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Abstract: A rolling bearing early fault diagnosis method is proposed in this paper, which is derived
from a refined composite multi-scale approximate entropy (RCMAE) and improved coyote optimiza-
tion algorithm based probabilistic neural network (ICOA-PNN) algorithm. Rolling bearing early
fault diagnosis is a time-sensitive task, which is significant to ensure the reliability and safety of
mechanical fault system. At the same time, the early fault features are masked by strong background
noise, which also brings difficulties to fault diagnosis. So, we firstly utilize the composite ensemble
intrinsic time-scale decomposition with adaptive noise method (CEITDAN) to decompose the signal
at different scales, and then the refined composite multi-scale approximate entropy of the first signal
component is calculated to analyze the complexity of describing the vibration signal. Afterwards,
in order to obtain higher recognition accuracy, the improved coyote optimization algorithm based
probabilistic neural network classifiers is employed for pattern recognition. Finally, the feasibility
and effectiveness of this method are verified by rolling bearing early fault diagnosis experiment.

Keywords: refined composite multi-scale approximate entropy; coyote optimized algorithm; proba-
bilistic neural network; rolling bearing; fault diagnosis

1. Introduction

Rolling bearings are common connecting and fixing parts in rotating machinery,
which have the advantages of high running precision, good substitutability, low price
and scale production [1]. However, due to the influence of alternating load, machining
error, improper installation and other factors, the rolling bearing will be damaged during
the working process. The rotating machine will not work properly, and a catastrophic
accident may even occur [2]. Furthermore, the vibration signals of the rolling bearings are
usually nonlinear and non-stationary with the existence of various nonlinear factors (such
as material strength and skid friction), and early faults are always submerged by strong
background noise, which could increase the difficulty of fault diagnosis [3]. Therefore,
it has become an urgent problem to find effective methods of rolling bearing early fault
feature extraction and pattern recognition. In recent years, the fault diagnosis method
based on machine learning has attracted much attention in the field of rolling bearing early
fault diagnosis. These methods mainly include three steps: feature extraction, descent
and pattern recognition [4,5]. With the development of nonlinear technology, many non-
linear dynamic methods based on statistical parameter estimation have been applied to
extract fault features [6–9]. The most popular technique are correlation dimension and
entropy-based measurement. Nevertheless, reliable estimation of correlation dimensions
requires a long-term time series, which brings great limitations to the analysis of short-term
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vibration signals. Entropy-based measures include sample entropy, fuzzy entropy, permu-
tation entropy, etc. The initial entropy-based measurement only completes a single-scale
analysis, which typically assigns the highest value to highly unpredictable random signals
rather than structurally complex signals. Hence, the single-scale entropy metric could not
physically quantify the complexity of the time series [10]. Costa et al. proposed multi-scale
entropy (MSE) algorithm in [10,11] and applied it to rolling bearing fault diagnosis for
the first time in [12]. According to the MSE algorithm, the original time series is initially
divided into non-overlapping segments with a length of (called proportional factor). Next,
the time series of coarse granularity is obtained by calculating the average value of each
fragment. Finally, the sample entropy of coarse-grained time series at each scale is calcu-
lated. The application of mean square error in feature extraction of mechanical vibration
signal is also successful. The mean square error and adaptive neuro fuzzy inference is
employed to detect rolling bearing faults and determine their severity [13]. Hsieh et al.
utilized the mean square error curve to identify some characteristic defect of the high-
speed spindle [14]. The traditional MSE algorithms will shorten the data set and produce
uncertain short-term data values when large scale factors are utilized. To make up for these
shortcomings, Wu et al. proposed an improved multi-scale entropy to obtain more template
vectors [15]. However, the improved multiscale algorithm greatly increases the computa-
tion time. Later, composite multiscale sample entropy (CMSE) [16] and refined composite
multi-scale sample entropy (RCMSE) [17] are developed for novel coarse-grained processes.
Wang et al. proposed a modified multiscale weighted permutation entropy for rolling
bearing fault diagnosis [18].

It is necessary to employ a classifier when performing pattern recognition in a low-
dimensional feature set. Many classifiers have been proposed and applied to the fault
detection process in rotating machinery, such as expert system [19], artificial neural net-
work [20], and fuzzy logic classifier [21]. However, these classifiers have some drawbacks
(e.g., local optimal solution, low convergence rate and significant overfitting). The above
contents limit their application in pattern recognition rolling bearing fault detection. Prob-
abilistic neural network (PNN) is a supervised neural network that is commonly used
in pattern recognition [22]. Because of its parallel distributed processing, self-learning
and self-organization, the PNN model has good application potential in fault diagnosis.
Compared with traditional neural network learning methods, the PNN model learning
process mainly employs Parzen nonparametric probability density function estimation [23]
and Bayes classification rules [24]. The PNN model will converge to a Bayes classifier if
there are enough training samples.

Machine learning is a growing field that attempts to extract knowledge from data
sets. It is usually in the form of algorithms that predict results. The tasks of machine
learning include classification, regression, clustering, time series prediction and so on. In
the classification task, the ideal prediction result is the class of each instance in the dataset.
In general, the classifier goes through at least two stages: training and validation. The
coyote optimization algorithm (COA), which was introduced by Pierezan and Coelho, is
mainly inspired by the coyotes living in North America [25]. The COA finds a solution
to the optimization problem by learning from the social organization of coyotes and their
adaptation to the environment. The COA is a population-based algorithm divided into
population intelligence and evolutionary heuristics. Furthermore, it has different algorith-
mic structures that focus on social structures and coyote-communicated experiences rather
than just catching prey, similar to other AI algorithms such as grey wolf optimizer [26].
In [25], it suggests that intrinsic factors (gender, social status, and populations to which
coyotes belong) and extrinsic factors (e.g., snow depth, snow hardness, temperature, and
cadaver biomass) influence coyote activity. Hence, the COA mechanism is designed accord-
ing to the social conditions of coyotes, which means the decision variables of the global
optimization problem. From an optimization perspective, each coyote corresponds to a
feasible solution. The quality of each coyote’s social conditions the result of the application
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of the objective function in the social condition. The optimal social condition is the global
solution of the problem.

In contrast to existing researches, a rolling bearing early fault diagnosis model based
on complete ensemble intrinsic time-scale decomposition with adaptive noise (CEITDAN),
refined composite multi-scale approximate entropy (RCMAE) and improved coyote opti-
mization algorithm based probabilistic neural network (ICOA-PNN) is proposed in this
paper. The RCMAE proposed in the paper could reduce the possibility of inducing un-
certain entropy and is well suitable for bearing early fault diagnosis. In the improved
coyote optimization algorithm, we employed a differential evolution algorithm instead
of the traditional greedy iterative algorithm and utilized the dynamic adjustment of the
coyote method to optimize the process of coyote removal and acceptance, which improves
the optimization effect of coyote optimization algorithm. The model consists of three
steps (feature extraction, descent and pattern recognition). Firstly, the original signal is
decomposed by CEITDAN, and the RCMAE, approximate period and approximate en-
ergy are calculated and constructed to construct the original three-dimensional collection.
Finally, this three-dimensional collection automatically identifies fault types as input for
ICOA-PNN machine learning. The fault diagnosis experiment of the rolling bearing shows
that the proposed method has a higher recognition accuracy for bearing conditions under
various working conditions.

