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Abstract: In many industrial domains, there is a significant interest in obtaining temporal relation-
ships among multiple variables in time-series data, given that such relationships play an auxiliary
role in decision making. However, when transactions occur frequently only for a period of time, it
is difficult for a traditional time-series association rules mining algorithm (TSARM) to identify this
kind of relationship. In this paper, we propose a new TSARM framework and a novel algorithm
named TSARM-UDP. A TSARM mining framework is used to mine time-series association rules
(TSARs) and an up-to-date pattern (UDP) is applied to discover rare patterns that only appear in
a period of time. Based on the up-to-date pattern mining, the proposed TSAR-UDP method could
extract temporal relationship rules with better generality. The rules can be widely used in the process
industry, the stock market, etc. Experiments are then performed on the public stock data and real
blast furnace data to verify the effectiveness of the proposed algorithm. We compare our algorithm
with three state-of-the-art algorithms, and the experimental results show that our algorithm can
provide greater efficiency and interpretability in TSARs and that it has good prospects.

Keywords: association rules mining; time-series; temporal relationships; up-to-date pattern; data mining

1. Introduction

Data mining is a recently emerging technology that can mine the information behind
the massive data in many domains. Through years of research in data mining, many
mining methods were proposed, such as techniques for association rules, classification
rules, clusters, sequential patterns, and so on. Among the numerous algorithms in data
mining, association rules mining (ARM) can effectively handle quantitative data. Due to
the ARM results being linguistic and easily understood and explained [1,2], it has been
used in many fields, such as bio-informatics [3,4], recommender systems [5], medicine
sciences [6], process industry manufacturing [7], and the economic sphere [8], to discover
knowledge and play an auxiliary role in decision making [9,10].

However, in the real world, most data are always generated in a data stream form
like industrial data, network data, and business data. These data often have time labels.
Usually, the correlation of multiple time-series represents the nature of the data. Thus,
excavating TSARs is a meaningful job. Haupt et al. [11] extracted frequent patterns
from calendar schemes; then, Lucia Sacchi et al. proposed a kind of temporal associa-
tion rule and the related extraction algorithm for complex patterns defined over clinical
time-series. The proposed approach was based on a qualitative representation of increase,
decrease, and stationery trends, which relied on the formalism of knowledge-based tempo-
ral abstractions [12]. Chen et al. [13] applied the membership function in fuzzy theory to
association rules mining, and the method reflected the lifespan of an item by redefining
Support and Confidence. The algorithm obtained the effective time of rules through the
lifespan of each item. Furthermore, Chen et al. proposed a fuzzy time-series mining
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algorithm. The algorithm can effectively mine TSARs with a sliding window, but it was
problematic in that the mining results related to the window size and the types of mem-
bership function were difficult to assert [14]. Two tree-based algorithms were presented
in [15] to mine the frequent temporal patterns that considered not only the Support of
patterns, but also their weights. Yu et al. used the information-filtering algorithm to
filter the interference information and redundant information in the social network and
applied fuzzy data clustering to the mining and clustering of relational data in hierarchical
networks in [16]. In [17], Park et al. proposed a method for discovering the rules to describe
deviant event patterns from multivariate time-series, called SAX-ARM. The algorithm first
uses inverse normal transformation to convert the distribution of time-series to the normal
distribution and then applies symbolic aggregate approximation to symbolize time-series
for discovering frequent rules. However, most such algorithms are based on the traditional
a priori algorithm [18], which discovers the frequent pattern is greater than or equal to a
user-specified minimum support in a top-down level-wise process. The frequent patterns
represent the expected patterns in the whole database, but may ignore some information
that is usually hidden behind temporal relationship patterns.

