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Abstract: Multiscale sample entropy analysis has been developed to quantify the complexity and
the predictability of a time series, originally developed for physiological time series. In this study,
the analysis was applied to the turbulence data. We measured time series data for the velocity
fluctuation, in either the longitudinal or transverse direction, of turbulent soap film flows at various
locations. The research was to assess the feasibility of using the entropy analysis to qualitatively
characterize turbulence, without using any conventional energetic analysis of turbulence. The study
showed that the application of the entropy analysis to the turbulence data is promising. From the
analysis, we successfully captured two important features of the turbulent soap films. It is indicated
that the turbulence is anisotropic from the directional disparity. In addition, we observed that the
most unpredictable time scale increases with the downstream distance, which is an indication of the
decaying turbulence.

Keywords: sample entropy; decaying turbulence; information content

1. Introduction

The traditional discipline of turbulence research focuses on the flow of energy in
phase space. This tradition began when Kolmogorov first derived the famous four-fifth
law in 1941, as a direct inference of the Navier–Stokes equation, to illustrate that the
second moment of velocity is always transferred from the large scale to the small scale [1].
The tradition continued as Kraichnan found the discrepancy between two-dimensional
(2D) and three-dimensional (3D) turbulence in 1963, characterized by the inverse energy
cascade and the forward enstrophy cascade [2]. These results are not only the milestones of
turbulence research but also the archetypes showing the importance of the flow of energy
in this curriculum.

By that time, physicists acknowledged that the energy is information, and vice versa.
In 1948, Shannon suggested the concept of information entropy and paved a way to
measure disorder using a concept similar to the thermodynamic entropy [3]. In 1961,
Landauer showed that deletion of information causes dissipation of heat [4], indicating that
there is a thermodynamic cost of information. Inspired by the advancement of information
theory, there have been efforts to shed new light on turbulence by considering it as a
flow of information. There was a paucity of studies under this paradigm, with a notable
exception by Aubry et al. [5] Later additions include investigations by Kim [6] and Cerbus
and Goldburg [7,8] addressing the properties of turbulence as a set of information. In
recent years, “data science” is considered as an independent discipline, and there is an
increasing number of studies that treat fluid motion as data flow [9,10].

The current study is aligned with those to understand the turbulence in terms of
information. Specifically, we pay attention to sample entropy. Sample entropy is a variant
of Kolmogorov–Sinai entropy, designed for physiological time series. It was first introduced
by Pincus [11] as approximate entropy, which was later modified to sample entropy by
Richman and Moorman [12,13] to remove methodological pitfalls. Essentially, it quantifies
the predictability of a time series by examining the number of instances that a certain
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sub-string, which is observed to be repeated throughout the time series, is followed by the
same consequence. It is defined as a negative logarithm of a probability, therefore it ranges
from 0 (most predictable) to infinity (most unpredictable). Examples of its application are
the studies of Costa et al. [14,15], where they successfully identified heart disorders using
heartbeat time series measurements. Other examples of usage include the quantification of
complexity in weather forecasting [16], postural sway [17], stock market [18], and feature
extraction [19,20].

The system of interest of this study is a flowing soap film channel. The soap film
channel was developed as a scientific instrument in 1980s [21–24], and since then it has
been widely used to study 2D hydrodynamics including 2D turbulence. Typically, the
turbulence in soap films is quasi-2D, meaning that the flow exhibits characteristics of 2D tur-
bulence [25], but the medium is slightly compressible [26]. Notable accomplishments using
soap films include the measurement of energy spectrum in 2D decaying turbulence [27,28],
the observation of inverse energy and forward enstrophy cascades [29], the investigations
on intermittency [30,31], and the measurement of turbulent friction factors [32,33]. From
these conventional spectral analyses, it has been answered what is the exponent of energy
spectrum of turbulent flow, whether the flow is isotropic or not, etc.

The central question of the current study was whether the inferences of the classical
approach to turbulence can be obtained when we use the information theoretical approach.
For the purpose, we applied sample entropy analysis to the velocity fluctuation mea-
surements acquired from turbulent soap film flows. As discussed below, these velocity
fluctuations were measured in the form of time series. Depending on the direction of the
fluctuation, longitudinal or transverse, and the downstream location of measurement in
the channel, we measured 42 time series for the analysis.