The structure of the paper is as follows: Section 2 introduces the principle of CEITDAN
algorithm. Section 3 introduces the RCMAE, approximate period and approximate energy,
and verifies the effectiveness of the algorithm by noise signal analysis experiment. In
Sections 4 and 5, a new fault diagnosis method of rolling bearing is proposed. Section 6
gives the experimental evaluation. We conclude in Section 7.

2. CEITDAN—Based Signal Decomposition

In order to pre-process the noisy signal, this article uses the CEITDAN method to
decompose the signal [27]. The residual component is obtained, white noise is added to the
residual component, and the same operation is performed, until the residual component
is a monotonic function or the extreme points are less than three. The proper rotation
component can accurately define the instantaneous information of the signal and is repeated
several times in this manner.

The core idea of CEITDAN method denoising is that by adding a group of white
noise to the original signal, the added white noise can be adaptively decomposed together
with the noise part of the original signal during the decomposition process. Firstly, proper
rotation components (PRCs) of white noise preprocessed by intrinsic time-scale decom-
position (ITD) are added in different decomposition stages. This process can help ITD to
establish a global scale reference. Then, ITD is used to decompose the noise-added input
signal into a PRC and a residual. Theoretically, according to the filter structure of ITD, most
of the added noise and the signal components approximately proportional to the added
noise are extracted into PRCs. Therefore, there is almost no added noise in the residual
component. CEITDAN calculates the final PRC as the difference between the signal to be
decomposed and the average value of the residual obtained by decomposition. Therefore,
compared with ITD and complete ensemble empirical mode decomposition with adaptive
noise (CEEMDAN), PRC extracted by CEITDAN has a more appropriate scale and contains
less residual noise. In addition, due to the pretreatment of ITD, the increased noise does not
include the local average. This can reduce the number of filtering iterations in each stage.

Step 1. First round of noise addition: ωi
n(t)(i = 1, 2, · · · , I) is the first order proper

rotation component decomposed by ITD which from white noise with a certain SNR,
where I is the number of noise additions, is superimposed onto the original signal x(t). As
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the average value is used as the residue component of the method, then, the first-order
component of the origin signal is obtained as follows:

r1(t) =
1
I

I

∑
i=1

L1

[
β0ωi

n(t) + x(t)
]

(1)

n is the corresponding order of ITD decomposition white noise.β0 is used as β0 =

ε0std(x)/std
(

ω(i)
)

and ε0 the noise-adding amplitude coefficient, Lk[A(t)] represents
the residue component obtained by ITD decomposing signal A(t). A(t) is the signal with
white noise. The proper component at this time are as follows:

PR1 = x(t)− r1(t) (2)

Step 2. Second round of noise addition: The second-order PR components of white
noise ωi(t) are superimposed onto r1(t), and the first-order component of the mixed signal
are obtained by ITD decomposition. The average is used as the second residue component
of this method’s residue component, as follows:

r2(t) =
1
I

I

∑
i=1

L1

[
β1L1

(
ωi(t)

)
+ r1(t)

]
(3)

The second-order proper component obtained at this time are as follows:

PR2 = r1(t)− r2(t) (4)

Step 3. m-th round of noise addition: The (m− 1)-th -order PR components of white
noise ωi(t) are superimposed onto the remaining terms rm−1(t). Then, the first-order
component of the signal with adaptive white noise is obtained by ITD decomposition,
and the average value is taken as the m− th-order residue component of the method, as
follows:

rm(t) =
1
I

I

∑
i=1

L1

[
βm−1Lm−1

(
ωi(t)

)
+ rm−1(t)

]
, ∃Lm−1

[
εωi(t)

]
(5)

The remaining items obtained at this time are as follows:

PRm = rm−1(t)− rm(t) (6)

Step 4. Repeat steps 1–3 several times until the residual component is a monotonic
function or the number of extreme points in this residual component is fewer than three.
The final remaining term is as follows:

rM(t) = rM−1(t)− PRM (7)

At this point, the entire CEITDAN decomposition process ends.
The final shifted terms are as follows:

x(t) =
M

∑
m=1

PRm + rM(t) (8)

Equation (8) elucidates the original signal x(t) as the sum of a series of PR components
and the remainder; thus, it completes the CEITDAN method. The error of reconstructing
the original signal by its decomposition result is theoretically zero.

The decomposition steps of the proposed method are shown in Figure 1.



Entropy 2021, 23, 259 5 of 27
Entropy 2021, 23, 259 5 of 28 
 

Start

Origin signal

Add white 
noise

Add white 
noise

Add white 
noise

ITD decomposition to 
get residue component

ITD decomposition to 
get residue component

ITD decomposition to 
get residue component

Set average to get 
residue 

component

Subtract the residue 
component from the original 

signal to get the proper 
rotation component

Determine if the residue 
component is a monotonic function 

or if there are less than three 
extreme points

Output all 
components

YES

END

Repeat the 
above steps

 
Figure 1. Composite ensemble intrinsic time-scale decomposition with adaptive noise method 
(CEITDAN) decomposition steps. 

3. Feature Extraction Based on Refined Composite Multi-Scale Approximate Entropy 
and Approximate Period and Approximate Energy 

Approximate entropy is a method to measure the complexity of time series, which 
has the advantages of strong anti-interference ability and short data required [28]. Ap-
proximate entropy could measure the complexity of a time series on a single scale, while 
multi-scale entropy could measure the complexity of a time series and detect small 
changes effectively. If the rolling bearing fails, the nonlinear dynamic complexity will also 
change. The mean square error is very suitable for feature extraction in the case of rolling 
bearing failure. However, when the coarse-grained process is employed to estimate the 
mean of each fragment, the dynamic mutation behavior of the time series is neutralized. 
Therefore, the calculated mean square error entropy is biased. The RCMAE algorithm is 
proposed to overcome this shortcoming. Meanwhile, in order to improve the accuracy of 
the bearing fault diagnosis, the RCMAE is extracted with approximate energy and ap-
proximate period [29] as characteristic parameters, and the probability of the unreliable 
entropy value and invalid entropy value appearing as RCMAE using approximate energy 
and approximate period is compensated. 

3.1. Approximate Entropy and Multi-Scale Approximate Entropy 

Figure 1. Composite ensemble intrinsic time-scale decomposition with adaptive noise method
(CEITDAN) decomposition steps.

3. Feature Extraction Based on Refined Composite Multi-Scale Approximate Entropy
and Approximate Period and Approximate Energy

Approximate entropy is a method to measure the complexity of time series, which
has the advantages of strong anti-interference ability and short data required [28]. Ap-
proximate entropy could measure the complexity of a time series on a single scale, while
multi-scale entropy could measure the complexity of a time series and detect small changes
effectively. If the rolling bearing fails, the nonlinear dynamic complexity will also change.
The mean square error is very suitable for feature extraction in the case of rolling bearing
failure. However, when the coarse-grained process is employed to estimate the mean of
each fragment, the dynamic mutation behavior of the time series is neutralized. Therefore,
the calculated mean square error entropy is biased. The RCMAE algorithm is proposed
to overcome this shortcoming. Meanwhile, in order to improve the accuracy of the bear-
ing fault diagnosis, the RCMAE is extracted with approximate energy and approximate
period [29] as characteristic parameters, and use approximate energy and approximate
period to improve the accuracy of fault diagnosis.

