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Abstract: This paper considers the criterion of minimum compression work to derive an expres-
sion for the interstage pressure of a multistage compressor with intercooling that includes the gas
properties, pressure drops in the intercoolers, different suction gas temperatures, and isentropic
efficiencies in each compression stage. The analytical expression for the interstage pressures is
applied to estimate the number of compression stages and to evaluate its applicability in order to
estimate interstage pressures in the operation of multistage compressors, which can be especially
useful when their measurements are not available.

Keywords: interstage pressures; multistage compressors; intercooling

1. Introduction

Gas compression is widely used in many fields, from internal combustion engines
and industrial processes to domestic gas supply and refrigeration [1]. High pressures are
required to overcome pressure drops due to friction in gas pipelines, to reach an equilibrium
condition for separation processes, to increase a specific reaction rate, to improve the yield
of a chemical reaction, or to avoid parallel reactions. Low temperatures for the cold
treatment of metals, refrigeration, air-conditioning, or the liquefaction and separation of
gases, make the multistage vapor compression systems important to study [2–4].

Minimum work occurs for an ideal isothermal compression; however, this process
requires an infinite number of intercoolers. In real conditions, for design purposes and
to approach the lowest energy consumption, the compression ratio is split in two or
more stages, cooling the compressed gas in between [5]. For a compression process,
the criterion of minimum work is one of the most commonly used criteria to determine the
optimal sequence of interstage pressures and, therefore, the location and optimal number of
intercoolers. In fact, this is only a partial criterion of optimization for the optimal number of
intercoolers, which can, however, be used as an upper limit. In practice, the final decision
to establish the number of intercoolers depends primarily on the overall pressure ratio and
the compressor capacity and should be determined by incorporating techno-economical
criteria [6,7].

In classical thermodynamics, the interstage pressure of an ideal gas minimizing
the compression work of a two-stage compressor with intercooling corresponds to the
geometric mean of the suction and discharge pressures [8–11]. This well-known relation
assumes that the compressors operate isentropically and discard the intercooler pressure
drops, and that the temperature of the compressed gas at the beginning of each compression
stage is the same. With these same assumptions, Hernández et al. [12] report an expression
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for the interstage pressures for a compressor of more than two stages to evaluate the
performance of a regenerative gas turbine cycle. It is important to point out that when
ideal conditions are assumed, the optimum interstage pressure does not depend on the
gas properties. Vadasz and Weiner [6] find the optimal interstage pressures, which are
dependent on gas properties, for a general compression process with intercooler pressure
drops and a temperature difference between the compressed gas at the intercooler outlet
and the global suction state. These authors also establish a numerical approach to specify
the optimal location and number of intercoolers. Recently, López-Paniagua et al. [13]
employed Lagrange multipliers to determine the optimum interstage pressures for a
multistage compression process with different-stage isentropic efficiencies. Their result is
applied to the design of a multistage compression plant with reciprocating compressors.

The use of the geometric mean of the suction and discharge pressures has been
mainly applied in performance analysis, design, and optimization of refrigeration sys-
tems with dual stage compressors [14–16] and more recently in the analysis and opti-
mization of two-stage transcritical carbon dioxide cycles for heating applications [17].
Manole [18] shows that for a CO2 refrigeration cycle, the estimated interstage pressure
from the suction and discharge pressures geometric mean underestimates the actual in-
terstage pressure of the cycle. Jekel and Reindl [10] explore single- versus two-stage
compression arrangements from an operating efficiency perspective. They find that the
optimum operating efficiency for each system is obtained when the real interstage pressure
is smaller than that obtained from the geometric mean. Özgür [11] and Romeo et al. [19]
use directly and indirectly the geometric mean as the basis for their initial designs used in
their performance studies of refrigeration cycles with two and three compression stages
with intercooling, respectively. Srinivasan [20] shows that the criterion of equal discharge
temperatures of each stage is a good criterion for the choice of interstage pressure for
CO2 compressors used in low (−30 ºC) and medium temperature (−5 ºC) refrigeration.
Lugo-Leyte et al. [21] study the performance of complex gas turbine cycles with multistage
compression. They determined that the optimum pressure ratios are in an acceptable range,
between 8.1 and 23.1 for the maximum power and between 17.4 and 32.2 for the maximum
thermal efficiency. Lewins [22] models and optimizes a two-stage compressor with an inter-
cooler considering the ideal gas model. He uses the Lagrange optimization method to find
the operating conditions to achieve the maximum work in the gas turbine. Furthermore,
he shows the optimum condition can be calculated based on the isentropic efficiencies of
the compressors and the efficiency of the intercoolers. Azizifar and Banooni [23] model
and optimize the power consumption of a two-stage compressed air system considering
the ideal gas model. The system includes two centrifugal compressors, a casing, and a
tube intercooler. The power consumption is expressed in terms of the isentropic efficiencies
and thermal effectiveness of the intercooler. The isentropic efficiencies of the compressors
are considered as functions of the inlet temperature, and the thermal effectiveness of the
intercooler is considered as a function of the inlet air temperature, inlet water temperature
of the intercooler, and inlet volumetric air flow rate of the system.