The answer to the central question is partly positive. First, the calculation of the
sample entropy shows a clear disparity between the two directions of velocities, thereby
indicating that our turbulence is anisotropic. Second, the results also show that the most
unpredictable time scale is an increasing function of the downstream distance. This
observation is consistent with our intuition, i.e., as turbulence decays, the system starts
to exhibit longer autocorrelation time, and it increases the predictability at shorter time
scales. These observations by themselves are not surprising at all. We already know that
the turbulence in our setup is highly anisotropic and decaying, however we reached the
same conclusion by only using an entropy approach without using any spectral analysis.

2. Method
2.1. Experimental Setup

The experiments were conducted in a vertical soap film channel, as shown in Figure 1
and discussed in the literature [24,34]. Briefly, the soap film channel consists of two flexible
nylon wires connected to two reservoirs at the top and bottom. To create a soap film, we
first opened a valve between the top reservoir and the channel and established a flow of
soap solution along two wires that are initially intact. Next, we pulled the wires apart
from each other, and then a flow of soap film was created between the two wires. The soap
solution was collected at the bottom reservoir and pumped back to the top reservoir. By
recycling the soap solution, the flow of the film can last, in principle, indefinitely. Our soap
solution was a 2:98 mixture of liquid detergent (Dawn, P&G) and deionized water, and the
kinematic viscosity of the soap solution was approximately 0.13 cm2/s.

The soap film was quasi-2D as its thickness was much thinner than other dimensions.
The length of the channel was approximately 1.5 m, and the width W of the channel was
adjustable. For this study, we used two different soap films: a narrow film of W = 2 cm,
and a wider film of W = 8 cm. In both cases, the thickness of the film was not measured
directly, but we estimated it to be less than 10−5 m, based on the previous characterization
of similar systems [26,34].

To make a turbulent flow on the soap film, we placed a comb approximately 0.5 m
away from the top of the channel. At this location, the flow speed reached the terminal
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velocity and did not vary significantly. The mean flow speed U was approximately 1.5 m/s
for both narrower and wider films. The comb’s teeth were the cylinders of diameter 0.001 m,
each separated by 0.002 m. For the convenience of ensuing discussion, we set a coordinate
system such that x is longitudinal and y is transversal to the flow direction. The origin of
the coordinate system is located at the comb (see Figure 1). The definition of the coordinate
system trivially indicates that the flow is laminar for x < 0 and turbulent for x > 0. There
is no forcing other than the comb, and therefore the flow exhibits the characteristics of
decaying turbulence.

Figure 1. Experimental setup. Using a comb, we created a turbulent flow on a flowing soap film
channel. The velocity field was measured at several locations downstream of the comb using laser
Doppler velocimetry.

We then measured the velocity field of the turbulent flow using laser Doppler velocime-
try (LDV, manufactured by TSI scientific). We seeded the soap solution with polystyrene
beads, whose diameter was 10−6 m, and we placed the LDV probe at several locations
downstream of the comb, i.e., at (X, 0), where the value of X is summarized in Table 1.
Because LDV measures the velocities of passive particles (polystyrene beads) in the flow,
the sampling is rather random. In our experiments, the sampling rate varied from 9000 to
23,000 Hz with an average of 20,000 Hz. For each run, the measurement was performed for
40 s, and 800,000 data were acquired.

Table 1. Experimental conditions.

Case Channel Width Measurement Location (X, in cm)

1 2.1 cm 0.8, 1.4, 2.1, 3.1, 4.0, 5.0, 6.3, 8.0, 9.9, 12
2 7.7 cm 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.8, 13, 16

To summarize, our experiments produced a set of measurements of the velocity field
of 2D decaying turbulence in the form of time series. These time series were collected for
two different soap films at several different downstream distances for two components. For
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clarity of discussion, we denote a time series as vN
(X,i)(t), where N denotes the case number

in Table 1, X denotes the downstream distance at which the LDV probe was placed, and i
is either “l” (longitudinal) or “t” (transversal). When there is no possibility of confusion,
indices may be omitted.

