gaussian width converges to λ∞ as the separation vector approaches R∞:

Gλ∞(R∞, r) =
exp(−| r−R∞

λ∞
|2)

ρ(π)3/2λ3
∞

(42)

Displacements of atoms from their average positions are uncorrelated when the site sepa-
ration is large, denoted by R∞. Therefore, λ2

∞ = 2λ2
00 where λ2

00/2 is the variance of the
atomic displacement. The displacement of every atom about its lattice site is described by
the Gaussian:

Gλ00(r) =
exp(−| r

λ00
|2)

ρ(π)3/2λ3
00

(43)
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The density that appears in the Kirkwood formula when applied to crystals is specified at
each site by λ00; ρi(r−Ri) = ρGλ00(r−Ri).The entropy when gr = 1, in terms of λ00 is:

sK[gr = 1] = sid − 1 +
3
2
+

3
2

ln
λ2

00
¯̀2

sx
K[g

r = 1] = −1 +
3
2
+

3
2

ln
λ2

00
¯̀2 (44)

where `3 = V/N and ¯̀ = √̀
π

. In sx
K[1] it can be recognized that the term −1 represents the

restriction to one atom per site, the term 3
2 is essentially the equipartition energy divided by

T, and 3
2 ln λ2

00
¯̀ is the reduction in entropy because each atom is restricted to its site to within

a range characterized by λ00. As λs are proportional to
√

T at low temperature the g = 1
entropy and the improvements discussed below are closely related to the equipartition
specific heat, Cv = (degrees of freedom)/2. In our situation, the equipartition contribution
to the excess entropy is

∫ 3
2T + integration constant (in d dimensions, 3

2 →
d
2 ). The choice of

a particular expression for the excess entropy in terms of λ’s affects mainly the integration
constant in the equipartition excess entropy. Note, the integration constant is important; it
determines the entropy of fusion. The g = 1 entropy is a reasonable extrapolation of the
liquid entropy to low temperature. It misses the drop in entropy at melting. This makes
sense because the g = 1 entropy does not include any reduction in entropy associated with
correlation between atoms on different sites. The Kirkwood approximation can guide us.
One approach is to consider only the factors of g(r) in the first row of Equation (28), where

g =
Gλ01
Gλ∞

. This row has N factors of g; thus, this approach achieves the mission assigned to

γ in the discussion of fluids; it reduces the factors of g by N
2 . The first row gives:

sx
K[Gλ01 ] =

3
2

ln
λ2

01
λ2

∞
+

3
2
(1−

λ2
01

λ2
∞
). (45)

The ith row will contribute 3
2 ln λ2

i
λ2

∞
+ 3

2 (1−
λ2

i
λ2

∞
) to the entropy [55]. If only the first row

(first nearest neighbors) is included the result is equivalent to neglect of the conditions on
the conditional probabilities. If more rows are added, then contributions are included from
neighbors beyond first neighbors; the contributions of these more distant neighbors will
usually be smaller because their correlation diminishes with distance.

sx
K[g(r)] = sx[1] +

3
2 ∑

i
ln

λ2
i

λ2
∞
+

3
2
(1−

λ2
i

λ2
∞
) (46)

Perhaps the simplest approach is use the spherically averaged PCFs. If the PCFs are
treated as spherical in Equation (32), the Kirkwood entropy, sK

x [gs], is given by:

sx
K[gs(|r|)] = sx

K[1] + sx
K[g

H
s (|r|)]− sx

K[g
H
s|∞(|r|)]. (47)

In all cases, if there is no correlation between motion on different sites the entropy reverts
to the entropy of the gr = 1 entropy.

We have found that the values of λ0i can be determined by fitting gs(|r|) to the sum
over Ri of the integral over solid angles of Gλi (Ri, r); see Equation (41). The values of
λ0i[gs] obtained by fitting gs(|r|) are shown for T < Tm in Figure 4. For crystals, the λs are
just an alternative way of specifying g(r). At low temperature they are proportional to

√
T,

as is to be expected in the regime where a harmonic model is valid. As sites move farther
apart the peak widths, λ0i, grow.
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Figure 4. The simulated values of λ2
00, λ2

01, λ2
02, and ε are plotted for BCC iron, as simulated with the

Johnson potential (λs are in Angstroms and ε is dimensionless).

Recapping, the Kirkwood approximation of Pr was applied to fluids and crystals. In
fluids we proposed modification through φ and γ to correct the normalization of g and the
multiplicity of gs that appear in Pr. Thus, for fluid PCFs we have discussed two possible
approximations to the functional: (1) the original Kirkwood excess entropy and (2) the
modified Kirkwood excess entropy. For Crystals, the excess entropy of the g = 1 system
is a reasonable extrapolation of the modified Kirkwood result for fluid PCFs. The crystal
does not have a normalization problem and the number of factors of g is not a problem
for the g = 1 entropy. We explored several ways to include inter site correlation via g;
the different treatments are specified by the different arguments for the functional sx

K[g]:
(I) sx

K[1] is the g = 1 entropy, (II) sx
K[Gλ1(R1, r)] indicates that the sum in Equation (46)

includes only terms from the first row, (III) sx
K[g(r)] indicates the sum is over all neighbors

of contributions from the full vector correlation, g(r), and (IV) sx
K[gs(|r|)] indicates that the

correlation is approximated through the spherical average of g. For crystals, Expressions I
and II represent limited summations of the terms contributing to the Kirkwood entropy.
The full Kirkwood entropy is expressed in III; it is the most complete expression of the
Kirkwood approximation. Expression IIII is a spherical approximation of the full Kirkwood
expression.