This paper considers the criterion of minimum compression work to determine an ana-
lytical expression for the interstage pressures of a multistage compressor with intercooling,
taking into account the properties of the gas, pressure drops in the intercoolers, different
suction gas temperatures, and isentropic efficiencies in each compression stage. The deriva-
tion of the expression is pursued in two ways: in Section 3, by identifying that the product
of the interstage pressure ratios and the coefficient (T2j−1/ηSIC,j)

(γ−1)/γ
j remain constant

for all the compression stages; in Appendix B, by carrying out successive substitutions
to solve the system of recursive nonlinear equations that define the interstage pressure
ratios, followed by a mathematical induction proof presented in Appendix D to prove the
expression for the optimal interstage pressures for any number of compression stages. The
obtained expression is applied in Section 4 to estimate the number of compression stages
of a multistage compressor, showing the usefulness of the expression in compressor design
and sizing, and to estimate the interstage pressures of an off-design two-stage centrifugal
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compressor handling natural gas with intercooling and phase separators, revealing that the
expression can be valuable in monitoring and diagnosis of such systems, especially when
properties of gas and measurements of interstage pressures are not available.

2. System Description and Assumptions

We consider the Nc-multistage compression system presented in Figure 1 that is com-
posed of Nc compressors alternated with Nc − 1 intercoolers. In this system, the gas is com-
pressed from the suction state (Ts = T1, Ps = P0 = P1) to the discharge state
(Td = T2Nc , Pd = P2Nc). In each j-compression stage, the fluid is compressed from the
state 2j− 1 to the state 2j, and then the fluid goes through a cooling process from the state
2j to the state 2j + 1, as shown in Figure 2.

Figure 1. Schematic diagram of an Nc-multistage compressor with intercooling.
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Figure 2. Temperature–entropy diagram of an Nc-multistage compression process with intercooling.

The main characteristics of the Nc-multistage compression system considered in this
work are as follows:

• A constant mass flow rate of a working fluid behaving as an ideal gas with constant
heat capacities is compressed.

• The gas undergoes a pressure drop in each j-intercooler—see Figure 2. The pressure
drop coefficient across the j-intercooler is defined as

ε j =
P2j − P2j+1

P2j
, for j = 1, . . . , Nc − 1 (1)

where P2j and P2j+1 = P2(j+1)−1 denote the inlet and outlet pressures for the j intercool-
ing process, and they also correspond to the discharge pressure of the j compressor
and the suction pressure of the j + 1 compressor stage, respectively. In this way,
Equation (1) for j − 1 allows us to obtain the following expression for the suction
pressure of the j compression stage, P2j−1 = P2(j−1)+1, in terms of the pressure drop
coefficient of the j− 1 intercooler and the outlet pressure of the j− 1 compression stage,

P2j−1 =
(
1− ε j−1

)
P2(j−1), for j = 1, . . . , Nc (2)
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The above equation is valid if we define ε0 = 0 and therefore P0 = P1.
• The gas temperature at the inlet of each compressor is not assumed to be the same.

However, the compressed gas outlet temperature of each intercooler is close to T1.

T2j+1 6= T1, for j = 1, . . . , Nc − 1 (3)

• The isentropic efficiencies of the individual compressors are assumed to be dif-
ferent, and the compression from 2j − 1 to 2j is considered to occur at constant
isentropic efficiency,

ηSIC,j =
wj,s

wj
, for j = 1, ..., Nc − 1 (4)

where wj,s and wj are the isentropic and actual adiabatic specific works provided to
the j compression stage, respectively. The ideal compression work conducted on the j
compression process corresponds to the work conducted on an isentropic compression
process beginning at the same initial state and proceeding to the same final pressure
(but not the same final state) as the actual compression process.

3. Theoretical Model
3.1. Optimal Interstage Pressures for Minimum Compression Specific Work

The aim of this section is to determine an expression for the optimal interstage pres-
sures, which minimizes the specific compression work, in terms of the overall compression
pressure ratio, considering pressures losses in the intercoolers, different outlet intercooling
temperatures, and different isentropic efficiencies in each compression stage.