3.1. Approximate Entropy and Multi-Scale Approximate Entropy

There is a known time series {x(1), x(2), · · · , x(N)} containing N points. The approx-
imate entropy method is as follows.
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(1) The pattern dimension is determined as m, and the phase space is reconstructed. The
elements in the time series are extracted sequentially to form a vector sequence with
m dimension.

X(i) = {x(i), x(i + 1), · · · , x(i + m− 1)}, i = 1, 2, · · · , N −m + 1 (9)

(2) The distance between vector X(i) and X(j) is d[X(i), X(j)], which defined as the
absolute value of the maximum difference between the two corresponding elements.
That is,

d[X(i), X(j)] = max|x(i + k)− x(j + k)|, k = 0, 1, · · · , m− 1; i, j = 1, 2, · · · , N −m + 1 (10)

(3) The threshold of similar tolerance r is given. Define the values in d[X(i), X(j)] less
than r as n, and calculate its ratio to the number of vectors.

Cm
i (r) =

n
N −m + 1

, i, j = 1, 2, · · · , N −m + 1, i 6= j (11)

(4) Define Φm(r) as the self-correlation of sequence:

{Xi}Φm(r) =
1

N −m + 1

N−m+1

∑
i=1

ln Cm
i (r) (12)

(5) Add 1 to the pattern dimension m and repeat above steps, we can get Φm+1(r).
(6) Define ApEn as the approximate entropy of the time series, then:

ApEn(m, r) = Φm(r)−Φm+1(r) (13)

The multi-scale approximate entropy is the approximate entropy at different scales.
The calculation process is as follows [10]:

(1) The coarse-grained data sequence
{

y(s)j

}
is obtained by coarse-grained processing of

time sequence {x(i), i = 1, 2, · · · , N}.

y(s)j =
1
s

js

∑
i=(j−1)s+1

xi, j = 1, 2, · · · , N/s (14)

where s is a scale factor. The raw data sequence is changed into coarse grain sequence
with the length of N/s under different s.

(2) Calculating the approximate entropy of coarse grain sequence at each scale, the
change of approximate entropy of raw data at different s could be obtained.

3.2. Refined Composite Multi-Scale Approximate Entropy

The RCMAE algorithm consists of two main steps. The calculation steps are as follows:

(1) For raw data {x(i), i = 1, 2, · · · , N}, the k-th coarse-grained sequence

y(s)k =
{

y(s)k,1 , y(s)k,2 , · · ·
}

is given by the following formula:

y(s)k,j =
1
s

k+js−1

∑
i=k+(j−1)s

xi, j = 1, 2, · · · , N/s, j = 1, 2, · · · , k = 1, 2, · · · , s (15)

(2) For each scale s, the entropy values of RCMAE are defined as follows.

ERCMAE(X, m, n, s) = Φm
(r)−Φm+1

(r) (16)
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Φ(r) =
1
s

s

∑
k=1

/Φ(t)
k (17)

where Φ(r) is the average value of the self-correlation of coarse-grained data sequence
y(s)k =

{
y(s)k,1 , y(s)k,2 , · · ·

}
.

3.3. Approximate Energy and Approximate Period

It can be seen from the original data that energy and period are important parameters
of the signal. We propose a method to calculate approximate energy and approximate
period. This is a nonlinear dimension reduction method. The approximate energy and the
approximate period are the approximate energy calculation process as follows.

Take the first mode component to get its lp model as follows.

||s||lp =

(
1
N

N

∑
i=1

s(i)p

) 1
p

(18)

The calculation of approximate p period of sequence X is:

Step 1. Normalization.

X =
x−min(x)

max(x)−min(x)
(19)

Step 2. Find the p power of the sequence:

Xp =
[
X(1)p, . . . , X(i)p, . . . , X(N)p] (20)

Step 3. Calculate the autocorrelation coefficient:

pXxcorr = xcorr(Xp) (21)

Xxcorr = xcorr
(

X1
)

(22)

Step 4. Normalize pXxcorr and Xxcorr.
Step 5. Calculate the autocorrelation coefficient of pXxcorr and Xxcorr.
Step 6. A simplified pattern sequence is obtained by dividing pXxcorr and Xxcorr

X′ =
pXxcorr

Xxcorr
(23)

Intercept the [−N, N] of sequence X′.
Step 7. Calculate the number of approximate periods and define it as approximate p

periods of a sequence. ||X||l2 =

(
∑n

i=1 X(n)2

n

) 1
2

represents the energy of the signal in a

sense, and it could be utilized to measure the energy of vibration to a certain extent, that is
approximate energy.

The reason for choosing approximate period and approximate energy is for more
accurate fault diagnosis. According to literature [27], a single variable will cause misjudg-
ment. Therefore, this paper chooses to add two parameters of approximate period and
approximate energy based on RCMAE.

3.4. Experimental Analysis of Noise Signal

Four parameters in the RCMAE need to be determined. They are embedded dimension
m, respectively Signal length N, autocorrelation r and scale operator s. According to [17], m
and s are set to 2 and 25 respectively. To make the approach more intuitive, we calculated
autocorrelation coefficient and autocorrelation coefficient by employing a set of outer ring
fault data from the West Reserve University bearing database, as the results shows in Figure 2.
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Figure 2. Autocorrelation coefficient of X.

When the original signal is impacted by abnormal signal, it will produce more energy
signal locally. Abnormal signals are also periodic. Utilizing Xp, the larger part of the signal
will be larger when p > 1. The influence of the factor of period in the final sequence will
be expanded by taking the correlation sequence. When the autocorrelation sequence of
Xp and X1 is divided, the periodic parameters of our signal will be highlighted. Through
the division of the autocorrelation coefficient of X and the correlation coefficient of Xp, the
simplified pattern sequence could be obtained as follows.

As shown in Figure 3, this is a special observation. Our signal is greatly simplified,
and the periodicity of the signal is obviously extracted. Two other sets of fault data with
different outer ring and different crack size are employed to carry out the above simulation.
Here is the p pattern sequence of the three fault signals in the following experimental data,
as shown in Figure 4.

Entropy 2021, 23, 259 8 of 28 
 

we calculated autocorrelation coefficient and autocorrelation coefficient by employing a 
set of outer ring fault data from the West Reserve University bearing database, as the re-
sults shows in Figure 2. 

 
Figure 2. Autocorrelation coefficient of X . 

When the original signal is impacted by abnormal signal, it will produce more energy 
signal locally. Abnormal signals are also periodic. Utilizing pX , the larger part of the 
signal will be larger when 1p > . The influence of the factor of period in the final sequence 
will be expanded by taking the correlation sequence. When the autocorrelation sequence 
of pX  and 1X  is divided, the periodic parameters of our signal will be highlighted. 
Through the division of the autocorrelation coefficient of X  and the correlation coeffi-
cient of pX , the simplified pattern sequence could be obtained as follows. 

