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Abstract: The accurate classification of microbes is critical in today’s context for monitoring the
ecological balance of a habitat. Hence, in this research work, a novel method to automate the process
of identifying microorganisms has been implemented. To extract the bodies of microorganisms
accurately, a generalized segmentation mechanism which consists of a combination of convolution
filter (Kirsch) and a variance-based pixel clustering algorithm (Otsu) is proposed. With exhaustive
corroboration, a set of twenty-five features were identified to map the characteristics and morphology
for all kinds of microbes. Multiple techniques for feature selection were tested and it was found
that mutual information (MI)-based models gave the best performance. Exhaustive hyperparameter
tuning of multilayer layer perceptron (MLP), k-nearest neighbors (KNN), quadratic discriminant
analysis (QDA), logistic regression (LR), and support vector machine (SVM) was done. It was found
that SVM radial required further improvisation to attain a maximum possible level of accuracy.
Comparative analysis between SVM and improvised SVM (ISVM) through a 10-fold cross validation
method ultimately showed that ISVM resulted in a 2% higher performance in terms of accuracy
(98.2%), precision (98.2%), recall (98.1%), and F1 score (98.1%).

Keywords: mutual information; classification; k-fold cross validation; machine learning modeling;
image segmentation; microorganisms

1. Introduction

Biodiversity informatics [1,2] is an emerging field that has found a high degree of
attention in today’s context. Due to climate change, there is an urgent need to review
the management of the ecological resources of an area. The domain of biodiversity in-
formatics [3] is an application of computer-based operations, functions, algorithms, and
techniques that help to organize data, conduct environment sampling for computing biodi-
versity indices. This is done so that the impact on living organisms can be assessed due to
changes in the population of species and climate or both. Hence, through this study, we
intend to automate the procedures where these assessments can be done with the help of
computer aided algorithms. Today, the conservation of native species in agriculture, ocean,
fisheries, forestry, etc. is considered one of the main goals of bioinformatics. Activities such
as species identification and mapping [4] of the biodiversity of an area are an essential part
of biodiversity activities. There are multiple organizations that are maintaining records on
the taxonomy, genes, and population of the species and have developed tools to visualize
the biodiversity data [5]. With the advancements in the Internet of Things (IOT) [6] and
microscopic imaging, the scope of bioinformatics has increased many folds. Further, with
the help of the microscopic level of photography, many researchers, organizations, and

Entropy 2021, 23, 257. https:/ /doi.org/10.3390/e23020257

https://www.mdpi.com/journal/entropy


https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e23020257
https://doi.org/10.3390/e23020257
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23020257
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/23/2/257?type=check_update&version=2

Entropy 2021, 23, 257

20f 15

governments are mapping the biodiversity of microorganisms which was not possible ear-
lier [7]. Due to this, studies regarding invasive species at the microscopic level are possible
now [8]. The microscopic imaging has also given birth to computational algorithms that
count, group, and identify the microorganisms automatically.

The identification of the microorganism is a tedious task [9]. There is always a need for
an expert and a person who understands the nuances of taxonomy and other characteristics
of microbes such as odor [10]. With the emergence of machine learning models and statistics,
now the process of identification can be automated with a high degree of accuracy [11],
and assessment regarding biodiversity [12] can be automated.

At the microscopic level, different researchers have done specialist work in biodiversity.
The main focus is to work on the biodiversity of algae [13,14] as they are indicators of water
quality and health of the water bodies. Few are also working on biodiversity studies on
microscopic fungi [15,16]. Research on biodiversity of bacteria [17] in water bodies has a
lot of citations in high impact journals. Most of the work has been done in the context of
isolation, semi-automatic/automatic identification, and classification of the algorithms. All
of the microscopic organisms are isolated using well established methods and laboratory
protocols. With the passage of time, identification and classification of the microorganism
tasks are shifting towards automation [18].