The total work provided to the Nc-multistage compressor is equal to the sum of the
work supplied to each j-th compression stage

wc =
j=Nc

∑
j=1

cPT2j−1

ηSIC,j

[(
P2j

P2j−1

)x

− 1

]
(5)

where x = 1− 1/γ. The substitution of Equation (2) into Equation (5) derives an expression
for the j compression work in terms of the discharge pressures of j-th compression stage
and the j− 1 intercooler pressure drop coefficient.

The total compression work is a multi-variable function of the interstage pressures,
wc : RNc−1 → R. Since P2j appears only at the numerator of the j-th terms and at the
denominator of the (j + 1) term, the partial derivatives of wc with respect to each interstage
pressure are given by

∂wc

x∂P2j
=

xT2j−1

ηSIC,jP2j

 P2j(
1− ε j−1

)
P2(j−1)

x

−
xT2j+1

(
1− ε j

)
ηSIC,j+1P2(j+1)

 P2(j+1)(
1− ε j

)
P2j

x+1

, for j = 1, . . . , Nc − 1 (6)

The interstage pressures at which the partial derivatives of wc are equal to zero, when
Equation (6) vanishes, are the optimal interstage pressures that minimize the compression
work. Appendix A shows the algebraic steps to obtain the optimal interstage pressures in
terms of their predecessor and successor pressures from ∂wc/∂P2j = 0, as established in
the following equation

P2
2j =

(
αj+1

αj

)1/x(
1− ε j−1

1− ε j

)
P2(j−1)P2(j+1) ⇐⇒

α1/x
j P2j(

1− ε j−1
)

P2(j−1)
=

α1/x
j+1P2(j+1)(
1− ε j

)
P2j

, for j = 1, . . . , Nc − 1 (7)

where αj = T2j−1/ηSIC,j. This equation is analogous to that obtained by Vadasz and
Weiner [6] (Equation (31)), assuming the intercooler temperatures and the interstage isoen-
tropic efficiencies are the same for each compression stage and considering the existence of
pressure drops in the intercoolers.
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The purpose of the paper is to express the interstage pressures minimizing the com-
pression work in terms of the initial and final pressure values. From Equation (7), it is
inferred that the total input work required by the Nc−multistage compressor is minimized

when the Nc − 1 interstage pressures are chosen so that the ratio
α1/x

j P2j(
1− ε j−1

)
P2(j−1)

remains

constant from one compression stage to the next. Denoting this constant by K, we can write

K =
α1/x

Nc
P2Nc

(1− εNc−1)P2(Nc−1)
= . . . =

α1/x
j P2j(

1− ε j−1
)

P2(j−1)
= . . . =

α1/x
1 P2

(1− ε0)P0
(8)

The product of all Nc pressure ratios affected by α1/x
j /

(
1− ε j−1

)
cancels out the Nc − 1

interstage pressures and leads to determining the value of K,

Kx = T1
τNc ,g

εx
Nc ,g

π
x

Nc (9)

where π = P2Nc /P0 is the overall compression pressure ratio, and τNc ,g and εNc ,g are,
respectively, the geometric means for the sets {αi/T1 = T2i−1/(T1ηSIC,i), i = 1, . . . , j} and
{1− εi−1, i = 1, . . . , Nc}. The expression of constant K—see Equation (8)—allows us to
obtain an equation for the individual pressure ratios, πj = P2j/P2j−1 = α−1/x

j K, for j =
1, . . . , Nc. The combination of this last relation with Equation (7) leads to the following
expression for the optimal interstage pressures:

P2j =

( θNc ,g

θj,g

ϑj,g

ϑNc ,g

) 1
x εj,g

εNc ,g

j(
PNc−j

0 Pj
2Nc

) 1
Nc , for j = 1, ..., Nc − 1 (10)

where θj,g and ϑj,g for j = 1, . . . , Nc are the geometric means of the elements of the sets
{T2i−1/T1, i = 1, . . . , j} and {ηSIC,i, i = 1, . . . , j}, respectively. It can observed when
the outlet temperature for all the intercooling processes is T1 that there are no pressures
losses in the Nc − 1 intercoolers, and all the compression stages have the same isentropic
efficiency; thus, θj,g = ϑj,g = ε j,g = 1 for j = 1, . . . , Nc, and Equation (A8) is therefore
reduced to the well-known expression for the interstage pressures

P2j =
(

PNc−j
0 Pj

2Nc

) 1
Nc , for j = 1, . . . , Nc − 1 (11)

Appendix B presents an alternative way to compute the optimal interstage pressures for
the minimum compression work (Equations (10) and (A17) are equivalent equations) by
using successive substitutions to solve the system of recursive nonlinear equations given
by Equation (7). In Appendix D, the mathematical induction proof technique is used to
prove that the expression for the optimal interstage pressures, given by Equation (A17),
holds for every natural number Nc.