2.2. Data Preparation

Before performing the main analysis, the raw data from the measurements must be
pre-processed. First, based on the nature of LDV, the velocity measurements were not
acquired at an even time interval. As an example, we present a typical raw time series
directly measured from LDV in Figure 2 with closed circles. It is clearly noticeable that the
data are densely populated around 0.0752 s. However, they are sparsely populated around
0.0753 s. To remove the sampling irregularity, we linearly interpolated the data based on
the uniform sampling time. Formally, for any integer n, we calculated the interpolated
time series as follow:

v(tn) = v(ta) +
v(tb)− v(ta)

(tb − ta)
(tn − ta). (1)

where ta and tb (ta < tb) denote the abscissae of the two nearest data of tn = nt0. In our pre-
processing, we used t0 = 0.1 ms, i.e., the data were re-sampled at 10,000 Hz. The resulting
time series correspond to v(n) = {v(0), v(1), · · · , v(N − 1)}, where N is 400,000. Second,
the interpolated time series was normalized so that the mean is 0 and the standard deviation
is 1. Each entry v(n) of the interpolated time series was substituted by v(n)− < v >/σ[v],
where the mean corresponds to < v >= (1/N)Σv(n) and standard deviation corresponds

to σ[v] =
√
(1/N)Σv(n)− < v >2.

Figure 2. Example of raw (circles) and interpolated time series (thick lines). Laser Doppler velocime-
try measured the flow velocity at random times. Therefore, we re-sampled the data using Equation (1)
at 10,000 Hz .

Once the pre-processing was completed, the time series was ready for the main analy-
sis. For such uniformly sampled and normalized time series, we introduced the coarse-
graining factor α. Using this dimensionless integer, we generated a coarse-grained time se-
ries {v(α)(0), v(α)(1), · · · , v(α)(N/τ− 1)} from the original time series {v(0), v(1), · · · , v(N−
1)} via local and non-overlapping averaging. Therefore, each entry of the coarse-grained
time series is as follow:

vα(n) =
1
α

τ−1

∑
j=0

v(nα + j). (2)
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We note that coarse-graining reduces the length of the time series. For example, for the
original time series of length 400,000, the coarse-grained time series with α = 4 corresponds
to a length of 100,000. In addition, the time series was normalized only once at the initial
preparation stage. Time series were not normalized in each coarse-graining process, and,
therefore, the standard deviation decreases with α.

2.3. Multiscale Entropy Analysis

Once the data preparation process was completed, we calculated the sample entropy
of the time series of the turbulent flow. The concept of sample entropy was detailed by
Costa [14]. Briefly, sample entropy is designed to quantify the predictability of a time series.
Formally, it is a negative logarithm of a probability wherein the posterior is repeated for
a given certain prior. Let us consider a subset of a time series whose length is m, that is,
sm(n) = {v(n), v(n + 1), · · · , v(n + m − 1)}, and assume that this subset is repeated A
times throughout the entire time series. This means that there are (A− 1) more choices of
non-zero integer l such that subsets sm(n + l) = {v(n + l), v(n + l + 1), · · · , v(n + l + m−
1)} are equal to sm(n).

From a computational perspective, it is difficult to judge if sm(n) = sm(n + l) when
the data are processed in double precision. Therefore, we set a tolerance range r, and, if the
difference between each element of two subsets as less than r, then they were considered
as identical. Formally, sm(n) = sm(n + l) if |v(n + k)− v(n + l + k)| < r for all k < m.

Now, we examined the probability at which A identical subsets are followed by the
same value. We determined the number of instances that the inequality |v(n + m)− v(n +
l + m)| < r is satisfied, and let B be the number of such cases. The sample entropy is
defined as a negative logarithm of conditional probability p = B/A as follow:

S = − ln p. (3)

In multiscale sample entropy analysis, we calculated the sample entropy with respect
to the coarse-graining factor α. In general, the probability p depends on m, r, and α.
However, following the widely accepted convention, we fixed m = 2 and r = 0.15. This
setting has been frequently used in extant studies [14–16], and we used the convention for
future referencing.

Finally, for an intuitive discussion, we summarize the initial data preparation and
the subsequent multiscale entropy analysis in the flowchart in Figure 3. In addition, we
converted the coarse-graining factor α to the coarse-graining time scale τ by using the
relation τ = αt0. Therefore, S = S(τ).

Figure 3. A flowchart to calculate the sample entropy.
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3. Results and Discussion
3.1. Directional Disparity

Figure 4 shows the result of the multiscale entropy analysis for the longitudinal and
transversal components of the velocity time series, measured at two different locations
on Soap Film 1. The results from the longitudinal and transversal components of the
velocity measurements are qualitatively different. At shorter time scales, the transversal
components of both measurement locations, X = 2.1 cm and X = 8.0 cm, yield a higher
value of S than their longitudinal counterparts. However, the trend is reversed at a longer
time scale. As τ increases, the sample entropies of the transverse component decrease
rapidly. Conversely, the sample entropies of the longitudinal component do not decay as
much as the transversal component.