Recent studies [9,19,20] are focusing on automating the process of identification with
the help of image processing and machine learning models. The purpose of image process-
ing is to effectively isolate the microorganism body from the images. Thresholding [21]
methods are being used by researchers either as the main function to segment or as an
auxiliary function for microbe segmentation. The survey [22] shows that image thresh-
olding and level set-based algorithms to segment the bacteria are being used. Biological
studies have widely used image thresholding and level set-based algorithms in various
other applications such as lung segmentation, tissue extraction, and protein synthesis,
etc. [23-25].

There are three most frequently used methods for segmentation of the microorganisms.
The first one is the edge-based method, the second one is based on threshold as mentioned
earlier, and the third one is the region-based method such as region growing. The use of ma-
chine learning and an optimization algorithm to segment the image is also popular. Many
researchers are doing microbe segmentation using convolution architectures networks
such as U-net, FCN (fully convolutional networks), and VGG (visual geometric group),
etc. Traditional unsupervised algorithms such as K- means, c-means, fuzzy c-clustering
have also been used for microbes segmentation. It should however be noted that most of
these research works focus on a limited /specific number of species. The post processing
i.e., after the microbe segmentation, the segmented images are subjected to the feature
extraction [26] and selection [27] process. Recent developments [22,28,29] are based on
extracting morphological features for building the identification system. Few studies [30]
are using texture features for understanding the body shapes and pattern of the texture of
the microbes. In summary, it can be said the most common features that researchers are
using include shape, geometric, spectrum [30], and color-based [31] features.

Studies limited to particular species for automatic identification can be found in
most of the current journals [32-34]. Artificial neural network (ANN) is being used for
automating the tasks of identification of bacteria [35]. Many studies are applying KNN
for identification of the microbial species. The SVM algorithm is a widely used method of
classification. There is evidence that probability classifiers are also in use for identifications
of microbial species and the outcome in terms of average accuracy is above 90%. Studies
specific to the particular zone (river basin [36], littoral, benthic [7,37,38]) of the water bodies
have also been found in the current literature.

This research initiative was taken to construct a fully automated system that can
identify and classify microorganisms. As per the research scope, the microbes belong to the
surface water zone and they are analyzed with the help of microscopy imaging. The fully
automated system includes two main components; imaging and classification. The focus is
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to create a generic pipeline of algorithms for automating the identification process. Last
but not least, the work is not limited to the analysis of previous works but also includes
improvements and improvisations for achieving the said goal. The level of performance
obtained is comparable to deep learning algorithms used by other authors for a similar
purpose [35,39,40].

In terms of technical contribution, this original research work demonstrates the con-
struction of a novel microbe segmentation algorithm and an improvised automation process
for accurately classifying ten microbes. As per our best knowledge, such elucidation and
implication for classifying multiple species has not been done till date, especially in the
context of biodiversity studies of Chandigarh water bodies, India.

The paper is organized as follows: After the introduction, Section 2 gives the method-
ology on how the goals of the study are achieved. Sample collection and description of the
slide preparation are discussed here. In addition, the characteristics of the image dataset
are mentioned. The next steps; image segmentation and machine modeling are explained
in detail under this section. Sections 3 and 4 cover results and discussions respectively.

2. Materials and Methods

The methodology is divided into three steps. The first step is to collect primary data.
The second step is to acquire accurate boundaries of microorganisms by using multiple
image processing operations. The third step is to select the best features for classification
and further select the best machine learning models for automation. Figure 1 gives a
stepwise illustration on how the research work is executed.

Sampling Image Processing Classification Performance lysi
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Processing Select Best
Performer
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Sampling Evaluation of F T
Segmentation
Algorithms Feature
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Figure 1. Research flow.