3.2. Minimum Compression Specific Work

The minimum compression specific work is determined by substituting Equation (9)
into Equation (5),

wc,min = cpNcτNc ,aT1

(
τNc ,g

τNc ,aεx
Nc ,g

π
x

Nc − 1

)
(12)

where τNc ,a is the arithmetic mean of the elements of the set {αi/T1, i = 1, . . . , Nc}. Since
minimum work occurs for an isothermal compression, τNc ,a and τNc ,g indicate how close
or far the Nc compression process with intercooling is from this ideal process. For the
same suction temperature and interstage isentropic efficiency in each compression stage,
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Equation (12) is analogous to that obtained by Vadasz and Weiner [6] (see Equation (31))
and Hernández et al. [12] (see Equation (11)), with and without intercooler pressure
losses, respectively. Equation (12) also corresponds to the expression for the minimum
compression work obtained recently by López-Paniagua et al. [13] (see Equation (34)) for
the case in which each compression stage has a different isentropic compression efficiency
and the same suction temperature and the intercoolers do not present pressure drops.

4. Applications
4.1. Estimation of the Number of Compression Stages

The combination of Equations (8) and (9) leads to α1/x
j πj = K = (T1τNc ,g/εNc ,

gx)1/xπ1/Nc . This relation implies that the individual and overall compression pressure
ratios are proportional. The constant of proportionality is a geometric mean of the product
of terms involving the pressure drops in the intercoolers, and the deviations of the suc-
tion temperatures and isentropic efficiencies of the compression stages from the suction
temperature and isentropic efficiency of the j-th compression stage, respectively.

ξ
1

xNc
j = πj/π1/Nc , where ξ j =

i=Nc

∏
i=1

(T2i−1/T2j−1)(ηSIC,i/ηSIC,j)
−1(1− εi−1)

−x (13)

ξ1/Nc
j is the geometric mean of the elements of the set {(T2i−1/T2j−1)(ηSIC,i/ηSIC,j)

−1(1−
εi−1)

−x : i = 1, . . . , Nc}, and it can be understood as a loss coefficient. When ξ j = 1,
it is indicated that there are not pressure drops in the intercoolers and that the suction
temperatures and isentropic efficiencies are all equal to the values corresponding to the j-th
compression stage. Once a multistage compressor with intercooling is operating and taking
the fits compressor as reference (j = 1), T2i−1/T1 > 1, (1− εi)

−x > 1, and ηSIC,i/ηSIC,1 ≈ 1;
therefore, Equation (13) indicates that ξ1/x

1 > 1.
From Equation (13), an expression is obtained to estimate the number of compression

stages in terms of the j-th individual and overall compression pressure ratios and the
coefficient ξ1/x

j , as shown in the following equation

Nc =
ln π + ln ξ

1
x
j

ln πj
(14)

For all the compression stages, the individual and overall compression pressure ratios
satisfy that 1 ≤ πj ≤ π. According to this inequality and Equation (13), the loss coefficient
can only take values defined over a bounded interval, π−1 ≤ ξ1/x

j ≤ πNc−1. In this
way, it should be noted that even if Equation (14) is strictly a nonlinear equation because
ξ1/x

j is function of Nc, this equation together with the inequality for ξ1/x
j allows one to

establish the upper and lower limits for the number of compression stages in the presence of
pressure drops in the intercoolers and deviations of the suction temperatures and isentropic
efficiencies from those of the j-th compression stage,

2
ln π

ln πjπ
≤ Nc ≤ 2

ln π

ln πj
(15)

The determination of the number of compression stages is relevant for sizing a multistage
compressor with intercooling during the design process. Figure 3 presents the estimation of
the number of compression stages from Equation (14) by assuming the selected compressors
are all of the same model (same individual pressure ratio, π1 = πj), and for the cases
in which the suction temperature deviations with respect to T1 pressure drops in the
intercoolers, and different isentropic efficiencies are taken (ξ1/x

1 = 1.3) and not taken
(ξ1/x

1 = 1) into account.
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Figure 3. Number of compression stages and number of intercooling stages as a function: (a) individ-
ual compressor pressure ratio and (b) overall pressure ratio.