The result in Figure 4 indicates that the turbulence in the flowing soap films is
anisotropic. The discrepancy between the longitudinal and transverse components at
the short time scale is attributed to the fact that the initial forcing is unidirectional. Using
the diameter of the tooths of the comb, D = 2 mm, and the mean flow speed, U = 1.5 m/s,
we estimated the Reynolds number as approximately 2100, and at this Reynolds number
the vortex shedding frequency is approximately 150 Hz. This corresponds to 6.7 ms and
is roughly consistent with our observation that the sample entropies are maximized at a
few milliseconds.

The substantial unpredictability of the longitudinal component at larger τ is puzzling.
One hypothesis for this is that the friction between the channel walls or the air act as
forcing to the turbulence. However, we reject this hypothesis because the sample entropy
calculated for Soap Film 2, which is much wider than Soap Film 1, exhibits the same feature,
as presented in Figure 5. If the hypothesis were true, then the wider film would show
significantly less unpredictability at large τ because the forcing only affects locally.

Figure 4. Sample entropy calculated for turbulent flow in Soap Film 1. At shorter time scales, the
transverse component is more unpredictable. However, at a longer time scale, the opposite is true.
We note that the sample entropy naturally decreases with τ because the coarse-grained time series
are not normalized. The time series is normalized only once for α = 1.
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Figure 5. Sample entropy calculated for turbulent flow in Soap Film 2.

3.2. Change over Downstream Distance

Figure 6 shows the multiscale entropy analysis of the longitudinal velocity of Soap
Film 1, for the measurements at various downstream locations. We note that the time
axis is logarithmic for a better presentation. The figure shows that S(τ) initially increases
with τ. However, it decreases when τ is large enough. Therefore, S(τ) is maximized at a
certain coarse-graining time scale τmax, and we find that τmax increases as the measurement
location X increases. For example, τmax ∼ 1 ms at X = 0.8 cm and τmax ∼ 3.5 ms at
X = 2.1 cm. At x = 12.1 cm, τmax is as large as 6.5 ms.

Figure 7 shows the same calculation using the transversal component. Here, peak
shifting is observed in the transversal component in a manner similar to the longitudinal
component. While the height of the peaks varies, the location of the peak moves toward
the higher τ as the measurement location moves downstream.

In Figure 8, we plot our measurement of τmax with respect to the downstream distance
X. For Soap Film 1 or 2 and longitudinal or transverse component, τmax generally increases
with X. Physically, τmax is the time scale at which the time series is most unpredictable,
and it can be interpreted as the dissipation of turbulent energy at small scales. In soap
film flows, we assume the frozen turbulence hypothesis. Therefore, the downstream
distance is equivalent to time. As the turbulence moves downstream, or as time elapses,
the finer structure decays, and only large-scale disturbance survives. From this perspective,
our observation of peak shifting in Figures 6 and 7 is considered as an indication of the
decaying turbulence.

Figure 6. Multiscale sample entropy of the longitudinal velocities of Soap Film 1.
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Figure 7. Multiscale sample entropy of the transversal velocities of Soap Film 1.

Figure 8. Coarse-graining time maximizing the sample entropy analysis, τmax, is plotted with respect
to the downstream distance X.

Finally, the current result raises an interesting question whether the entropic analysis
can enhance the current understanding of turbulence. The related open problems include
the issue of finite dissipation [35] and coherent structures [36]. The answers to these
questions are beyond the scope of current work, but they are noteworthy for future studies.

4. Conclusions

In summary, we present a multiscale sample entropy analysis that was performed
for the decaying turbulence on soap film flows. Without conventional analysis of turbu-
lence such as the power spectrum, the multiscale sample entropy analysis allowed us
to characterize the system of interest. First, the disparity between the results using the
longitudinal and transversal velocity components revealed the anisotropy of the system.
Second, based on the observation that the most unpredictable time scale increases with
the downstream distance, it is inferred that the characteristic frequency of the turbulence
decreases. This indicates that the small-scale disturbance is dissipated by the action of
viscosity, and therefore the turbulence is indeed decaying.