2.1. Sampling

The water samples were collected from the surface areas of two water bodies (Sukhna
and Dhanas Lakes), Chandigarh, India [41]. Sukhna Lake [42] is a water catchment area
(25 square kilometers) of Shivalik foothills, hence is fed by rain along with seasonal streams.
Dhanas Lake [43] is a man-made water body to capture rainwater from adjacent areas.
Fifteen sampling points were selected for each water body. For capturing microscopic
images of the microorganism, slides were prepared using different concentrations of ethanol
with the sample water. This was done until a whole mounted image could be taken.
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Approximately three thousand microbe slides for both lakes (magnification 4x and
10x) were made and microscopic images were captured from these slides. The microscope
used in this work had achromatic 4 x to 100 x objectives, coaxial coarse, and fine adjustment
capacities, and a focusing range up to 30 mm with 0.002 mm focusing interval. The work
of quality, grading, and labeling each slide as per the species was done with the help
of a domain expert in order to maintain the semantic correctness, syntactic correctness,
consistency, completeness, and uniqueness of the data. The final dataset of 600 images
(whole mounted) was further subjected to processing. Out of these 600 images, a number of
microorganisms were identified wherein each microorganism represented a data instance.

Table 1 gives a list of microorganism classes that were used to label data sets for
training machine learning models. It can be observed that Volvox has 7002 instances and
so on. Furthermore, it can be calculated that the total number of instances is 32,779.

Table 1. List of microorganisms automated using classifiers.

S.No Microorganism Class Microorganism Type Number of Instances
1 Spirogyra Algae 4012
2 Volvox Algae 7002
3 Phithophora Algae 2303
4 Yeast Fungi 4302
5 Rhizopus Fungi 3910
6 Penicillium Fungi 3410
7 Aspergillus sp Fungi 3230
8 Protozoa Eukaryotes 1230
9 Diatom Algae 1450
10 Ulothrix Algae 1930

Total 32,779

2.2. Image Processing

This section elaborates the various steps taken to prepare the machine learning data
from the images. A file-based data repository was built for further performing the image
processing operations. Each microorganism has a separate folder and metafile for maintain-
ing the record. It is always desirable that highly accurate and relevant data should be fed to
an automated system for its stability. Hence, preprocessing is a precursor for constructing
such systems. The extraction of microbe bodies consists of the following steps.

2.2.1. Image Preprocessing

The quality of the image depends on the skills of the person making slides and the
one who is capturing images using a microscope [44]. Hence, the following steps were
taken to enhance the quality and variability of the dataset.

e Aspect Ratio: All images were standardized into aspect ratio (1:1.2) so that compu-
tation of features such as center of mass of the region of interest does not deviate far
away from the normal trend of values.

e  Area-based Object Removal: Some images had unwanted objects such as debris etc.
Removal of objects fewer than a configurable size value was done with the help of a
custom filter.

e Irregular Object Removal: Highly deformed or highly irregular shapes of the objects
were identified and filtered so that only useful information is left within the semantics
of the image.

e Noise Removal: The median filter was applied to remove any other noise that may be
left after applying the steps listed above.

e  Contrast Enhancement: Adaptive contrast enhancer [45] was used to increase the over-
all difference of intensities so that the segmentation algorithm finds it easy to process.
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2.2.2. Segmentation

For the identification and extraction of microorganism’s boundaries, seven convolu-
tion gradient filters were evaluated as shown in Table 2. The experimentation process was
validated with the help of Intersection over Union (IoU) metric [46]. IoU is a metric that
calculates overlap between the benchmarked images and the image created by convolution
gradient filters, based on the threshold of 0.5. Random sampling has been used for each
filter so that the bias is minimized while calculating the average IoU. It can be observed that
for a sample size of 25, the Kirsch filter performs the best followed by Prewitt and mean
filters. As the sample size increases, Kirsch filter continues to give the best performance.
Consequently, the averages of filters show that Kirsch filter’s accuracy (0.90) is the highest
based on IoU metric.

Table 2. Selection of convolution filters based on IoU.