Figure 3a,b show that for low overall pressure ratios and for a given individual
pressure ratio, the number of compression stages exhibits the greatest dependence on the
coefficient ξ1/x

j . Despite this observation, this figure suggests that to reach the required

discharge pressure, the number of compression stages must be selected assuming ξ1/x
j > 1.

4.2. Interstage Pressure Estimation of a Natural Gas Compression System

Figure 4 presents a natural gas compression system composed of two Nouvo Pignone
BCL608 centrifugal compressors, a soloair intercooler, and a scrubber to separate the
condensates after intercooling. The two-stage compressor has a flow processing capacity
of 132 MMSCFD of natural gas. The compressors are mounted on the same shaft and
are driven mechanically by a low-pressure gas turbine, PGT25, which is driven by an
aeroderivative gas turbine, GE 7LM-2500PE. Even when the mass flow through both
compressors is not equal due to the phase separator, molecular masses and heat capacities
of the natural gas are different at each state, and the working fluid in real compressors is
far away from the ideal one, Equation (10) is applied to estimate the interstage pressure of
the two-stages compressor system with intercooling. The motivation of this case study is to
present such analytical expression as a short, simple, practical, and useful tool to obtain a
first approximation of the interstage pressures of multistage compressors with intercooling,
especially when the information required to obtain a rigorous estimation is not available.

To evaluate the pertinence of the use of Equation (10), the computed results were
obtained using the following properties of natural gas entering the compression system:
molecular weight of 26.54 kg/kmol, heat capacity of 1.446 kJ/kg·K, and molar fraction as
presented in Table 1.

Table 1. Natural gas molar fraction.

Component CH4 C2H6 C3H8 iC4H10 nC4H10 iC5H12 N2 O2 H2O CO2 H2S

xi 0.3038 0.0594 0.0328 0.0043 0.0126 0.0036 0.543 0.0019 0.007 0.015 0.0044

The computed results from Equation (10) were compared with those presented in
Table A1, which were obtained from simulations of the centrifugal compression system
in Aspen-Hysys, using the Peng-–Robinson equation of state as a thermodynamic model,
the natural composition in Table 1, and the operating conditions presented in Figure 4.
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Condition Stage 1 Stage 2
Suction Discharge Suction Discharge

1 2 3 4

Design
T (ºC) 48.72 148.4 48.72 158.9
P (bar) 6.54 25.12 24.34 88.56

Actual T (ºC) 33 144.1 35 135.2
6134 rpm P (bar) 9.56 30.41 29.64 79.48

Actual T (ºC) 33 142.4 36 133.8
6114 rpm P (bar) 9.41 29.43 29.4 76.75

Actual T (ºC) 34 141.2 37 132.1
6074 rpm P (bar) 9.58 30.8 29.46 74.75

1

Figure 4. Natural gas two-stage centrifugal compressor: site design, and actual operating conditions.

The interstage pressure is computed with the following four equations, which are
derived from Equation (10) by considering that in all cases, the isentropic efficiency of both
compressors is the same:

• P2 =
√

P1P4, same suction temperatures (T3 ≈ T1) and no pressure drops in the
intercooler (ε1 ≈ 0);

• P2 =
√

P1P4
1−ε1

, same suction temperatures (T3 ≈ T1) and pressure drops in the inter-
cooler;

• P2 =

√(
T3
T1

) 1
x P1P4, different suction temperatures (T3 6= T1) and no pressure drops

in the intercooler (ε1 ≈ 0);

• P2 =

√(
T3
T1

) 1
x P1P4

1−ε1
, different suction temperatures (T3 6= T1) and pressure drops in

the intercooler;

• P2 =

√(
T3
T1
· ηSIC,1

ηSIC,2

) 1
x P1P4

1−ε1
, different suction temperatures (T3 6= T1) and pressure

drops in the intercooler.

Figure 5 shows the percentage deviations of the estimated interstage pressures with
respect to the simulated ones at different operating conditions. For the four operating

conditions, equation P2 =
√
(T3/T1)

1/xP1P4/(1− ε1) provides the lowest deviations, 4.57,
4.30, and 4.97% for 6134, 6114, and 6074 rpm under actual conditions, respectively. In
contrast, the highest deviations correspond to the estimation of the interstage pressure by
the geometric mean of the suction and discharge pressure of the complete compression
system, P2 =

√
P1P4: 7.15, 6.47, and 7.13% for 6134, 6114, and 6074 rpm under actual

conditions, respectively.
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√
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1
Figure 5. Percentage deviations in interstage pressure models under design and actual operating con-
ditions.