As shown in Figure 3, this is a special observation. Our signal is greatly simplified, 
and the periodicity of the signal is obviously extracted. Two other sets of fault data with 
different outer ring and different crack size are employed to carry out the above simula-
tion. Here is the p  pattern sequence of the three fault signals in the following experi-
mental data, as shown in Figure 4. 

 
Figure 3. p -pattern sequence. 

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Figure 3. p-pattern sequence.

Entropy 2021, 23, 259 9 of 28 
 

 
Figure 4. p -mode sequence of three abnormal signals. 

4. ICOA-PNN Pattern Recognition 
In order to realize the intelligent fault diagnosis of rolling bearing, it is necessary to 

utilize classifier to identify the fault type. PNN classifier based on Bayesian strategy has 
good computational power and does not require backpropagation optimization parame-
ters and training weights. It is applied to rolling bearing pattern recognition in this paper. 
There is an important parameter (i.e., the smoothing factor σ ) that needs to be preset first 
before using the PNN. The smoothing factor σ  greatly affects the recognition ability of 
probabilistic neural network models. Clearly, these two parameters have a great influence 
on PNN final pattern recognition results. To improve the PNN’s fault recognition ability, 
this section proposes an ICOA-PNN algorithm that uses the ICOA algorithm to determine 
the best parameters. 

4.1. Coyote Optimization Algorithm 
The COA, proposed by Pierezan et al. in 2018, is a new intelligent optimization algo-

rithm that could simulate coyote social life, growth, death, group expulsion and ac-
ceptance [25]. COA divides the population into several subgroups through random 
grouping. It can be found that COA could achieve better optimization results in bench-
mark function optimization. By determining the coyote of the sub-group and cultural 
trends and randomly selecting two coyotes, these four factors will affect the growth of the 
coyotes, and we can then adjust the growth process based on the social adaptability of the 
coyotes. The birth of coyotes is affected by two randomly selected fathers and environ-
mental variation. In terms of social adaptability, if the newborn coyote is better than the 
old and incompetent coyote, the old coyote dies; otherwise, the newborn coyote dies. 
Among the subgroups, according to a certain probability, some coyotes will be driven 
away by the group and accepted by other groups, thus changing the grouping state of the 
coyotes. Through the continuous evolution of the process of growth, death, expulsion, 
and acceptance, the coyote which is the most suitable for the social environment is ob-
tained as the best solution to the optimization problem. 

In COA, each coyote represents a candidate solution, and each solution vector is com-
posed of coyote social state factors. These state factors include coyote internal and external 
factors, each state factor represents a decision variable, D  state factors constitute a solu-
tion vector with D  decision variables, and each coyote is measured by social adaptabil-
ity. The COA is mainly divided into four stages: the random initialization and random 
grouping of suburban wolves, the growth of coyotes in the group, the life and death of 
the coyotes, and the group expulsion and acceptance of the coyotes. 

Figure 4. p-mode sequence of three abnormal signals.



Entropy 2021, 23, 259 9 of 27

4. ICOA-PNN Pattern Recognition

In order to realize the intelligent fault diagnosis of rolling bearing, it is necessary to
utilize classifier to identify the fault type. PNN classifier based on Bayesian strategy has
good computational power and does not require backpropagation optimization parameters
and training weights. It is applied to rolling bearing pattern recognition in this paper.
There is an important parameter (i.e., the smoothing factor σ) that needs to be preset first
before using the PNN. The smoothing factor σ greatly affects the recognition ability of
probabilistic neural network models. Clearly, these two parameters have a great influence
on PNN final pattern recognition results. To improve the PNN’s fault recognition ability,
this section proposes an ICOA-PNN algorithm that uses the ICOA algorithm to determine
the best parameters.

4.1. Coyote Optimization Algorithm

The COA, proposed by Pierezan et al. in 2018, is a new intelligent optimization
algorithm that could simulate coyote social life, growth, death, group expulsion and
acceptance [25]. COA divides the population into several subgroups through random
grouping. It can be found that COA could achieve better optimization results in benchmark
function optimization. By determining the coyote of the sub-group and cultural trends and
randomly selecting two coyotes, these four factors will affect the growth of the coyotes, and
we can then adjust the growth process based on the social adaptability of the coyotes. The
birth of coyotes is affected by two randomly selected fathers and environmental variation.
In terms of social adaptability, if the newborn coyote is better than the old and incompetent
coyote, the old coyote dies; otherwise, the newborn coyote dies. Among the subgroups,
according to a certain probability, some coyotes will be driven away by the group and
accepted by other groups, thus changing the grouping state of the coyotes. Through the
continuous evolution of the process of growth, death, expulsion, and acceptance, the coyote
which is the most suitable for the social environment is obtained as the best solution to the
optimization problem.

In COA, each coyote represents a candidate solution, and each solution vector is com-
posed of coyote social state factors. These state factors include coyote internal and external
factors, each state factor represents a decision variable, D state factors constitute a solution
vector with D decision variables, and each coyote is measured by social adaptability. The
COA is mainly divided into four stages: the random initialization and random grouping of
suburban wolves, the growth of coyotes in the group, the life and death of the coyotes, and
the group expulsion and acceptance of the coyotes.

(1) Initialize and group randomly. lbj Here, we set parameters such as the number of
suburban wolves Np, the number of suburban wolves in the group Nc, and the max-
imum number of iterations Ngen. The initial social state factors of each coyote are set
immediately because COA is a random algorithm, as shown in Formula (24). The social
adaptability of brown coyotes was calculated and randomly divided into groups:

socj = lbj + rj ×
(
ubj − lbj

)
(24)

where lbj and ubj denote the lower and upper bounds, respectively, of the j state factor
of the coyotes; j = 1, 2, · · · , D; and rj is a random number with uniform distribution
in [0, 1].

(2) The growth of coyotes in the group. Here, we determine the optimal coyote alpha in
the group, calculate the cultural trends of the group, randomly select two coyotes, and
affect the growth of coyotes using these four factors. The calculation of the cultural
trends of the group is shown in Formula (25):

cultj = median(Aj) (25)

where A is a matrix with Nc rows and D rows and columns, which represents Nc
solution vectors; Aj represents the A column of matrix j; and median represents the
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median. In the process of coyote growth, we first calculate the difference δ1 between
the best coyote alpha in the group and one randomly selected coyote in the group,
along with the cultural trend between the group and the other random coyote in
group δ2, as shown in Formula (26). Then, the coyotes in the group grow under the
influence of δ1 and δ2, as shown in Formula (27):