S.No Convolution Filter Accepted/Sample :‘;?:fc;
25 50 75
1 Prewitt Filter [47] 20 23 39 0.59
2 LOG Filter [32] 13 31 39 0.55
3 Laplacian Filter [48] 15 39 67 0.76
4 Low Pass Gaussian [47] 14 38 66 0.73
5 Sobel Filter [32] 19 36 69 0.80
6 Mean Filter [49] 20 40 68 0.84
7 Kirsch Filter [50] 22 45 70 0.90

The next step is to cluster all those pixels that can form the boundary of microorganism
and improve the quality of segmentation output. This will help to improve the accuracy of
classification algorithms. A comparative study between the ISODATA clustering [51] and
Otsu method [52] revealed that the Otsu method is more accurate in helping to group the
pixels of the microorganisms to form the shape. This was done using subjective evaluation
with the help of an expert by using a random sampling method. Multiple sets of samples
were chosen randomly. Further, each set had randomly chosen images. The accuracy
(Accepted and Correct ‘AC” Segmented /Sample Size, ‘S’) based on the current sample size
and with respect to the full dataset was computed as shown in Table 3.

Table 3. Comparison of clustering algorithms.

Evaluation Round  Sample Size ‘S’ Accuracy (AC/S) :verage
ccuracy
1 10 1
2 30 0.93
Otsu 3 40 0.90 0.88
4 50 0.79
5 100 0.79
6 10 1
7 30 0.83
ISO Data 8 40 0.90 0.81
9 50 0.62
10 100 0.73

2.2.3. Generalized Segmentation Algorithm (GSA)

This section gives the logical statements of all the steps used in conducting the image
processing to achieve the aforementioned objectives. GSA is summarized in Algorithm 1.
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Algorithm 1: Generalized Segmentation Algorithm
Input: Set of Microscopy Images, ‘MI’, Global Intensity Threshold (git), Tile Size = Ts //window
size. Kirsch_Filter_Mask = {Gx, Gy}, {Gx, Gy}, {Gx, Gy}, {Gx, Gy}, {Gx, Gy}, {Gx, Gy}, {Gx, Gy},
(Gx, Gy}
Output: Microorganism Shape Matrix: ‘BO’
1 Initialize Variables: Path of Microscopy Images ‘MD’ folder, filename = ‘f’, Counter ‘C’= 0
2 Compute global standard deviation:
for each Microscopy Image file: ‘MI" in ‘MD’

Irbg = Read Image Matrix (I)

Irg = Normalize, Resize Image Matrix (Irgb)

Gray = Gray_Scale(Irg)

Gray_Std = Compute_Global_Std(Gray)
3 Segment micoorganism:
If Gray_Std (< Global_Std) {

G = Apply_Adaptive_Enchancer (Gray)

CF = Run_2D_ Kirsch_Filter(Kirsh_Filter_Mask,G) //Convolution Filter
BO = Global_Thresholding(git); }
else {
CF = Run_2D_ Kirsch_Filter(G) //Image Derivative Filter
BO = OTSU_Global_Thresholding();

C=C+1
JEnd for

The output of GSA is shown in Table 4. After the completion of image segmentation,
the images are then subjected to the feature extraction process required for building an
automated system for identification and classification of microbes. The extracted features
include Solidity, Eccentricity, EquivDiameter, Extrema [53], Filled Area, Extent, Orientation,
Euler number [54], Bounding box [55], Convex hull, Major and Minor axis [56], Perimeter,
Centroid, Area [57], convex area [58], and radii [58]. In total, twenty-five attributes are
constructed, where the last attribute represents the class. These attributes make a feature
row. Each feature row represents the properties of a blob. Blob is basically the unit based
on which the shape of the microorganism can be understood. These attributes were used
for training machine learning models. The dataset and its related information on all the
attributes is available in the repository [59]. The next section gives detailed information on
the process of automating the tedious task of manual identification.

Table 4. Output of the GSA algorithm.