To emphasize that a single functional spans phase transitions by acting on any properly
normalized functions, g(r) we write:

s̃x
K[g] =

{ 1
2 φ̃[g]− 1 + limN→∞− 1

2
(
−1 + ρ

∫
Ω dr(gs ln gs − gs + 1)

)
(1 + q0κ4)−1 fluid;

−1 + 3
2 + 3

2 ln λ2
00

¯̀2 + 3
2 ∑i ln λ2

i
λ2

∞
+ 3

2 (1−
λ2

i
λ2

∞
) crystal.

(48)

In Equation (48) any g that is found to be “fluid like” is inserted into the modified
Kirkwood approximation for the fluid; any g that is “crystal like” is inserted into the full
Kirkwood approximation for the crystal.

In the next section, alternative treatments of the crystal are discussed from the per-
spective of a harmonic crystal.
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4.4. Connection to the Harmonic Crystal

For pair correlation functions that are very sharply peaked at crystal lattice vectors
there should be a connection between Equations (44)–(47) and the entropy of harmonic
solids. Equation (11) relates entropy to a that of an approximate interaction V̄a,{ci}(r1, ...rN)
parameterized by {ci} and the actual probability density; could Equation (11) be a tool that
allows such a connection to be built?

S[g] ≤ min
{ci}
− 1

T

(
AV̄a,{ci}

−
∫

drNP[g]V̄a,{ci}(rN)− < Ek >

)
(49)

We point out that in Equation (49) the entropy is a functional of g because the trial
potential is determined by minimization for each choice of g. We follow Morris and
Ho [35,56]: who proposed taking the trial interaction to be harmonic. For harmonic
interactions the variational choices are the “spring constants,” {mω2

1, ...mω2
N}, and the

coordinate choice, {y1, ...yN}, which is a set of 3N linearly independent coordinates that
specify the atomic positions, yk = Mapk(r1, ...rN). In our monoatomic homogeneous
system, using trial harmonic interactions, V̄harmonic

{ωk ,Mapk}
(r1, ...rN) = ∑3N

k
1
2 mω2

k yk(r1, ...rN)
2,

[57] gives a functional:

Sharmonic[g] = min
{ωk ,Mapk}

− 1
T

(
Aharmonic
{ωkyk} −

∫
drNP[g]

3N

∑
k

mω2
k yk(rN)

2

2
− < Ek >

)
(50)

The analytic free energy of harmonic systems is known and is independent of the
choice of coordinates; let us work it out for our case. First consider the Einstein model,
a quadratic point potential that attracts atoms to lattice sites, yk = xk − Rk. Note that
such a quadratic potential increases without bound as an atom moves away from a lattice
site; some ground rules need to be specified when sites are brought together to form a
solid. We could allow one specific atom in the potential at each site; this would result in,
3N 1-d harmonic factors in the partition function, exp(− H1d

kBT )
3N . Another choice is to let

atoms be spread without prejudice as to the number of atoms on a given site; this leads to
NN3N factors. Our choice is to disallow multiple occupation of sites; this is closest to the
observed simulated behavior of g(r). Therefore, we obtain N!3N factors. Furthermore, we
consider the potential to be zero at lattice sites and to extend to the Wigner-Seitz boundary
where it joins the potentials centered at neighboring sites. We have mandated that sites be
singly occupied, this can be thought of as the result of a repulsive potential acting between
atoms that is strong enough to absolutely exclude two atoms from being at the same site.
Therefore, the N atoms can be distributed among the sites in N! ways giving the N!3N
harmonic factors appearing in the argument of ln below. If the exclusion is not present
there would instead be NN3N factors. All ωk will be chosen independent of k, ωk = ω;
this is consistent with all choices for {yk} being equivalent to within a translation.

−Aharmonic
kBT

= − Aid

kBT

+ ln
∫

drN exp

(
−

∑i,J
1
2 mω2(ri −RJ)

2 + ∑i,j penalty ri near rj

kBT

)
− kBN ln V

−Aharmonic
T

= −Aid

T
+ 3NkB ln

√
2πkBT
mω2 − kBN + kBN ln ρ (51)

In the second equation we have assumed that the atoms are far enough apart that the
repulsive interaction does not influence the free energy; this assumption will break down
just before melting. In applying Equation (49) the kinetic energy has been grouped with
the free energy of the ideal gas to form Sid:
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Sharmonic[g] = {−Aid

T
+

3
2

NkB}

+ min
{ω,Mapk}

3NkB ln

√
2πkBT
mω2 − kBN + kBN ln ρ +

3N

∑
k

1
2T

mω2 < yk
2 >

Sx
harmonic[g] = min

{ω,Mapk}
3NkB ln

√
2πkBT
mω2 − kBN + kBN ln ρ +

3N
2T

mω2 < yk
2 > (52)