δ1 = Lbest − socr1, δ2 = cult− socr2 (26)

where r1 and r2 represent two different random coyote markers, and Lbset represents
the best coyote alpha coyote in the group:

new_socc = socc + s1 × δ1 + s2 × δ2 (27)

where s1 and s2 are random weights of δ1 and δ2, respectively; s1 and s2 are random
numbers with uniform distribution in [0, 1]. After each coyote in the group grows,
the algorithm calculates the social adaptability and adopts greedy selection, as shown
in Formula (28). By retaining the high-quality coyotes to participate in the growth of
the other coyotes in the group, the convergence speed of the algorithm is accelerated:

socc =

{
new_socc, new_ f itc < f itc

socc, otherwise
(28)

(3) Life and death of coyotes. Two important evolution processes in nature are birth and
death. In COA, the ages of the coyotes are measured in years. After each group of
coyotes grows, a newborn coyote is born. The births and deaths of the coyotes are
shown in Algorithm 1. The birth of new coyotes is influenced by the social conditions
and social environments of two randomly selected parents. Newborn coyotes are
produced in the manner shown in Formula (29):

pupj =


soccr1

j , rndj < Psorj = j1
soccr2

j , rndj ≥ Ps + Paorj = j2
Rj, otherwise

(29)

where cr1 and cr2 are two randomly different coyotes in group p; j1 and j2 are two
random dimensions of newborn coyotes; Ps is the dispersion probability; and Pa is
the association probability, as shown in formula (30). Here, scattered association
probability affects the diversity of newborn coyotes; Rj is the random number of the
j dimension of the decision variable; and rndj is the random number with uniform
distribution on [0, 1],as shown in Algorithm 1:

Ps =
1
D

, Pa =
1− Ps

2
(30)

(4) Coyotes are driven away and accepted. At first, the coyotes are randomly assigned
to each group, but some of the coyotes leave and join other groups. The probability
of coyotes being expelled and accepted by the group is expressed by Pe, as shown in
Formula (31). This mechanism facilitates the exchange of information among COA
groups and promotes the interactions between coyotes among species:

Pe = 0.005× N2
c (31)
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Algorithm 1. birth and death of coyotes

Start
Calculate ω and ϕ

If ϕ = 1
Then, the newborn coyote survives, the only coyote in ω dies, and the age of the superior coyote
is 0.
If ϕ > 1
The newborn coyote survived, the oldest coyote with the worst social adaptability in ω died, and
the age of the excellent coyote was 0
Otherwise
The newborn coyote died
End

After initialization and random grouping, the growth of coyotes, the life and death of
coyotes, and the expulsion and acceptance of coyotes are carried out successively. If the iteration
termination condition is reached, the optimal coyote is output; otherwise, jump to (3).

As can be seen from the above steps, COA has the following advantages: (a) COA
has a better search model and framework. Coyotes are randomly divided into several
sub-groups, and cultural communication is carried out through expulsion and acceptance
after all groups of coyotes grow. Compared with algorithms such as PSO, this search model
and framework has stronger exploration ability. (b) COA guides the growth of coyotes
through wolves and cultural trends. This algorithm has strong local search ability. (c) COA.
The generation of newborn coyotes emerges from the joint action of two randomly selected
parents, the coyotes, and random mutations in the social environment, so the algorithm
has certain global search ability. (d) The COA updates each coyote in the group. Compared
with the particle swarm optimization (PSO) with a similar structure, the update method for
COA is simple. (e) The COA was randomly grouped after initialization, and the coyotes in
the group were randomly expelled and accepted, allowing the information between the
groups to be exchanged.

COA shows strong optimization ability in the process of solving optimization prob-
lems. However, COA is a recent algorithm and needs to be improved and perfected. For
example, there are the following problems in solving complex optimization problems:
(a) The growth process of coyotes in COA affects the growth of coyotes by calculating
the differences between the intra-group alpha coyote and the cultural trends and random
selection of two coyotes in the group; moreover, the convergence speed of the algorithm is
slow. (b) When guided by the intra-group alpha coyote and group culture trend, the intra-
group alpha coyote and group culture trends may be the local optimal solution, leading
to the local optimal of the algorithm. (c) The COA using the dynamic greedy algorithm
accelerates the convergence speed to a certain extent but increases the probability of falling
into the local optimal.

4.2. Probabilistic Neural Network (PNN)

The PNN algorithm belongs to a supervised learning pattern recognition algorithm in
the field of machine learning. The PNN algorithm principle is mainly based on Bayesian
minimum risk decision theory and artificial neural network (ANN) model. The probability
density of sample population distribution is calculated by Parzen window estimation
method to achieve the purpose of pattern classification. The learning process could be
summarized as follows.
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(1) The feature matrix of learning samples is normalized first and the number of training
samples for each fault is set as p. The feature vector dimension of each sample is m
and the input feature matrix is recorded as X.

X =


x11 x12 · · · x1m
x21 x22 · · · x2m

...
...

. . .
...

xp1 xp2 · · · xpm


p×m

(32)

Calculate the module of each eigenvector in the input matrix and the matrix B is obtained.

B =

[
1/

√
n
∑

k=1
x2

1k 1/

√
n
∑

k=1
x2

2k · · · 1/

√
n
∑

k=1
x2

pk

]
(33)

Combine with (32) and (33), the normalized matrix C is obtained.

C = Bp1
[

1 1 · · · 1
]

1pXpm

=



x11/

√
n
∑

k=1
x2

1k x12/

√
n
∑

k=1
x2

1k · · · x1m/

√
n
∑

k=1
x2

1k

x21/

√
n
∑

k=1
x2

2k x22/

√
n
∑

k=1
x2

2k · · · x2m/

√
n
∑

k=1
x2

2k

...
...

. . .
...

xp1/

√
n
∑

k=1
x2

pk xp2/

√
n
∑

k=1
x2

pk · · · xpm/

√
n
∑

k=1
x2

pk


(34)

(2) The normalized sample data is input into the mode layer of probabilistic neural network.
Assuming that the input sample matrix to be identified is p×m, the normalized matrix
is such as Formula (34). Calculate the Euclidean distance between the sample matrix D
and the training sample X. The operation process is as (35) and (36).

D =


d11 d12 · · · d1m
d21 d22 · · · d2m

...
...

. . .
...

dp1 dp2 · · · dpm

 (35)

E =



√
n
∑

k=1
|d1k − c1k|2

√
n
∑

k=1
|d1k − c2k|2 · · ·

√
n
∑

k=1
|d1k − cmk|2√

n
∑

k=1
|d2k − c1k|2

√
n
∑

k=1
|d2k − c2k|2 · · ·

√
n
∑

k=1
|d2k − cmk|2

...
...

. . .
...√

n
∑

k=1

∣∣∣dpk − c1k

∣∣∣2 √
n
∑

k=1

∣∣∣dpk − c2k

∣∣∣2 · · ·
√

n
∑

k=1

∣∣∣dpk − cmk

∣∣∣2



=


E11 E12 · · · E1m
E21 E22 · · · E2m

...
...

. . .
...

Ep1 Ep2 · · · Epm



(36)
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(3) Utilizing the radial basis function as the activation function. The normalized sample
to be identified and the training sample are activated to obtain the initial probability
matrix P.

P =


e−E11

2σ2 e−E12
2σ2 · · · e−E1m

2σ2

e−E21
2σ2 e−E22

2σ2 · · · e−E2m
2σ2

...
...