Microbe Original Contrast Enhanced Microbe Body Extracted Segmented Image

Spirogyra

Pithophora

Yeast
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Table 4. Cont.

Microbe Original Contrast Enhanced Microbe Body Extracted Segmented Image

]

Raizopus

Penicillum

Aspergillus sp

Protozoa

Diatom

Ulothrix

2.3. Classification

Machine model selection is a process of evaluation of machine learning models and
their parameters specific to the goals of automation. The process includes evaluation of dif-
ferent sets of data (training, testing, and validation) and fine tuning with hyperparameters.
In the context of this research work, we have done extensive hyperparameter tuning using
random grid search methods on each machine learning model. For a better understanding
of the evaluation parameters, Table 5 can be referred.

Table 5. Formulae of evaluation parameters.

Metric Formula
isi True Positive
Precision [60] True PosjitiveIJqugse Positive
rue Positive
Recall [60] (True Positive+False Negative)
True Positive+True Negative
Accuracy [60] Positive+Negative
F1-Score [61] 2xPrecisionTruePositiveRate

Precision+TruePositiveRate

Five algorithms: multi-layer perceptron (MLP) [30,62], K-nearest neighbors (KNN) [63,64],
quadratic discriminant analysis (QDA) [33], logistic regression (LR) [64,65], and support
vector machine (SVM) [65,66] are evaluated in terms of accuracy, precision, and recall
performance metrics as the main criteria for finalizing the hyper-parameters and model
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selection. The selection of classifiers is based on the hypothesis that one of these algorithms
or improvised version after hyperparameter optimization will be the most suitable for
classifying the microbes in general with high accuracy and lowest false alarm rate. The
LR was selected for finding if a linear classifier can be used for the said task. The MLP
algorithm is based on multi-layered regression equations. The KNN algorithm computes
class data points based on distance metrics. The SVM assumes that the correlation and
covariance need to be eliminated between the features before it can process. The QDA
completes its task of classification without considering covariance as an impediment. By
using these models and metrics, it is expected that by the end of the evaluation, a stable
and accurate machine model can be constructed using the feedback from the performances
of all the algorithms. Principal component analysis (PCA) [67] was used to realize the
invariant and orthogonal properties of data [68]. It is expected that this process might lead
to the construction of a robust classifier. In the next section, an exhaustive experimentation
for selecting appropriate hyperparameters w.r.t. each machine learning model is discussed.

3. Results

In this section, the outcome of all the steps taken for automating the process of identi-
tying and classifying microbes are discussed. This section gives detailed information about
the iterative progress done for devising modified algorithms that classify ten microbes.
Before we discuss further, it must be noted that there are fair chances of bias in the data.
Collection of a particular species data may be high due to abundance at sampling stations.

The problem of imbalance in the dataset was not addressed using algorithms that
apply sampling from the majority /minority class as it may lead to either overfitting or
underfitting of some class data. Loss of information is another reason for adopting methods
that rely only on hyperparameter tuning [69] for constructing machine models. It was
discovered that scale in terms of geometric properties was different for each microbe. Hence,
normalization of the dataset was done using minmax algorithm [70]. This was followed by
the comparison of two strategies. The first strategy evaluates the PCA-based dataset for
finding the best hyperparameters and the second strategy, uses the mutual information
(MI)-based dataset. The mutual information technique was selected after exploration with
other feature selection techniques such as p-test, chi-square, t-test, and handcrafted features.
These techniques did not impact the accuracy in a positive manner, therefore these methods
were dropped for further investigations. Table 6 gives the comparison between PCA- and
MI-based models.