5. Conclusions

A general analytical expression for the interstage pressures minimizing the work sup-
plied to a multistage compression system with intercooling is deduced, assuming different
isentropic efficiencies and different suction gas temperatures in all the compression stages
and the existence of pressure drops in the intercoolers. The optimal interstage pressures
correspond to the geometric mean of the suction and discharge pressures corrected by
terms involving the geometric means of the pressure drops in the intercoolers, the deviation
of suction inter-temperatures from T1, and the isentropic efficiencies of each compression
stage. The application of the optimal interstage pressure expression indicates that the
different isentropic efficiencies and suction gas temperatures in all the compression stages
as well as the existence of pressure drops in the intercoolers could be relevant for the
estimation of the number of compression stages for low overall pressure ratios. Finally,
the use of the obtained expression to compute the interstage pressures of a two-stage
centrifugal compressor of natural gas provides a suitable first approximation, especially
when measurements of intermediate pressures are not available.
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T.L.-A., and R.L.-L. All authors have read and agreed to the published version of the manuscript.
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Nomenclature

cP specific heat at constant pressure, kJ kg−1 K−1

cv specific heat at constant volume, kJ kg−1K−1

K real constant defined by K =
( T2j−1

ηSIC,j

) 1
x P2j

(1−ε j−1)P2(j−1)
for j = 1, . . . , Nc

Nc compression stages
P pressures, bar
R specific gas constant, kJ kg−1K−1

s specific entropy, kJ kg−1K−1

T temperature, K or ◦C
w specific work, kJ kg−1

x x = R/cP = (γ− 1)/γ
Greek symbols
αj αx

j =
T2j−1
ηSIC,j

, K
1
x

∆ drop or increment

ε j pressure drop coefficient across the j-intercooler, ε j =
P2j−P2j+1

P2j

εg geometric mean for the set
{

1− ε j−1, j = 1, . . . , Nc
}

γ adiabatic index or specific heat ratio
η efficiency
π pressure ratio
τa arithmetic mean for the set

{
T2j−1/ηSIC,j, j = 1, . . . , Nc

}
, K

τg geometric mean for the set
{

T2j−1/ηSIC,j, j = 1, ..., Nc
}

, K
Subscripts
c compressor
d discharge state
i, j, k, m thermodynamic states
s suction state
SIC isentropic compression

Appendix A. Optimal Interstage Pressures in Terms of Their Predecessor and
Successor Pressures

The minimization problem for the compression work is formulated using{
P2j : j = 1, . . . , Nc − 1

}
as independent variables and the partial derivatives of the com-

pression work with respect to the independent variables given by Equation (6). The first
step to determine interstage pressures minimizing the compression work in terms of the
initial and final pressure values is to solve ∂wc/∂P2j = 0, implying that

P2x
2j =

T2j+1ηj

T2j−1ηj+1

(
1− ε j−1

1− ε j
P2(j−1)P2(j+1)

)x

, for j = 1, . . . , Nc − 1 (A1)

Making j← j− 1 and j← j + 1 in Equation (A1),

P2x
2(j−1) =

T2j−1ηj−1

T2j−3ηj

(
1− ε j−2

1− ε j−1
P2(j−2)P2j

)x

, for j = 1, . . . , Nc (A2a)

P2x
2(j+1) =

T2j+3ηj+1

T2j+1ηj+2

(
1− ε j

1− ε j+1
P2jP2(j+2)

)x

, for j = 1, . . . , Nc (A2b)
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The following expression is obtained by substituting Equations (A2a) and (A2b) into
Equation (A1) and by using Equation (2):

P2x
2j =

T2j+1ηj

T2j−1ηj+1

(
1− ε j−1

1− ε j
P2(j−1)P2(j+1)

)x

, for j = 1, ..., Nc − 1 (A3)

Equation (7) is obtained from this last equation, and the definition of αj = T2j−1/ηSIC,j.

Appendix B. Optimal Interstage Pressures Obtained by Successive Substitutions

Equation (7) is a recurrence relation for the interstage pressure P2j in terms of its
predecessor and successor interstage pressures, P2(j−1) and P2(j+1), respectively. However,
this equation has no practical use, since this work assumes that the only measured pressures
of the Nc-multistage compression system with intercooling are the suction (P0 = P1) and
discharge (P2Nc ) pressures. Equation (7) conforms a system of recursive nonlinear equations
for j = 1, . . . , Nc. This system is solved by first substituting P2

2j, given by Equation (7),

into Equation (7) for j = j + 1 in order to obtain a relation for P3
2(j+1) in terms of P2(j−1) and

P2
2(j+2); this expression is then used in Equation (7) for j = j + 2 to derive an expression

of P4
2(j+3) as a function of P2(j−1) and P3

(j+3). These successive substitutions are continued
until the following expression for P2(j+k−1) in terms of P2(j−1) and P2(j+k) is inferred:

Pk+1
2(j+k−1) =

 α1/x
j+k

1− ε j+k−1

k
i=k

∏
i=1

1− ε j+(i−2)

α1/x
j+(i−1)

P2(j−1)P
k
2(j+k), for k = 1, ..., Nc − 1 and j = 1, . . . , Nc − 1 (A4)

In the induction proof of Equation (A4), the mathematical induction proof technique
is used to prove Equation (A4) regarding the integer k. Making j = 1 and k = Nc − m,
Equation (A4) becomes

PNc−m+1
2(Nc−m)

=

(
α1/x

Nc−m+1

1− εNc−m

)Nc−m i=Nc−m

∏
i=1

1− εi−1

α1/x
i

P0PNc−m
2(Nc−m+1), for m = 1, . . . , Nc − 1

(A5)

After multiplying Equation (A5) by
i=m
∏
i=1

(
1− εNc−i

α1/x
Nc−i+1

α1/x
Nc−i+1

1− εNc−i

)
= 1, we obtain the following

expression:

PNc−m+1
2(Nc−m)

=

(
α1/x

Nc−m+1

1− εNc−m

)Nc−m i=m

∏
i=1

α1/x
Nc−i+1

1− εNc−i

i=Nc

∏
i=1

1− εi−1

α1/x
i

P0PNc−m
2(Nc−m+1), for m = 1, . . . , Nc − 1 (A6)

From Equation (A6) and pursuing the inductive approach presented in Appendix C,
the following expression for the interstage pressure P2(Nc−m) in terms of the suction and
discharge pressures is obtained:

PNc
2(Nc−m)

=

(
i=m

∏
i=1

α1/x
Nc−i+1

1− εNc−i

)Nc(i=Nc

∏
i=1

1− εi−1

α1/x
i

)m

Pm
0 PNc−m

2Nc
, for m = 1, . . . , Nc − 1 (A7)

The expression for the interstage pressure P2j is computed by making k = Nc − i + 1 in the
first product of Equation (A7) and j = Nn −m in the overall expression

PNc
2j =

(
i=k

∏
i=1

1− εi−1

α1/x
i

)Nc(i=Nc

∏
i=1

α1/x
i

1− εi−1

)j

PNc−j
0 Pj

2Nc
, for j = 1, . . . , Nc − 1 (A8)
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From the definition of α1/x
j , Equation (A8) can be rewritten as

PNc
2j =

[
Nc

∏
k=1

T2k−1

ηSIC,k(1− εk−1)
x

] j
x
[

j

∏
k=1

ηSIC,k(1− εk−1)
x

T2k−1

] Nc
x

PNc−j
0 Pj

2Nc
(A9)

Appendix C. Induction Proof of Equation (A4)

In this Appendix, we prove Equation (A4) by mathematical induction about the integer
k. The essential steps of the proof are the proof for k = 1 (base case) and the inductive step,
in which the equation for k + 1 is proved, assuming Equation (A4) is valid for k (induction
hypothesis).

• Base case: When k = 1, Equation (A4) corresponds to Equation (7), proving
Equation (A4) is true for k = 1.

• Induction hypothesis: In this step, we assume Equation (A4) is valid for k.
• Inductive step: When j = j + k, Equation (7) raised to the power of k + 1 becomes

P2(k+1)
2(j+k) =

α1/x
j+k+1

α1/x
j+k

k+1(
1− ε j+k−1

1− ε j+k

)k+1

Pk+1
2(j+k−1)P

k+1
2(j+k+1) (A10)

The substitution of Equation (A4), corresponding to the induction hypothesis, into the
left-hand side of Equation (A10) leads to

P2(k+1)
2(j+k) =

α1/x
j+k+1

α1/x
j+k

k+1(
1− ε j+k−1

1− ε j+k

)k+1
 α1/x

j+k

1− ε j+k−1

k
i=k

∏
i=1

1− ε j+(i−2)

α1/x
j+(i−1)

P2(j−1)P
k
2(j+k)P

k+1
2(j+k+1) (A11)

After performing some algebraic steps in the above equation, we obtain the following
expression:

Pk+2
2(j+k) =

 α1/x
j+k+1

1− ε j+k

k+1
i=k+1

∏
i=1

1− ε j+(i−2)

α1/x
j+(i−1)

P2(j−1)P
k+1
2(j+k+1) (A12)

Thus, Equation (A4) holds for k + 1, and the proof of induction step is complete.