Funding: This work was supported by Konkuk University in 2019.
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Entropy 2021, 23, 245 9 of 9

References
1. Frisch, U. Turbulence: The Legacy of A. N. Kolmogorov; Cambridge University Press: New York, NY, USA, 1995.
2. Kraichnan, K.H. Inertial Ranges in Two-Dimensional Turbulence. Phys. Fluids 1967, 10, 1417. [CrossRef]
3. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 379–423. 623–656. [CrossRef]
4. Landauer, R. Irreversibility and Heat Generation in the Computing Process. IBM J. Res. Dev. 1961, 14, 183. [CrossRef]
5. Aubry, N.; Chauve, M.-P.; Guyonnet, R. Transition to turbulence on a rotating flat disk. Phys. Fluids 1994, 6, 2800–2814. [CrossRef]
6. Kim, I. Experimental Studies on 2D Fluid System; University of Pittsburgh: Pittsburgh, PA, USA , 2010.
7. Cerbus, R.T.; Goldburg, W.I. Predicting two-dimensional turbulence. Phys. Rev. E 2015, 91, 043003. [CrossRef] [PubMed]
8. Cerbus, R.T.; Goldburg, W.I. Information theory demonstration of the Richardson cascade. arXiv 2016, arXiv:1602.02980.
9. Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine learning for fluid mechanics. Ann. Rev. Fluid Mech. 2020, 52, 477–508.

[CrossRef]
10. Carleo, G.; Cirac, I.; Cranmer, K.; Daudet, L.; Schuld, M.; Tishby, N.; Vogt-Maranto, T.; Zdeborová, L. Machine learning and the

physical science. Rev. Mod. Phys. 2020, 91, 045002. [CrossRef]
11. Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297. [CrossRef]
12. Govindan, R.B.; Wilson, J.D.; Eswaran, H.; Lowery, C.L.; Preibl, H. Revisiting sample entropy analysis. Physica A 2007, 376,

158–164. [CrossRef]
13. Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol

2000, 279, H2039. [CrossRef] [PubMed]
14. Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale Entropy Analysis of Complex Physiologic Time Series. Phys. Rev. Lett. 2002, 89,

068102. [CrossRef] [PubMed]
15. Costa, M.; Goldberger, A.L. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005, 71, 021906. [CrossRef]
16. Li, S.; Zhou, Q.; Wu, S.; Dai, E. Measurement of Climate Complexity using Sample Entropy. Int. J. Climatol. 2006, 26, 2131.
17. Ramdani, S.; Seigle, B.; Lagarde, J.; Bouchara, F.; Louis, P. On the use of sample entropy to analyze human postural sway data.

Med. Eng. Phys 2009, 31, 1023. [CrossRef]
18. Maasoumi, E.; Racine, J. Entropy and predictability in the stock market returns. J. Econom. 2002, 107, 291. [CrossRef]
19. Li, Y.; Chen, X.; Yu, J.; Yang, X.; Yang, H. The Data-Driven Optimization Method and Its Application in Feature Extraction of

Ship-Radiated Noise with Sample Entropy. Energies 2019, 12, 359. [CrossRef]
20. Li, W.; Shen, X.; Li, Y. A Comparative Study of Multiscale Sample Entropy and Hierarchical Entropy and Its Application in

Feature Extraction for Ship-Radiated Noise. Entropy 2019, 21, 793. [CrossRef]
21. Couder, Y.; Chomaz, J.M.; Rabaud, M. On the hydrodynamics of soap films. Physica D 1989, 37, 384. [CrossRef]
22. Gharib, M.; Derango, P. A liquid film (soap film ) tunnel to study two-dimensional laminar and turbulent shear flows. Physica D

1989, 37, 406. [CrossRef]
23. Chomaz, J.M.; Cathalau, B. Soap films as two-dimensional classical fluid. Phys. Rev. A 1990, 41, 2243. [CrossRef]
24. Rutgers, M.A.; Wu, X.-L.; Daniel, W.B. Conducting fluid dynamics experiments with vertically falling soap films. Rev. Sci. Instrum.

2001, 72, 3025–3037. [CrossRef]
25. Couder, Y. Two-dimensional grid turbulence in a thin liquid film. J. Physque Lett. 1984, 45, 353–360. [CrossRef]
26. Kim, I.; Mandre, S. Marangoni elasticity of flowing soap films. Phys. Rev. Fluids 2017, 2, 082001. [CrossRef]
27. Martin, B.K.; Wu, X.L.; Goldburg, W.I.; Rutgers, M.A. Spectra of Decaying Turbulence in a Soap Film. Phys. Rev. Lett. 1998,

80, 3964. [CrossRef]
28. Vorobieff, P.; Rivera, M.; Ecke, R.E. Soap film flows: Statistics of two-dimensional turbulence. Phys. Fluids 1999, 11, 2167.