Table 6. Hyperparameter optimization (PCA-based model vs. MI-based model): A = Accuracy (%), P = Precision (%), R =

Recall (%).
Model Hyper P;ilrameters Best Hyper Parameters Best Hyper Parameters PCA MI
and Their Ranges Found (PCA) Found (MI) A P R A P R
Penalty: ‘12’;
LR f;’l ,"llek:‘f:g[slfjﬁ‘iﬁ?r:e_ar ’, IS)(e)i?él,E:y:ezwton-cg gsi?é::y:ezwton-cg 231 51 232 249 59 249

‘sag’, ‘saga’]

n_neighbors: 1-15;

Weights: [‘uniform’,

‘distance’];

n_neighbors: 3,

n_neighbors: 3,Weights: Weights: distance,

KNN Leaf Size: [1, 3, 51; gllstarriﬁi,nl.ezf_taze: 3, leaf_size: 3, algorithm: 96.1 96.1 962 96.1 96.1 96.0
Algorithm: [‘auto’, 80 - auto kd tree
“kd_tree’]
SVMradial ~8AMMa 108(=2,2,5) o i 100.0, C: 1.0 gamma: 92.0, C: 4.3 96.2 963 963 972 97.3 97.0

C:log(—2,2,5)
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Table 6. Cont.

Model Hyper Parameters Best Hyper Parameters Best Hyper Parameters PCA MI
ode and Their Ranges Found (PCA) Found (MI) A P R A P R
hidden layer sizes:
[(10-50)];
Activation: [‘identity’,
logistic g tanhl 7 reh,l I hidden_layer_sizes: 50, hidden_layer_sizes: 50,
Solver: ['lbfgs’, ‘sgd’, .. ..
‘adam’]; activation: relu, activation: relu,
MLP . solver: lbfgs, alpha: solver: adam, alpha: 296 268 29.7 312 278 317
Alpha: log(-5, 3, 5); . .
Learning Rate: 0.001, learning_rate: 0.002, learning_rate:
/ea & , ate: constant, max_iter: 1000  constant, max_iter: 1000
[‘constant’,
‘invscaling’,’adaptive’];
Max Iteration: [100,
500, 1000]
priors: [None];
reg_param: (0 0.1 0.2 priors: None, priors: None,
QDA 030.40.50.60.7 reg_param: 0.2 reg_param: 0.3 248 101 248 268 111 264
0.80.9)

It can be observed from the process of hyperparameter tuning that the use of PCA
was not useful. This may be attributed to the fact that there is a loss of information when
PCA reduces the dimensions of dataset. Hence, feature selection based on information gain
theory was adopted [71]. This was done by estimating mutual information for each discrete
target class [72]. As per the definition of mutual information metric [73], it is a measure
to calculate dependency between the variables by using non-parametric functions. Non-
parametric methods employed entropy estimation with the help of k-nearest neighbors
(k = 3) distance. The outcome of this method is shown in Table 7.

Table 7. Estimated mutual information for feature selection.

Feature Name

Estimated Mutual Information

Solidity
Eccentricity
EquivDiameter
Extrema
Filled Area
Extent
Orientation
Euler Number
Bounding Box 1
Bounding Box 2
Bounding Box 3
Bounding Box 4
Convex Hull 1
Convex Hull 2
Convex Hull 3
Convex Hull 4
Major Axis
Minor Axis
Perimeter
Convex Area
Centroid 1
Centroid 2
Area
Radii