Appendix D. Induction proof of Equation (A7)

In this appendix, we prove by induction that for m = 1, . . . , Nc − 1, Equation (A7)
is true.

• Base case: When j = 1 and k = Nc − 1, Equation (A4) corresponds to Equation (A7),
proving Equation (A7) holds for m = 1.

• Induction hypothesis: In this step, we assume Equation (A7) is valid for m.
• Inductive step: For m = m + 1, Equation (A6) becomes

PNc−m
2(Nc−m−1) =

(
α1/x

Nc−m
1− εNc−m−1

)Nc−m−1
i=m+1

∏
i=1

α1/x
Nc−i+1

1− εNc−i

i=Nc

∏
i=1

1− εi−1

α1/x
i

P0PNc−m−1
2(Nc−m)

(A13)

Raising Equation (A7), corresponding to the induction hypothesis, to the power of
(Nc −m− 1)/Nc, leads to

PNc−m−1
2(Nc−m)

=

(
i=m

∏
i=1

α1/x
Nc−i+1

1− εNc−i

)Nc−m−1(i=Nc

∏
i=1

1− εi−1

α1/x
i

) m(Nc−m−1)
Nc

P
m(Nc−m−1)

Nc
0 P

(Nc−m) Nc−m−1
Nc

2Nc
(A14)
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Substituting Equation (A7) into the left-hand side of Equation (A15)

PNc−m
2(Nc−m−1) =

i=m+1

∏
i=1

α1/x
Nc−i+1

1− εNc−i

(
α1/x

Nc−m

1− εNc−m−1

i=m

∏
i=1

α1/x
Nc−i+1

1− εNc−i

)Nc−m−1

(
i=Nc

∏
i=1

1− εi−1

α1/x
i

)m(Nc−m−1)
Nc +1

P
m(Nc−m−1)

Nc +1
0 P

(Nc−m)(Nc−m−1)
Nc

2Nc
(A15)

After carrying out some algebra with the above equation, we derive the following ex-
pression:

PNc−m
2(Nc−m−1) =

(
i=m+1

∏
i=1

α1/x
Nc−i+1

1− εNc−i

)Nc−m(i=Nc

∏
i=1

1− εi−1

α1/x
i

)m+1

Pm+1
0 PNc−(m+1)

2Nc


Nc−m

Nc

(A16)

Raising Equation (A16) to the power of Nc/(Nc −m), we may write

PNc
2[Nc−(m+1)] =

(
i=m+1

∏
i=1

α1/x
Nc−i+1

1− εNc−i

)Nc(i=Nc

∏
i=1

1− εi−1

α1/x
i

)m+1

Pm+1
0 PNc−(m+1)

2Nc
(A17)

Thus, Equation (A7) holds for m + 1, and the proof of induction step is complete.

Appendix E. Two-Stage Compression System With Intercooling

Table A1 presents some results of the ASPEN-HYSIS simulation for the two-stage
centrifugal compressor using the Peng–Robinson equation of state as thermodynamic
model for the natural gas, whose molar composition is presented in Table 1.

Table A1. Thermodynamic states of the natural gas two-stage compression system obtained from ASPEN-HYSIS simulations
for different shaft speeds.

6134 rpm 6114 rpm 6074 rpm

ṁ T P ρ cp MW Z T P ρ cp MW Z T P ρ cp MW Z(
kg
h

)
(◦C) (bar)

(
kg
m3

) (
kJ

kgK

) (
kg

kmol

)
(-) (◦C) (bar)

(
kg
m3

) (
kJ

kgK

) (
kg

kmol

)
(-) (◦C) (bar)

(
kg
m3

) (
kJ

kgK

) (
kg

kmol

)
(-)

1 5.52 33 10.58 10.16 1.45 26.54 0.98 33 10.43 9.99 1.45 26.54 0.98 34 10.59 10.14 1.45 26.54 0.98
2 5.52 144.1 31.42 23.51 1.64 26.54 0.99 142.4 30.44 22.85 1.63 26.54 0.99 142.2 30.50 22.9 1.63 26.54 0.99
2’ 5.52 35 30.65 32.38 1.53 26.54 0.95 36 30.41 31.98 1.53 26.54 0.95 37 30.47 31.92 1.53 26.54 0.95
3 5.50 35 30.65 32.28 1.52 26.58 0.95 36 30.41 31.89 1.52 26.58 0.95 37 30.47 31.83 1.52 26.58 0.95
4 5.50 135.2 80.49 63.53 1.71 26.58 0.98 133.8 77.76 61.58 1.70 26.58 0.98 132.1 75.76 60.26 1.70 26.58 0.98
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