We perform the minimization with respect to ωk by setting dSharmonic

d 1
2T mω2

k
= 0.

sx
harmonic[g] = −1 +

3
2
+

3
2

ln
2 < yk

2 >
¯̀2 (53)

A completely general way to write a linear mapping to yk is yk = xk−Rk−∑j 6=k ak,j(xj
−Rj). This representation emphasizes our goal of having a local functional of g. We are
not going to minimize with respect to {ai,j}; instead we begin by exploring the two cases
motivated by: (I) Kirkwood g = 1 entropy of the crystal sK

x [1], and (II) which includes the
entropy reduction from first neighbor correlation. For case I, we pick the classical Einstein
model, yI

k = xk − Rk; each atom is harmonically attached to a lattice site. Case II is a chain
with harmonic links, yI I

k = xk − Rk − (xk+1 − Rk+1), where k + 1, is a nearest neighbor
along the chain. Note that for both cases < yk >= 0. In case I < (yI

k)
2 >= 1

2 λ2
00 = 1

4 λ2
∞. In

case II < (yI I
k )2 >= 1

2 λ2
01.

Case I:

sx
I h[g] = −1 +

3
2
+

3
2

ln
λ2

00
¯̀2 (54)

Case II:

sx
II h[g] = −1 +

3
2
+

3
2

ln
λ2

01
¯̀2 (55)

These results should look familiar; case I is the excess entropy when gr = 1,
Equation (44), and case II is similar to the Kirkwood expression truncated after first nearest

neighbor row, sx
II h[g] = sx

K[Gλ01(R01, r)]− 3
2 (1− ln 2− λ2

01
2λ2

00
), Equation (46). An important

point is that the Morris–Ho approach gives an upper bound on the excess entropy. There-
fore it is perfectly reasonable to specify the entropy functional as being assigned the lower
of the values from these two approximations. Thus, as one might expect, the entropy is
dominated by the most narrowly constrained correlation peaks.

In sx
II h[g] and sx

K[Gλ01(R1, r)] the entropy depends only on correlation between atoms
that are nearest neighbors. What is the influence of other neighbors? In the conditional
probability expression the more distant neighbors enter through the conditions. In the
Morris–Ho treatment a natural way to include correlation with other neighbors is to
consider < y2

k > to be the diagonal element of the correlation matrix, Ck,k′ =< ykyk′ >
(see [35]). If the correlation matrix is diagonal, i.e., C(k, k′) =< y2

k > δk,k′ , or if it is

approximated as diagonal, CDiagonal
k,k′ = Ck,k′δk,k′ then ∑3N

k ln(< y2
k >) = ln |CDiagonal|.

Other truncations that leave C symmetric can be used to evaluate ln |C|, e.g., block diagonal.
These approximations merely correspond to making alternative choices for the set {yk}.
Truncating C to a tridiagonal matrix, CTridiagonal

k,k′ = Ck,k′(δk,k′ + δk,k′+1 + δk,k′−1) incorporates
additional coupling between displacements on different sites when applied to case I and
between different bonds when applied to case II.
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Is truncation of C
¯

α,β
i,j to a diagonal or tridiagonal matrix reasonable? In the tridiagonal

matrix, how much smaller are the off-diagonal elements than the diagonal elements? The
ratios are (see Figure 4):

εI ≡
Cα,α

0,1 ({xk})
Cα,α

0,0 ({xk})
=

< xα
0 xα

1 >

< xα
0 xα

0 >
= −

λ2
01[ḡ]
4 − λ2

0,0[ḡ]
2

λ2
0,0[ḡ]

2

(56)

εII ≡
Cα,α

0,1 ({∆xk})
Cα,α

0,0 ({∆xk})
=

< ∆xα
0 ∆xα

1 >

< ∆xα
0 ∆xα

0 >
=

λ2
0,2[ḡ]

4 − λ2
01[ḡ]
2

λ2
01[ḡ]
2

(57)

For the low temperature Johnson potential both |εI| and |εII| are about 0.4, consistent
with the classical Debye value (see Appendix F). However |εI| climbs to 0.6 while |εI I |
dives, crossing zero a few hundred degrees before melting when λ2

02
2 = λ2

01. This “zero”
is likely to occur whenever ε > 0 at T = 0 because the first nearest neighbor peak will
maintain its shape as melting approaches but the second nearest neighbor peak will lose its
integrity. As a result of the very different behavior of εI and εII the impact of off diagonal
correlation is very different in the two cases.