1.686472
1.669454
1.576661
1.091982
1.606655
1.697518
1.723908
0.539431
1.091185
0.970946
0.656073
0.666515
1.078976
1.08001
1.109029
1.18575
1.748819
1.744697
1.735635
1.68434
1.744533
1.721187
1.578785
2.10396
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It can be observed from Table 7 that the Euler Number, Bounding Box 2, Bounding
Box 3, Bounding Box 4, and Convex Hull 1 carried the lowest level of information gain.
Therefore, these features were eliminated from the final set of extracted features. The
advantage of using this strategy of selecting features for machine learning algorithms
is that it considers total correlation and interaction information for giving the degree of
dependency between multivariate data. This resulted in the increase of performance of all
the algorithms by 1-2% when compared to the PCA-based machine learning model as can
be seen from Table 6. Further tests and evaluation on the MI-based machine learning models
revealed that the maximum possible accuracy of the best performer algorithm (SVM radial)
remains bracketed around 96-97% in terms of accuracy, precision, and recall. The rbf kernel
was chosen because it is most frequently used by contemporary researchers [30,74,75]. It
would be logical to evaluate the other kernels before moving to the improvisation of the
kernel function for improving the performance of the MI-based algorithm. Hence, the
polynomial kernel needs to be evaluated as well. It was assessed till eight degrees but it
could not improve the accuracy and other performance parameters. Therefore, the next step
for building a model with higher accuracy was to design and implement a modified kernel
function of SVM. The premise of the improvisation is based on the feedback obtained from
the hyperparameter tuning process, especially from the behavior of SVM hyperparameters
(gamma, C). In the case of the SVM radial for the MI-based model, the value of gamma = 92
was found by using a random grid-search method. At the same time, it can be observed that
the value of C (regularization parameter) or penalty was kept at 4.3. This way, the highest
possible level of accuracy (97.2%) was achieved. This is a case of high bias and low variance
of data. It allows the classifier to perform with higher numbers of misclassifications. This
case implies that the predictions will be similar to one another but on average, they may
yield inaccurate results. This condition can be avoided by following two steps. In the first
step, modifications in the rbf kernel will be made, hence devising an improvised SVM
(ISVM) model. In the second step, multiple validation rounds will be executed to check the
consistency of the improvised SVM. The advantage of ISVM is that it removes outliers and
extreme values by computing the difference between the first and third quartiles. This way,
the values of each feature were brought close to their respective median by subtracting each
value with inter quartile range (IQR). Median is a robust measure of the central tendency
of any random variable. This step helps to reduce bias in the model as well. The Python
script used to implement the ISVM kernel is given in Table 8.

Table 8. Python script of the modified rbf kernel function.

Python Script Description

The value of IQR is computed on the basis of
quartiles. It is basically the difference between
the g3 and ql. Each quartile is a median
computed using the following rules:

def apply_IQR(X): Given an even 2n or odd 2n + 1 number

[q1,92,93] = ComputeQuartiles(X)
igr =(q3 - q1)
return X-iqr

of values,

first quartile Q1 = median of the n
smallest values,

third quartile Q3 = median of the n
largest values.

The second quartile Q2 is the same as the
ordinary median.

def modified_rbf(X,Y,IQR = True):

Xm = Apply_IQR(X)

K = np.zeros((Xm.shape[0],Y.shape[0]))
for i,x in enumerate(Xm):

for j,y in enumerate(Y):

K[ij] = np.exp(-1*np.linalg.norm(x-y)**2)
return K

This is the definition of the modified rbf kernel
in which; first IQR is computed for each feature
and then the rbf equation is applied.
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To check the consistency of performance for the modified machine learning model,
the experimentation process was further extended by employing 10-fold cross validation.
Table 9 gives the values of the performance metrics used for validating the performance of
ISVM and SVM. Clearly, it can be observed that the modified rbf kernel was able to achieve
2% higher accuracy as compared to the SVM radial.

Table 9. Performance of SVM vs. ISVM.

Accuracy Precision Recall F1-Score
Model ) %) %) %)
SVM 96.1 96.2 96.1 96.1
ISVM 98.2 98.2 98.1 98.1

The better performance of the ISVM can be attributed to the fact that it takes advantage
of the robust statistical method of removing extreme values in each attribute before it
transforms the data points for classification. This function was important since our database
is imbalance in nature. It is preferred that the classifier must have high true positives or
simply high precision as mathematically the precision formula does not consider false
negatives. This has come true in our case as shown in Table 9. In addition, if the algorithms
give wrong results in terms of classification class, the cost may not be high as in the
case of some medical diagnose. Hence, high precision (98.2%) will suffice our purpose.
Recall cannot be disregarded even slightly in the context of our ISVM classifier because
of the same reason: our algorithm is a generalized classifier for multiple categories of
microorganisms. Low recall value will lead to high cost of missing out on a microorganism
and at the same time if a fungi is classified as algae or vice versa, it would further affect the
entire taxonomical hierarchy.