. . .
...

e
−Ep1
2σ2 e

−Ep2
2σ2 · · · e−Epm

2σ2

 =


P11 P12 · · · P1m
P21 P22 · · · P2m

...
...

. . .
...

Pp1 Pp2 · · · Ppm

 (37)

(4) After the above steps, the output value of the mode layer is calculated. According to
(37), the initial probability sum of which fault type belongs to the identified sample in
the probabilistic neural network is calculated. The number of fault types representing
the training samples, each of which is k.

S =



k
∑

l=1
P1l

2k
∑

l=2
P1l · · ·

m
∑

l=m−k+1
P1l

k
∑

l=1
P2l

2k
∑

l=2
P2l · · ·

m
∑

l=m−k+1
P2l

...
...

. . .
...

k
∑

l=1
Ppl

2k
∑

l=1
Ppl · · ·

m
∑

l=m−k+1
Ppl


=


S11 S12 · · · S1c
S21 S22 · · · S2c

...
...

. . .
...

Sp1 Sp2 · · · Spc

 (38)

(5) According to the sum of the initial probability, a maximum probability of the i-th
sample to be identified to class j could be calculated. PNN is a classification network
model which employs training samples to calculate the maximum estimated probabil-
ity. For probabilistic neural networks, when the training sample is known, that is, the
number of neurons in the pattern layer is determined, once the smoothing factor σ is
determined, the parameters and structure of the PNN network are also determined.
Therefore, improving the ability of probabilistic neural network fault identification
could optimize the parameters of the smoothing factor of the PNN network.

4.3. Improved Coyote Optimization Algorithm Based on Probabilistic Neural Network
(ICOA-PNN)

In order to avoid the greedy algorithm from falling into the local optimal solution,
the improved method proposed in this paper optimizes the iterative greedy algorithm in
the growth of the coyotes in the group in the traditional coyote optimization algorithm
for the survival of the fittest and the coyote’s life and death two parts, using differential
evolution algorithm Substitute. In order to improve the operability of the traditional coyote
optimization algorithm, this paper uses the dynamic adjustment of the coyote within the
group to replace the coyote in the traditional coyote optimization algorithm. The ICOA
consists of two steps: parameter initialization, coyote swarm and coyote growth.

Step 1: Set parameter initialization and random initialization of coyote groups. Set
parameters, such as coyote group size N, coyote group number Np, the coyotes’ number
in each group Nc and MaxDT, where N = Nc × Np. Then initialize the coyote group
randomly. The randomization operation of j-th dimension of c-th coyote in p-th group is
described below. Finally, the social fitness value f it of each coyote soc is calculated, see
another formula.

scoc,j = lbj + r×
(
ubj − lbj

)
(39)

f itc = f (socc) (40)

where lbj and ubj represent the lower and upper bound of the coyotes’ j-th dimensional
social state factor. j = 1, 2, · · · , D. D is search space dimension. r is a random number
uniformly distributed in [0, 1]. f is adaptation function.
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Step 2: Effects of the optimal coyote alpha, group culture trends cult and two randomly
selected coyotes cr1, cr2 on coyotes growth. That is, the growth of coyotes in the group is
affected by σ1 and σ2. Equation (41) is the calculation of cult. The median of all coyotes
corresponding to social factors in each factor group (the sequence of social factors after
ranking), so cult is also called the median coyote. Equation (42) is the calculation of σ1 and
σ2. Equation (43) is the growth of coyotes.

cultj =

{
O(Nc+1)/2,j Nc is odd(

ONc/2,j + O(Nc+1)/2,j

)
/2 Nc is even

(41)

σ1 = alpha− soccr1

σ2 = alpha− soccr2

σ3 = GP− soccr1

(42)

new_soc1 = soc + rn1 × σ3 + rn2 × σ2 (43)

GP is the current global optimal coyote, which representing the difference between a
randomly selected coyote (cr1) and GP in the group. rn1 and rn2 are random numbers
generated by a Gaussian (normal) distribution with 0 mean variance. new_soc1 represents
new solutions generated by the growth of each coyote within the group under the combined
action of σ2 and σ3.

Then the differential evolution is employed to recombine the population evolution
according to the differences between individuals to obtain a competitive intermediate
population. The offspring and fathers obtain the next generation population through
competition and are more competitive. The difference method is as follows:

Step 1: Variation. Select two different individuals Xr2(t) and Xr3(t). Combining them
with Xr1(t), the individuals to be mutated after the difference scaling.

Di(t + 1) = Xr1(t) + F× (Xr2(t)− Xr3(t)) (44)

where t is the current number of iterations. F is the mutation operator in [0, 2]. r1, r2, r3 are
random integers in [1, N] that are not equal to each other and are not i. N is population size.

Step 2: Cross-cutting. Determining the mutation gene is provided by D(t + 1) or
X(t + 1) by comparing the crossover operator with the random number. The crossover
process is as follows.

Uij(t + 1) =
{

Dij(t + 1) i f −rand ≤ CR or j = rand(1, n)
Xij(t + 1) i f −rand > CR or j 6= rand(1, n)

(45)

where CR is a cross operator in [0, 1]. rand is a random number in [0, 1].
Step 3: Selection. The competition between the middle individual U(t + 1) and

X(t + 1) is obtained by mutation and cross operation. If the parent is superior to the newly
acquired offspring, the parent is retained to the next generation, otherwise the offspring is
retained to the next generation. The individual selection of coyotes is shown in (46).

Xi(t + 1) =
{

Ui(t + 1) f (Ui(t + 1)) ≤ f (Xi(t))
Xi(t) f (Ui(t + 1)) > f (Xi(t))

(46)

The COA has multiple parameters to be adjusted, which is not easy to operate. Among
the improved COA, there are two main parameters, Nc and Np, which have great influence
on the optimization performance. When N is fixed, Np = N/Nc if Nc is certain. That is, the
bigger the Np, the smaller the Nc and growth operations, while the effect of global solution
is enhanced group by group, and mining is strong. In order to improve the operability of
the COA, the parameters Np and Nc are dynamically adjusted in this paper. Set N = 100,
then Np and Nc should be the factor of 100. According to [25], the number of wolves in each
group could not exceed 14, so Nc could only be 4,5 and 10. Considering that it takes at least
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three coyotes to grow, including two randomly selected coyotes and the best coyotes in the
group, Nc > 3. When Nc = 4, the optional coyote range is limited, so the most likely values
of Nc are 5 and 10. The dynamic adjustment parameter scheme is shown in Algorithm 2.
The pseudo-code for dynamically adjusting parameters Nc and Np is as follow.

Algorithm 2. Dynamically adjust parameters

1. IF in later period of searching
2. Nc = 5
3. ELSE in early period of searching
4. Nc = 10
5. END IF
6. Np = N/Nc and random grouping

During the later period of searching, Nc = 5, then Np = 20 The number of groups
enhances the positive feedback of the global solution and the local search ability is enhanced.
During the early period of searching, the number of groups is small, the positive feedback
of global solution is weakened, and the global search ability is enhanced. The dynamic
adjustment of coyote numbers’ parameters in the inner suburb of the group not only
improves the maneuverability, but also could better balance the exploration and mining
ability. In addition, random grouping after dynamic adjustment of parameters could save
the coyote group removal and acceptance process, and there is no need to adjust Pe, which
could improve the operability.