In the homogeneous case where all sites are equivalent this tridiagonal correlation
matrix becomes Toeplitz and has an analytic determinant [58]. Approximating the full
correlation matrix by a Tridiagonal Toeplitz matrix, CTT :

CTT
i,j = CTT

0,0


1 i = j ;
ε i=j+1, i=j-1
0 otherwise

(58)

ψ =


cosh−1( 1

2ε ) ε < 1
2

cos−1( 1
2ε ) ε ≥ 1

2

(59)

∣∣∣CTT
∣∣∣ = (CTT

0,0 )
3Nε3N


sinh((3N+1)ψ)

sinh(ψ) ε < 1
2

sin((3N+1)ψ)
sin(ψ) ε ≥ 1

2 .
(60)

where:

Case I CTT
0,0 =

λ2
00
2

(61)

Case II CTT
0,0 =

λ2
01
2

. (62)

Therefore, for cases I and II, in limN→∞, the off-diagonal coupling simply adds a term,
<
[

3
2 ln
(

1 + 1
2

(√
1− 4|ε|2 − 1

))]
, to the entropy:

s̃x
I h−TT = s̃x

KI h
+

3
2

ln
(

1 +
1
2

(√
1− 4|εI|2 − 1

))
(63)

s̃x
II h−TT = s̃x

KII h
+

3
2

ln
(

1 +
1
2

(√
1− 4|εII|2 − 1

))
In case I, for the Johnson potential, the off-diagonal correlation ratio is large, ε ≈ 1

2 ; it
reduces the entropy significantly. Correlation gives an entropy of fusion in line with the
target value and with Richard’s rule [59]. Note that, 3

2 ln
(

1 + 1
2

(√
1− 4|ε|2 − 1

))
| 1

2
≈ −1.

In case II, bond-correlation gives only a small reduction in the entropy; in fact, s̃x
II h and
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s̃x
II h−TT are so close that in the discussion in the following section only s̃x

II h−TT will be
shown. Equation (63) are attractive in two ways: first, they give an upper bound to the
entropy and second, they are simple. Clearly, there is room to improve on these functionals;
near melting, even though s̃x

I h−TT is formally an upper bound, it is observed to be slightly
lower than the target entropy. This indicates a problem; a possible explanation is that the
assumption that every atom stay tightly bound to a specific site is violated near melting.

For distant neighbors, correlation ratios designated by ε will be small; their effect on
the entropy should be roughly 3

2 ln
(

1 + 1
2

(√
1− 4|ε|2 − 1

))
≈ − 3

2 ε2. This may suggests
a form that can be used to incorporate the influence on entropy reduction from the weak
correlation between more distant bonds. As the system can be specified by 3N coordi-
nates there are three local coordinates available for each site. The coordinates having
the smallest variances will dominate entropy reduction. Some possible choices are: the
displacements from a lattice site (x0, y0, z0), the coordinates of a specific nearest neighbor
separation(x01, y01, z01), or the distances to three different close neighbors, (r1, r2, r3) . This
is reminiscent of the equal partition theorem in which each of the 3N coordinates adds
1/2kB to the specific heat. Here, the the 3N coordinates with the smallest fluctuations
contribute 1/2 ln λ2

¯̀ . Normally these low variance coordinates will involve close neighbors.
The largest contributors (most negative) will be placed on the diagonal of the correlation
matrix where each of the three variances will contribute terms like 1

2 ln λ2

¯̀ . Weaker con-

tributors will enter through terms like 3
2 ln
(

1 + 1
2

(√
1− 4|ε|2 − 1

))
that represent weak

correlations that couple the more strongly correlating coordinates.
As the temperature of a crystal increases all variances grow. The variance λ2

00/2,
increases, as does the variance of the vector separations between neighbors, e.g., λ2

01/2 and
λ2

0,2/2 (see Figure 4). At all temperatures the variance at large separation is exactly twice,
λ2

00/2. However, as the temperature increases the separation at which this factor of two is
reached becomes shorter and shorter. Above melting λ00 and λ∞ go to ∞, while “λ01” in
the radial direction goes to a width indicated by the nearest neighbor peak of ḡ(r) and in
the two perpendicular directions it goes effectively to ∞ because neighboring atoms can be
found anywhere in the spherical shell at |r| [60].

4.5. Comparison of Selected Functionals with the Target Entropy

Here we compare simulated values of the excess entropy for Jonhson-potential-iron
to values from several approximate functionals. The functionals originate from several
starting points as described above. We caution the reader not to discount approaches
because of their poor performance in comparison to the simulated results. Further re-
finement of any of these approaches might mature into a very reliable functional. We
have been reluctant to introduce fitting parameters. Agreement with simulated results
can always be improved through more parameters. In our opinion it is best to wait until
a broader array of approaches has been explored. Our only use of fitting parameters is
for fluids approximated by the modified Kirkwood functional, s̃x

K. It has three parameters,
q0, q1, and q2 [51], they were fit to the target excess entropy associated with the Johnson
pair potential [22]. The target entropy was calculated by thermodynamic integration as
described in Appendix E. The three parameters affect only the value of the functional for
fluid pair correlation functions; furthermore, q1 and q2 affect only the fluid entropy at
very high temperature. Agreement with the target in the fluid is not surprising; after all,
we performed a fit. However, given the physical basis for the corrections, we anticipate
that the values for q0, q1, and q2 will perform reasonably for most systems. The modified
Kirkwood entropy, s̃x