The accuracy metric considers the values of true positives and true negatives while
the F1-score [76] helps to make crucial facts that arise due to the values of false negatives
and false positives. Since, the F1-score is the harmonic mean of recall and precision, it gives
a better idea about the incorrectly classified cases. The F1 score also becomes important
when the distribution of class instances is not equal, as is evident in our case. It can be
observed from Table 9 that 10-fold cross validation done on the basis of the F1-score shows
a high value of 98.1%. From all these values, it can be safely concluded that ISVM is the
most appropriate algorithm for building a generalized classifier for water surface microbes.

4. Discussion

It can be inferred from this research that it is a difficult task to create a generalized
segmentation algorithm for microorganisms that work well for almost all forms of microor-
ganisms, such as fungi, algae, and Eukaryotes. Filters such as Kirsch have been found to
function best in defining and extracting the boundaries of microorganisms. Its combination
with global pixel thresholding techniques such as Otsu improved the accuracy of the seg-
mentation algorithm. In the context of our research, the primary task of the Otsu algorithm
was to cluster pixels that are on the edges of each microorganism and isolate it from its
inner body parts. The generalized segmentation algorithm (GSA) has been validated by
IoU metrics.

An algorithm can only be used for real time if its performance has been validated.
Therefore, in this research, we have used multiple methods to validate each process that
makes the automation of microorganisms stable. For selecting the most accurate and stable
classifier, the model selection process with the help of a 10-fold algorithm was done. This
ensured that there is no wastage of time in evaluating multiple machine learning models at
a later stage. It was found that the usage of PCA for feature engineering and dimension
reduction does not provide any additional advantage and it leads to loss of information.
Hence, a mutual information-based feature selection model was adopted which allowed us
to construct an optimized SVM radial model. However, the hyperparameter tuning report
showed that the SVM radial kernel required some improvisation because the SVM radial
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did not improve its accuracy beyond 97% with the best possible hyperparameters. The
modified rbf kernel with the IQR method provided a higher level of performance. It can
safely be concluded that the strategy followed here yielded excellent results because, in our
research work, domain experts were also available. With the help of domain experts, the
tedious process of manual identification and grouping of microorganisms was simplified.
In the absence of a domain specialist, this work would have required additional resources
and a new stack of algorithms such as active learning [77] and deep learning [78].

5. Conclusions

In summary;, it can be stated that this work is an amalgamation of a newly constructed
microbe segmentation algorithm and an improvised version of the support vector machine.
The generalized segmentation algorithm (GSA) facilitated the generation of high-quality
inputs for machine learning models. This is stated based on rigorous evaluation for the
segmentation process which empirically showed that GSA acquired an overall accuracy of
90% in step 1 (Kirsch filter) and 88% in step 2 (Otsu clustering). An exhaustive grid search
method of hyperparameter tuning ensured that a highly optimized automation process is
adopted. Mutual information feature selection proved to be a very useful technique for
selecting the best possible features and it overcame the inadequacies of PCA and other
feature selection methods. From the performance of all the machine learning algorithms,
it became imperative to modify the SVM algorithm as it could only acquire maximum
accuracy of 96.1%. Hence, improvisation of the rbf kernel was done with the help of the
inter quartile range (IQR). The whole strategy yielded a highly accurate classifier model
with an accuracy of 98.2%. The result of this research work i.e., improvised support vector
machine model (ISVM) can be further serialized with libraries such as joblib. With the help
of a serialized dump of the model, the algorithm can be deployed in the cloud ML (machine
learning) engines such as Google, Amazon Web Services, etc. In the future, it is suggested
that in case the number of instances for microbe images are less, transfer learning [79] may
be adopted.
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