[CrossRef]
29. Rutgers, M.A. Forced 2D Turbulence: Experimental Evidence of Simultaneous Inverse Energy and Forward Enstrophy Cascades.

Phys. Rev. Lett. 1998, 81, 2244. [CrossRef]
30. Jun, Y.; Wu, X.L. Large-scale intermittency in two-dimensional driven turbulence. Phys. Rev. E 2005, 72, 035302. [CrossRef]

[PubMed]
31. Cerbus, R.T.; Goldburg, W.I. Intermittency in 2D soap film turbulence. Phys. Fluids 2013, 25, 105111. [CrossRef]
32. Tran, T.; Chakraborty, P.; Guttenberg, N.; Prescott, A.; Kellay, H.; Goldburg, W.; Goldenfeld, N.; Gioia, G. Macroscopic effects of

the spectral structure in turbulent flows. Nat. Phys 2010, 6, 438–441. [CrossRef]
33. Kellay, H.; Tran, T.; Goldburg, W.; Goldenfield, N.; Gioia, G.; Chakraborty, P. Testing a Missing Spectral Link in Turbulence.

Phys. Rev. Lett. 2012, 109, 254502. [CrossRef] [PubMed]
34. Kim, I.; Wu, X.-L. Tunneling of micron-sized droplets through soap films. Phys. Rev. E 2010, 82, 026313. [CrossRef] [PubMed]
35. Schneider, K.; Farge, M. Decaying two-dimensional turbulence in a circular container. Phys. Rev. Lett. 2005, 95 244502. [CrossRef]

[PubMed]
36. Clercx, H.J.H.; van Heijst, G.J.F. Dissipation of coherent structures in confined two-dimensional turbulence. Phys. Fluids 2017,

29, 111103. [CrossRef]

http://doi.org/10.1063/1.1762301
http://dx.doi.org/10.1002/j.1538-7305.1948.tb00917.x
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1063/1.868168
http://dx.doi.org/10.1103/PhysRevE.91.043003
http://www.ncbi.nlm.nih.gov/pubmed/25974576
http://dx.doi.org/10.1146/annurev-fluid-010719-060214
http://dx.doi.org/10.1103/RevModPhys.91.045002
http://dx.doi.org/10.1073/pnas.88.6.2297
http://dx.doi.org/10.1016/j.physa.2006.10.077
http://dx.doi.org/10.1152/ajpheart.2000.278.6.H2039
http://www.ncbi.nlm.nih.gov/pubmed/10843903
http://dx.doi.org/10.1103/PhysRevLett.89.068102
http://www.ncbi.nlm.nih.gov/pubmed/12190613
http://dx.doi.org/10.1103/PhysRevE.71.021906
http://dx.doi.org/10.1016/j.medengphy.2009.06.004
http://dx.doi.org/10.1016/S0304-4076(01)00125-7
http://dx.doi.org/10.3390/en12030359
http://dx.doi.org/10.3390/e21080793
http://dx.doi.org/10.1016/0167-2789(89)90144-9
http://dx.doi.org/10.1016/0167-2789(89)90145-0
http://dx.doi.org/10.1103/PhysRevA.41.2243
http://dx.doi.org/10.1063/1.1379956
http://dx.doi.org/10.1051/jphyslet:01984004508035300
http://dx.doi.org/10.1103/PhysRevFluids.2.082001
http://dx.doi.org/10.1103/PhysRevLett.80.3964
http://dx.doi.org/10.1063/1.870078
http://dx.doi.org/10.1103/PhysRevLett.81.2244
http://dx.doi.org/10.1103/PhysRevE.72.035302
http://www.ncbi.nlm.nih.gov/pubmed/16241505
http://dx.doi.org/10.1063/1.4824658
http://dx.doi.org/10.1038/nphys1674
http://dx.doi.org/10.1103/PhysRevLett.109.254502
http://www.ncbi.nlm.nih.gov/pubmed/23368469
http://dx.doi.org/10.1103/PhysRevE.82.026313
http://www.ncbi.nlm.nih.gov/pubmed/20866911
http://dx.doi.org/10.1103/PhysRevLett.95.244502
http://www.ncbi.nlm.nih.gov/pubmed/16384384
http://dx.doi.org/10.1063/1.4993488

	Introduction
	Method
	Experimental Setup
	Data Preparation
	Multiscale Entropy Analysis

	Results and Discussion
	Directional Disparity
	Change over Downstream Distance

	Conclusions
	References