As above, a new ICOA-PNN classifier is designed in the paper in view of the ad-
vantages of the improved coyote optimization algorithm and PNN. Since both the COA
algorithm and the PNN algorithm have good robustness [22,25], the ICOA algorithm
proposed in this paper simplifies the process of the COA algorithm without changing
its robustness, so the ICOA-PNN method proposed in this paper inherits the above two
methods. The advantages of strong robustness also have better robustness. The description
is as follows.

(1) Data preprocessing. Data sets are divided into training sets and test sets. The train-
ing set and the test set are normalized to [0, 1]. Employing the following formula:
v′ = (v−min)/(max−min), where v and v′ represent the original and normalized
feature sets respectively. The max and min represent the maximum and minimum
eigenvalues respectively.

(2) Initialize the number of coyotes to 100. The maximum number of iterations is 1000.
Coyote parameters are selected as random numbers between [−1, 1].

(3) Calculate the fitness value of each coyote. To evaluate the quality of each coyote, the
average error recognition rate of the training sample is defined as fitness function.
This average error recognition rate is achieved by following the triple cross validation
process. Given the factors, the PNN parameter optimization problem is formulated
as the problem of minimizing fitness functions.

(4) Select the adaptive optimal suburban coyote in the current iteration and consider its
location as the current target location T.

(5) Normalize the distance between coyotes to [1, 4]. The location of each coyote is
updated in each iteration. Update the fitness values for each coyote according to
Formula (40). If the updated coyote fitness value is better than the target, the updated
coyote will replace the previous coyote. Otherwise, the previous coyotes continue to
update.

(6) Determine whether the iterative stop condition is satisfied. If the maximum number
of iterations is reached, the loop will terminate and the best target position cbest is the
output. Otherwise, the algorithm returns to step (2) until the iterative stop condition
is satisfied.

(7) Establish the best PNN prediction model by cbest and then identify the test data set.

The flowchart of ICOA-PNN is shown in Figure 5.
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5. The Process of Fault Diagnosis

A new rolling bearing fault diagnosis method based on the advantages of RCMAE
and approximate period, approximate energy and ICOA-PNN is proposed in this section.
Figure 6 is the flow chart of the proposed rolling bearing fault diagnosis method. The
process is as follows.

(1) Collect the vibration signal of rolling bearing under different working conditions by
acceleration sensor and utilize CEITDAN to decompose it.

(2) Extract the first mode components with the largest correlation coefficient to calculate
the RCMAE value. The approximate energy and period of the first mode component
are also extracted.

(3) The fault feature set is randomly divided into training sample set and test sample set.
The training samples are input into the ICOA-PNN classification for establishing PNN
best prediction model. The test samples are entered into the ICOA-PNN prediction
model for pattern recognition work.

Due to the decomposition principle of CEITDAN method, the paper chooses the first
PRC with the largest correlation coefficient. In the process of decomposing the signal
in the CEITDAN method, the mode components are arranged from high frequency to
low frequency, and the fault characteristic frequency is generally contained in the mode
component with larger correlation coefficient [27], so in order to improve the calculation
efficiency, the characteristic parameter dimension is reduced, and then the selection. The
first PRC is calculated for RCMAE value, approximate period and approximate energy.
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6. Experimental Research

Case I: CWRU database fault diagnosis
To test the ICOA-PNN performance of the classifier, the experimental data of the

rolling bearings are extracted from the CWRU database (see Table 1 for a specific descrip-
tion). The complete experimental platform is shown in Figure 7. The bearing parameters
are shown in Table 2. In this experiment, operating conditions of the speed system set
to 1797 rpm/min and the sampling frequency is set to 12 K. Firstly, decompose signals
by CEITDAN. The first component contains the most important information about vibra-
tion. These abnormal faults will cause the sampling data of the system to deviate from
the normal noise. The energy of abnormal vibration is also mainly reflected in the main
component of the signal.

Each component’s signature features include RCMAE values, vibration period and
vibration energy. We choose the approximate energy (i.e., the energy of the abnormal signal)
and approximate period (i.e., the frequency of occurrence of the abnormal signal) of the
RCMAE value of the first PRC in the CEITDAN decomposition result. For the purpose of
verifying the superiority of the proposed optimization PNN method and feature parameter
selection, they are compared with PNN, particle swarm optimization based probabilistic
neural network (PSO-PNN), firefly algorithm based probabilistic neural network (FA-PNN),
chicken swarm optimization based probabilistic neural network (CSO-PNN) and grey wolf
optimization based probabilistic neural network (GWO-PNN) respectively. Figure 8 shows
the time domain waveforms of six working conditions of rolling bearings. Apparently,
it is not easy to distinguish the working state of rolling bearing based on time domain
waveform. Given the factors, the proposed method is applied to the fault diagnosis process.
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Table 1. Introduction to the six working conditions of rolling bearings.

Data Set Number Fault Type Fault Size

130.mat Outer ring 0.1778 mm
197.mat Outer ring 0.3556 mm
234.mat Outer ring 0.5334 mm
209.mat Inner ring 0.5334 mm
222.mat Roller 0.5334 mm
97.mat Normal -
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The PNN used in this paper is divided into five layers, and the number of feature
input layers is 3. The output classification results are 4 categories: normal, inner ring
fault, outer ring fault, rolling body fault. The maximum number of iterations of the coyote
algorithm is 1000 and the coyote population is 100. It is randomly divided into 10 groups
and the parameters are initialized to random numbers between [−1, 1]. In order to verify
the superiority of the method proposed in the paper, two kinds of classification are carried
out. Firstly, three different outer ring fault sizes are classified, and then the different fault
locations and normal states are classified.

In addition, according to Figure 9, the following results can be obtained. Figure 10
shows that the final average fitness value (i.e., average error recognition rate) of ICOA-PNN
classifiers under three different outer ring fault sizes is significantly lower than that of other
optimized PNN classifiers. It confirms the effectiveness and feasibility of the proposed
algorithm for PNN parameter optimization. Firstly, the average recognition accuracy of the
PNN classifier based on optimization is significantly higher than that of the original PNN
classifier, which indicates that the PNN classifier based on optimization could overcome
the problem of parameter selection of the original PNN classifier. Secondly, compared
with other PNN classifiers based on optimization, ICOA-PNN classifier has the highest
average recognition accuracy for test samples, which verifies its superiority over other
PNN classifiers based on optimization.

The different colors in Figure 11 represent different outer ring fault sizes, and the
outer ring fault sizes correspond to those shown in Table 1. Figure 11 shows that in 3D
space, three different outer ring fault sizes are clearly separated from each other, and
the aggregation of each working condition is better. Next, the feature set is input to the
ICOA-PNN classifier for pattern recognition, and the results are shown in Table 3. It shows
that the average recognition accuracy of 3600 test samples is 94.90%.
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Table 3. Average recognition accuracy based on optimized probabilistic neural network (PNN) and
unimproved PNN under different outer ring fault sizes.