K, is compared to the Kirkwood entropy, sx
K, and the target in Figure 5.
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Figure 5. The target excess entropy shown in Figure A1 is reproduced here as a solid line with
discontinuity at melting. The results of inserting ḡ(r, r′) from simulation with the Johnson potential
at a set of temperatures into different functionals are shown. At each temperature, symbols represent
the values of the various functionals (filled symbols indicate that they are formally upper bounds):
(1) open diamonds show the Kirkwood entropy, sx

K , for T ≥ Tm (see Equation (33)), and sK
x [gs(|r|)]

for T < Tm (see Equation (47)); (2) the open circles show the modified Kirkwood entropy, s̃x
K (see

Equation (35)); (3) filled circles show the g = 1 entropy, sK
x [1] = sx

I h (see Equation (44)); (4) filled
triangles correspond to s̃x

KII h−TT
(see Equation (64)); (5) open triangles correspond to sK

x [g(r)] (see
Equation (46)); and (6) filled squares are s̃x

KI h−TT
(see Equation (63)). The vertical lines indicate Tm

and Tt. In Figure 6b the dot–dash line gives a classical density functional theory value for entropy
based on the specific free energy functional proposed in Equation (40) of Lutsko and Lam [28] when
evaluated for the Johnson potential. All results shown are for the same fixed volume and number.

For crystalline pair correlation functions our proposal to use the definition of PCF
for inhomogeneous densities (Equation (24) gives, when gr = 1, a “reference” entropy,
sx

K[1]. This definition extends the Kirkwood approximation of crystals. The reference
entropy, sx

K[1], does not account for correlation between atoms on different sites when
g 6= 1. In Figure 5 the reference entropy provides a smooth continuation of the modified
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Kirkwood entropy of the fluid; it misses the drop in entropy at solidification. Figure 5
also shows several treatments that approximately incorporate correlation between atoms
on different sites. These approximations are motivated by the Kirkwood approximation,
conditional probabilities, and the Morris and Ho application of harmonic entropy to
crystals. Our relabeling scheme leads naturally to entropy reduction being associated
with nearest neighbors along a chain, sx

K[Gλ01(R1, r)]. We found that for the Johnson
potential the neighbors beyond first neighbors contribute very little to entropy reduction;
therefore, in Figure 5 we show (see unfilled triangles) only sx

K[g(r)], which includes the
correlation between all sites along the chain. The unfilled diamonds show sx

K[gs(|r|)], which
is based on the spherically averaged g; it is very similar in implementation to the Kirkwood
approximation in the fluid (see Figure 6). The two evaluations of the sx

K functional at g(r)
and gs(|r|), i.e., sx

K[g(r)] and sx
K[gs(|r|)] give similar values. The similarity of these results

is due to a cancellation of effects; the spherical treatment accounts for a higher coordination
but with a larger variation. Consider, along the chain each site shares two bonds with
its two neighbors specified by three coordinates (three coordinates per site), while the
spherical treatment shares bonds with eight neighbors specified by one coordinate (four
coordinates per site).
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Figure 6. The pair correlation function gH
s (|r|) for BCC iron at 500 K, as simulated with the Johnson

potential, is shown as a solid line. The function gH
s|∞ that is associated with the reference entropy is

shown as a dashed line. It is the spherical average of Gaussians of width, λ∞ centered at each of the
lattice separation vectors. The ratio, gr(|r|) is shown as a dash–dot line; it goes to 1 at large separation.
The combination − 4πr2

2 gH
s (ln gr − (1− 1/gr) is the integrand that determines the entropy correction

with the reference entropy from the spherical treatment of the Kirkwood approximation in the crystal
(dash–dot–dot).

The Morris and Ho approach, applied using the Einstein Hamiltonian as an ap-
proximate potential, gives exactly the reference entropy; sx

I h = sx
K[1]. Application to a

nearest neighbor elastic rod model (restoring forces in three directions) gives an expression,
sx

II h, for the entropy similar to sx
K[G(R01, r1)] but which gives a slightly higher entropy.

Including interactions between neighboring rods has little impact, sx
II h ≈ sx

II h−TT. As
sx

K[G(R01, r1)] ≈ sx
K[g(r)] we have represented the difference between the Morris Ho ap-

proach and the Kirkwood approach by showing sx
II h−TT, filled triangles, and sx

K[g(r)],
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unfilled triangles if Figure 5. Both results include entropy reducing correlation between
sites; as a result they give an entropy of fusion whereas the reference entropy did not. It
is sensible that sx

II h−TT is higher than sx
K[g(r)] because sx

II h−TT is restricted to be an upper
bound. Finally, let us look at inclusion of correlation between nearest neighbors in the
Einstein model. The Einstein model performs poorly, it missed the entropy of fusion;
however, the correction due to neighbors is large. The correction actually over estimates
the entropy of fusion and brings sx

I h−TT slightly below the target entropy. In the lower plot
of Figure 5 we compare our result to the entropy of a classical density functional theory
functional [28] of density and pair potential; the functional was evaluated for the liquid
density and the Johnson potential. The entropy related to this functional (Equation (40) of
Lutsko and Lam [28]) is:

sLutsko
x (T) = − 1

N
dFLutsko

ex (T, [ρ, vJohnson])

dT
. (64)

The agreement with the target of the various approximations is good considering the
simplicity of the functionals. In future work, based on a more diverse set of simulation
data, any of the approaches presented here could prove to be the better starting point for
accurate representations of the universal excess entropy functional.