Method Accuracy (%)

ICOA-PNN 94.90
PSO-PNN 93.90
FA-PNN 93.10

CSO-PNN 93.40
GWO-PNN 93.45

PNN 92.55

The above experimental results of rolling bearing fault diagnosis fully confirm the supe-
riority of fault diagnosis methods based on RCMAE and approximate energy, approximate
period, and ICOA-PNN. Similarly, it is obvious that the pattern recognition effect of ICOA-
PNN is obviously better than that of PNN, PSO-PNN, FA-PNN, CSO-PNN and GWO-PNN
classifiers. Through the above classification of different outer ring fault dimensions, the
method proposed in this paper can be effectively utilized in bearing fault diagnosis. In order
to further verify the effectiveness of this method, the bearing fault data including normal
working conditions and three different position faults are classified below.

Figure 12 shows the final average adaptation value of the ICOA-PNN classifier under
different position fault dimensions of three bearings, including normal working conditions
(that is, average error recognition rate). It can be found that the average fitness value is
significantly lower than other PNN classifiers based on optimization, which confirms the
effectiveness and feasibility of the proposed algorithm for PNN parameter optimization.
In addition, according to Figure 12, the following results can be obtained. Firstly, the
average recognition accuracy of the PNN classifier based on optimization is significantly
higher than that of the original PNN classifier, which indicates that the PNN classifier
based on optimization could overcome the problem of parameter selection of the original
PNN classifier. Secondly, compared with other PNN classifiers based on optimization,
ICOA-PNN classifier has the highest average recognition accuracy for test samples, which
verifies its superiority over other PNN classifiers based on optimization.
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Figure 13 shows that in three-dimensional space, the classification results are obviously
separated from each other under four different fault types, and the aggregation of each
working condition is better. Next, the feature set is input to the ICOA-PNN classifier for
pattern recognition, and the results are shown in Table 4. Table 4 shows that the average
recognition accuracy of 3600 test samples is 96.15%.
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Table 4. Average recognition accuracy based on optimized PNN and unimproved PNN under
different fault types.

Method Accuracy (%)

ICOA-PNN 96.15
PSO-PNN 95.85
FA-PNN 95.10

CSO-PNN 94.75
GWO-PNN 93.80

PNN 95.15

Case II: Engineering simulation experiment platform fault diagnosis
The test platform includes two parts: the test platform and the measurement system.

The test platform is composed of the test bench and the control system. Figure 14 shows
the physical diagram of the test bench, which is mainly composed of the tested bearing, the
accompanying bearing, the test spindle, the bearing outer ring fixture, the driving unit and
the loading system. During the test, a group of 4 sets of bearings were divided into two sets
of tested bearings and two sets of accompanying bearings. The two sets of loading systems
load the tested bearings respectively. The driving unit provides power for the whole test
bench, and the radial force is provided for the tested bearing by the loading system, which
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makes the spindle drive the bearing to rotate, and the vibration signal of the bearing in
the rotation process is obtained by the vibration sensor. Among them, the driving unit
can provide the range of bearing speed is 1000 rpm to 20,000 rpm, and can be adjusted
continuously. The loading range of the loading system is that the loading precision can be
adjusted continuously. The working limit temperature of the test-bed is 250 ◦C.
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The ultimate goal of this paper is to improve the accuracy of bearing fault diagnosis
under weak faults under strong background noise. Since the early failures of bearings are
generally scratches caused by the friction between the rolling elements and the inner or
outer ring, the occurrence of cage and rolling element failures mostly occurs in the middle
and late stages, and is accompanied by the characteristic frequency of the inner and outer
ring failures, which is a composite failure. So, this experiment only diagnoses the early
inner and outer ring faults of the bearing. In order to further verify the method proposed
in this article, this part uses the bearing engineering simulation experiment platform built
by our laboratory to carry out the experiment. Bearing parameters are shown in Table 5.
The failure of the bearing in this experiment is shown in Figure 15.
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Figure 16. The CEITDAN method decomposes the fault signal diagram of the inner ring and the 
outer ring: (a) outer ring failure; (b) inner ring failure. 
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This part of the experiment is divided into two times, one is the outer ring fault, and
the other is the inner ring fault. The sampling frequency was 8192 Hz, and the data length
was 4096 points. The bearing rotation speed was 3000 rpm. The CEITDAN method is
used for decomposition, and the RCMAE, approximate period and approximate energy
of the first rotation component with the largest correlation coefficient are extracted. Two
parameters are input into ICOA-PNN method for fault diagnosis.

In addition, according to Figure 16, the following results can be obtained. As before,
this section uses the same comparison criteria. Figure 17 shows that under two different
bearing failures, the final average fit value of the ICOA-PNN classifier (i.e., the average
error recognition rate) is significantly lower than other optimized PNN classifiers. It is con-
firmed that the effectiveness and feasibility of the proposed algorithm for PNN parameter
optimization are consistent with the previous calculation results of the CWRU database.
First, the average recognition accuracy of the optimized PNN classifier is significantly
higher than the original PNN classifier, which shows that the optimized PNN classifier
can overcome the parameter selection problem of the original PNN classifier. Secondly,
compared with other PNN classifiers based on optimization, the ICOA-PNN classifier has
the highest average recognition accuracy of test samples, thus proving its superiority over
other PNN classifiers based on optimization.

The different colors in Figure 18 represent different bearing faults. Figure 18 shows
that in 3D space, two different early failures are clearly separated from each other, and
the aggregation of each working condition is better. Next, the feature set is input to the
ICOA-PNN classifier for pattern recognition, and the results are shown in Table 6. It shows
that the average recognition accuracy of 3600 test samples is 93.9%. Because the early
bearing faults are covered in strong background noise, this greatly increases the difficulty
of fault diagnosis, which also requires the characteristic parameters to be minimized by
noise interference. The method proposed in this paper can effectively improve the accuracy
of fault diagnosis, and it performs well in comparison with other algorithms. Other
algorithms are all interfered by noise to varying degrees, resulting in a significant decrease
in diagnostic accuracy.
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Table 6. Average recognition accuracy based on optimized PNN and unimproved PNN under
different bearing early fault.

Method Accuracy (%)

ICOA-PNN 93.90
PSO-PNN 88.90
FA-PNN 88.50

CSO-PNN 87.40
GWO-PNN 88.45

PNN 86.20

7. Conclusions

This paper presents a new method for diagnosing rolling bearing early faults. Ac-
cording to the proposed method, RCMAE, approximate period and approximate energy
can be used to extract the features of rolling bearing vibration signal, and then the feature
set can be input into ICOA-PNN classifier to realize automatic diagnosis of various faults.
Based on the experimental data of the rolling bearing, the results show that the method
could diagnose the early fault properly and effectively under different working conditions.
The study proves that the proposed method is suitable for early fault diagnosis of rolling
bearings. For the method proposed in this paper, we could consider improving the opti-
mization algorithm in the future to further improve the optimization of the parameters in
the probabilistic neural network, and apply it to the engineering test platform with higher
noise intensity.
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