5. Conclusions

The important message of this work is not the quality or lack of quality of our proposed
excess entropy functionals, but rather, the existence of a universal excess entropy functional
and the usefulness of an entropy functional approach. We foresee that further research
will bring a broadly applicable, accurate functional not only for single component systems
but also for multicomponent, molecular, macroscopic particle, and spin systems. More
imaginative functional forms that are designed to satisfy a variety of formal restrictions
and fitted to vastly greater amounts of simulated data will advance the development of the
functionals. Here we have mapped out a few starting points for functional development in
order to clarify the entropy functional machinery. We have also put forth physical interpre-
tations relating features of the PCFs and their role in entropy reduction; these relationships
are obscured when the entropy is obtained through thermodynamic integration. The pair
entropy functional approach could accelerate the study of technologically interesting mate-
rials and materials processes. For both first principles (DFT) simulations and simulations
with classical many-body interaction (see Appendix D), entropy functional evaluation will
make determination of the free energy as routine as the evaluation of the energy.
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Appendix A. Universal Functionals

To establish the position of this work within several approaches based on universal
functionals, we give a brief survey of some relevant universal functional theories.

Density function theory (DFT) [61] for electrons addresses the quantum (usually
Fermion) many-body problem where the interaction is unchanging; it is the pairwise,
Coulomb interaction between electrons (many body interactions are zero). The underlying
minimization principle is the Raleigh–Ritz variational principle of the ground state energy
(expectation value of the Hamiltonian) with respect to the many-body wave-function.
The problematic terms are the interaction energy (including exchange) and the kinetic
energy; the straightforward term is the external energy (energy of interaction with the point
potential that usually arises from Coulomb interactions with fixed protons). The external
energy is easily determined from knowledge of the density, Eexternal =

∫
drρ(r)v(1)(r).

If the point potential is changed, i.e., protons are displaced, the energy changes; this
contributes to forces between protons exerted via the electrons, forces that can be used in
classical DFT-molecular-dynamics. The sum of electron kinetic and interaction energy is
a universal functional of the density; the functional is independent of the point potential
generated by the protons; the functional is system independent. The majority of proposed
approximations to the universal functional are based on the kinetic and interaction energy
for a particularly simple point potential, specifically v(1)(r) = 0. DFT was originally
derived based on the uniqueness of the point potential that generates a given density [61].
More recently DFT has been derived from a constrained search procedure [36]. Typical
calculations assume zero temperature; however, electron entropy at finite temperature is
sometimes addressed [33]; furthermore, DFT-MD is often performed with the classical
ions at a finite temperature set by a thermostat. Research in DFT strives to develop more
accurate or simpler approximations to the universal functional, evaluate the functional
for larger or more complex systems, or apply DFT to systems of physical, chemical, or
technological interest. Electron DFT has proved to be a very successful computational
approach. The quality of approximate functionals has improved through decades of
research. It is instructive to note that a large number of approximate functionals that have
been developed to the point of being incorporated into packaged DFT codes, [62]. Based on
DFT it can be said that given a ground state density, and no other information, it is possible
to determine the kinetic and interaction energy by inserting the density into the universal
functional. Furthermore, the variation of the functional with respect to the density gives
the external potential, thus determining the ground state energy of the electron system.

Classical density functional theory, CDFT [63,64], addresses the classical many-body
problem ( in or near equilibrium) where the interaction between particles is typically
different for each system studied and different for each of the types of particles within
the system. The underlying minimization principle is of the free energy with respect to
variation of the probability density. The most problematic term is the entropy. The kinetic
energy is that of the ideal gas. The external energy is given trivially in terms of the density,
Eexternal =

∫
drρ(r)v(1)(r). The interaction energy is given straightforwardly in terms of the

correlation functions (just pair correlation for pair interactions). For the interaction energy
to be expressed as a functional of the density, an expression that relates the correlation to
the density is required. Similar to the situation for electron DFT, this relationship is usually
developed for the case when v(1)(r) = 0. Unlike electron DFT, which applies to a fixed
interaction, in CDFT the relationship is reestablished through MD or Monte Carlo for the
interaction and temperature of interest. Similar to electron DFT, the universality of the
functional rests on the proof that, for a given set of fixed interactions, the point potential
that generates a particular density is unique. In applications, the external potential is often
the chemical potential of involved phases. The density changes through, for example, a

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
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solid liquid interface. Much of the recent work on CDFT has been in the context of Phase
Field Crystal (PFC). Much of the work in PFC has been on developing an approximate
functional that displays stability for relevant phases (liquid, BCC, FCC,...) as a function
of temperature, [65]. Research in CDFT covers the same types of issues as encountered in
electron DFT. In a special issue of Journal Physics: Condensed Matter, New developments
in Classical Density Functional Theory [29], applications of CDFT are described along with
recent improvements in functionals.

Pair-DFT for electrons has been proposed, [66]. In Pair-DFT the kinetic energy is a
universal functional of the spin resolved pair density and the interaction energy is a simple
functional of the pair density and pair interaction. Pair-DFT could utilize an effective two
electron Schrödinger equation in a similar fashion to the Kohn-Sham approach [67] to
DFT which is based on an effective one electron Schrödinger equation. A more pragmatic
approach could combine selected results from full pair-DFT with improved relationships
between the pair-density and the density to yield improved DFT approximations. In
pair-DFT, given a density and the electron-electron pair correlation functions gα,β(r, r′),
the electron kinetic energy could be obtained by simply plunging them into the pair-DFT
universal functional (with no knowledge of the point potential and pair interaction).

As discussed in this paper, pair-CDFT boils down to obtaining the excess entropy from
the density and pair correlation function (no other information required). For clarity we
have focused on the homogeneous case, i.e., v(1) = 0. Furthermore, the aspects associated
with a point potential are already developed in CDFT. CDFT can be recovered from pair-
CDFT by relating the pair correlation function to the density; in forming this relationship
to recover a CDFT it is permissible to use the pair interaction because, after all, CDFT is for
a specific, fixed interaction.

Appendix B. Stationarity and the Unique Potential

The minimization with respect to g codified in Equation (13) implies, subject to
continuity restrictions, stationarity of A[g] with respect to g. How can stationarity with
respect to g be utilized? Three situations come to mind:

1. Both v(r) and g(r) are known;
2. Only v(r) is known;
3. Only g(r) is known.

If an accurate and easily evaluated universal Sx[g] has been developed, then for situation (1)
the free energy can be obtained by plugging v(r) and g(r) into Equation (20). For example,
if a simulation with a known potential has been performed and g has been determined
from the output; the free energy can be obtained without thermodynamic integration
simply by substitution. Furthermore, the value obtained is expected to be reliable because
of the stationarity of A[g]. Situation (2) applies when v(r) is known but no simulation or
measurement of g has been performed; in this case g could be found, not from simulation,
but from the requirements that it minimize A and that A be stationary at the true g. The
free energy could then be obtained by substitution. Situation (3) could arise when only
g is known, for example, a measured g. Stationarity allows the unique potential to be
determined from A[g] at any T:

0 =
δA
δg

=
N
2

v(r)− T
δSx[g]

δg
. (A1)

As a simple illustration, consider the dilute limit where g ≈ exp(− v(|r|)
kBT ) and the excess

entropy is approximated by: S0
x = −N/2

∫ R dr(g ln g − (g − 1)) − N; Equation (A1) is
satisfied exactly. In general, if the excess entropy functional expressions were found that
were both accurate and had algebraic variations with respect to g then the pair potential
would be given explicitly in terms of g. Therefore, an accurate approximation of the
entropy functional eliminates the need for reverse Monte Carlo. Furthermore, according
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to Equation (A1) once the pair potential is known the potential energy and hence the free
energy is specified.

A[g] = Aid + T(
∫

drg(r)
δSx[g]

δg
− Sx[g]) (A2)

Note that Equation (A2) specifies A in terms of g but it is not stationary in g, essentially,
because stationarity was already used to eliminate v(r). If g were known from experiment
or simulation Equation (A2) would give A provided that the interactions were pairwise.

Equations (A1) and (A2) go beyond Henderson’s theorem [23] by specifying the
relationship between the entropy and the unique potential and between A, Sx, and T.
If present, the impact of the many-body interactions would manifest in both the pair
(measured or simulated) and the higher order correlations (typically these are not measured
and typically these are not calculated from simulations).

Appendix C. Mapping Atomic Coordinates to Atom List

Arranging atoms along a linear chain that travels from neighbor to neighbor helps
clarify our discussion. For a given set of atomic coordinates this is not a unique operation.
Furthermore, the atoms move as a simulation progresses. The results derived in this
paper are not sensitive to the details of list construction. We do not foresee that list
construction will be incorporated as part of simulation, it is a gedanken-construction. Our
proposal is: (1) for the set of atomic positions perform a steepest descent to the inherent
structure; (2) find the shortest chain or chains that links all sites with nearest neighbor
links; (3) index atomic positions according to the position in the chain of the inherent
structure site that it descended to in the steepest descent process; (4) if there are multiple
chains of the same length calculate the entropy employing each chain and average. For a
crystal simulation there would be multiple chains but each would give the same result so
averaging is not needed. In most cases the differences between chains would go to zero in
the thermodynamic limit so no averaging would be needed. However, there could be cases,
e.g., defects, where special care would be needed to represent and average over bonds local
to the defect.

Appendix D. Inclusion of Many-Body Effects

In order to obtain many body corrections to A from the Gibbs-Bugoliubov inequality
the higher order correlation and the, presumably small, many body interactions would
have to be known. Unfortunately neither the interactions nor the higher order correlations
associated with an experimental g are ever exactly known. However, the excess-entropy
functional does not suffer the same limitation because it is defined in Equation (18) by a
constrained search. The linear change in Sx due to the change in g under the influence
of many-body interactions is included because it is the modified g that is known. In the
presence of many-body interactions the entropy functional, Spair

x , is modified by constraints
on P, becoming Smanybody

x [g, ...gn]. The P that maximizes Equation (18) will differ from
the constrained true many-body probability density by an amount proportional to the
many-body interactions but which will lower Sx by an amount quadratic in the many-body
interactions (Sx[g] = maxg(n>2) Sx[g, g(3), g(4), . . . ] = Sx[g(2), g(3)max, g(4)max, . . . ]→ Smanybody

x =

Spair
x [g]−O((v(n))2). The entropy functional of Equation (18) provides a stationary upper

bound to the entropy with respect to many-body interactions. The same argument applies
to g(r) from first principles MD; the entropy could be well reproduced by Equation (18)
because the effect of higher order interaction is second order. The internal energy (total
energy) from the first principles MD can be added to −TSid(T)− TSx[g] to obtain a first
principles A that is accurate to second order in the difference between the first principles
interactions and an, unspecified, effective pair potential. Knowledge of the functional,
Sx[g], provides a general method for obtaining the free energy from first principles without
thermodynamic integration.
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Appendix E. Simulation Results and Target Entropy from Johnson Potential

Our procedure for calculating the target entropy started with simulations at 40 temper-
atures between 100K and 107K. The simulation cell contained 16,000 atoms with periodic
boundary conditions in a cube shaped supercell with volume 8000a3, where a = 2.86997
is the lattice constant. The Nose-Hoover thermostat was used. At each temperature the
system was equilibrated until energy convergence was reached. Data collection runs of 1ns
with configurations saved every 0.01ps provided data for calculation of the pair correlation
functions. The configurations were post processed to produce the gs(|r|) and ḡ(r) at each
temperature. They were inserted into the excess entropy functionals to produce Figure 5. A
series of two-phase coexistence [68,69] simulations performed over temperatures near melt-
ing were used to determine Tm by the stationary-phase-boundary-method; Tm = 3278K .
The simulated potential energies, u(T), were fitted to three separate forms in three temper-
ature ranges: (1) for temperatures below Tm, u(T) was fitted to a cubic polynomial in T,
(2) for Tm < T < Tt = 200000K, u(T) was fitted to a quartic polynomial in ln(T), and (3)
for T > Tt, u(T) was fitted to a fifth order polynomial in 1

T . By construction the analytic

expressions were restricted to give the exact values for u(T = 0), d u(T)
d T |T=0 and u(T = ∞)

and to join smoothly at Tt [70].

u(T) =


u0 +

3
2 kBT + u2T2 + u3T3 T < Tm;

ut − (al ∗ (ln(T)− lt) + bl(ln(T)2 − l2
t ) + cl(ln(T)3 − l3

t ) + dl(ln(T)4 − l4
t )) Tm < T < Tt;

a− T0/T + bT2
0 /T2 + cT3

0 /T3 + dT4
0 /T4 + eT5

0 /T5 T ≥ Tt.

(A3)
The entropy was obtained analytically from the parameterized form for u(T). Analytic

integration from T = ∞ to T gave the entropy above Tm. At Tm the entropy was reduced by

the entropy of fusion, s f =
u(Tm)liquid−u(Tm)crystal

Tm
. Analytic integration was then continued

from Tm to T to obtain the crystal entropy down to 1K. Figure A1 shows the simulated
u(T) and −Tsx

target(T) where sx
target(T) is the target excess entropy. This target entropy was

used to fit q0, q1 and q2 by straightforward linear regression [51].
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Figure A1. The potential energy, u, and the negative of the entropy multiplied by T, −Tsx
target, in

(eV/atom) are plotted as a function of T for iron as simulated with the Johnson potential. The dashed
line is the fit to the simulated potential energy as described in the text. The dotted curve is obtained
analytically from the fit to u(T). The symbols are the values of the simulated potential energy at
the set of simulation temperatures used for the fit. Horizontal solid lines indicate the exact T = 0
potential energy, the zero of energy, and the exact T = ∞ potential energy. The vertical line is at Tm.
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Appendix F. Classical Debye Approximation of ε

The ratio, R, of the variance of the separation vector of a pair of nearest neighbors
atoms to the variance of displacement of an atom about its average position is [52]:

R1nn =
∑i < |u1

i − u0
i |

2 >

∑i < |u0
i |2 >

(A4)

=

∫
dq| exp(iq · n1)− 1|2 (n̄q+

1
2 )

ω(q)∫
dq (n̄q+

1
2 )

ω(q)

(A5)

In the classical limit:
n̄q +

1
2
=

3T
2ω(q)

. (A6)

For isotropic acoustic phonons:

ω(q) = vsq (A7)

We can evaluate the ratio in (A5) by approximating the Brillouin zone by a sphere of radius

qmax = (12π2)
1
3

a , where a is the BCC lattice constant:

R1nn = 2− 2

∫ qmax
0 dq sin(qn1)

qn1

qmax
(A8)

= 2− 2
Si(qmaxn1)

qmaxn1
(A9)

= 1.197 (A10)

The ratio for the second nearest neighbor has the value, R2nn = 1.362 and for very
distant neighbors, R∞ = 2

|εI | = |1− R1nn
2
| = 0.40 (A11)

|εI I | = |1− R2nn

2R1nn
| = 0.43 (A12)

(A13)
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