To extract the temporal relationships in TSARs, in [19,20], the concept of a time cube
and the a priori algorithm were presented to mine the temporal association rules. However,
these methods do not consider multiple items between transactions, and inherent informa-
tion is difficult to mine, which causes the rules to be less interpretable. A new visualization
solution explicitly dealing with temporal association rules was presented in [21]. In [22],
a compact FP-tree-based and divide-and-conquer algorithm was presented to mine inter-
transactional association rules. Rules generated from this algorithm are interpretable, but
the algorithm is susceptible to the size of the sliding window. Ruan et al. presented a frame-
work that allowed parallel and quantitative mining of sequential patterns [23]. Kaustubh
Beedkar et al. proposed a scalable, distributed sequence mining algorithm dealing with
large amounts of data. The authors built a distributed framework for frequent sequence
mining [24]. The description of temporal trends for the clinical domain of hemodialysis
was proposed in [25], which considered specific temporal features with respect to the
chosen time granularity. In [26], Hong et al. firstly proposed the concept of up-to-date
patterns, which can mine rare patterns effectively. Wang et al. proposed the frequent
itemset tree, and the algorithm can discover temporal association rules among multiple
variables [27,28]. Lin and Hong proposed the tree structure temporal mining algorithm
based on their previous up-to-date studies, and the mining result of their algorithms can
discover implicit knowledge and obtain satisfactory results [29–31]. Recent work about
graph association rule mining [32] has the potential to take temporal information into
account. In [33], to resolve the issue of incremental rare association rule mining, Borah et al.
presented a single-pass tree-based approach for extracting rare association rules when new
data were inserted into the original database. The approach is capable of generating the
complete set of frequent and rare patterns without rescanning the updated database and
reconstructing the entire tree structure when new transactions are added to the existent
database. However, rules mined by the above works are TSARs with a time interval, but
not the whole time. Such rules are effective in a period, but not for the entire time. In some
fields, such as the process industry and medical treatment, TSARs with a lifespan would
be no longer effective, and TSARs with generality are more useful.

In this paper, to solve the problems mentioned above, a new TSAR mining framework
is proposed to mine TSARs with generality. Since multiple variables need to be considered,
they are divided into one-dimensional TSARM and multi-dimensional TSARM to elaborate.
Furthermore, to discover implicit knowledge, we propose TSARM with up-to-date patterns
(TSARM-UDP). TSARM-UDP integrates the a priori mining algorithm with the new TSAR
mining framework proposed in this paper to identify TSAR from the given multivariate
time-series data. Then, the UDP method is used as a reference to discover the rare frequent
temporal patterns and express the mined implicit knowledge in the form of TSARs. The
algorithm first scans the database to record the Count and Timelist of each item. Then,
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it identifies the frequent temporal patterns by the predefined min_sup threshold and the
rare frequent temporal patterns by the UDP method. After the frequent temporal patterns
have been found, TSARs can be discovered from the given time-series data. The general
framework of the algorithm is shown in Figure 1.

Briefly, the novelty of this work can be highlighted as follows:

• A new TSAR mining framework is proposed in this paper to mine more rules for
time-series data with higher accuracy.

• Aiming at the rare patterns that occur only for a period, the proposed algorithm can
find more effective association rules.

• The proposed TSAR-UDP method can extract temporal relationships without experi-
enced knowledge and extend the rules’ applicability to the whole dataset.

The remainder of this paper is organized as follows. The preliminaries of the proposed
algorithm are given in Section 2. In Section 3, we discuss the one-dimensional TSARs and
multidimensional TSARs in detail and introduce the UDP method briefly. Experimental
results are given in Section 4. Conclusions and future research are given in Section 5.
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Figure 1. The framework of TSARM-UDP.

2. Preliminaries of Our Proposed Algorithm
2.1. Time Series

Definition 1. Time-series X consists of the value of X in different time stamps: Time series(X) =
(x1, x2, x3, ... ,xn), where X is a variable and xi(1 ≤ i ≤ n) is the value of X in the i_th time stamp.

Definition 2. A temporal transaction consists of the values of multiple variables in the ith time
stamp, which can be described as:
Temporal transaction(i) = (V1, V2, V3, ... ,Vk), where Vi is the variable.

2.2. Association Rules Mining

ARM was initially used to discover the customers’ purchasing behavior patterns
through the relationships among goods in supermarkets. Today, it has become one of
the most popular methods in data mining. ARM can be described briefly as follows:
D = Database{Trans1, Trans2, ... ,Transm} with m temporal transactions, and I = {i1, i2, ... ,ik}
is an itemset that contains k variables. An association rule is an implication in the form
of X ⊂ Y, and the general form of the rule is Rule : X→ Y, in which X and Y are disjoint
itemsets in D. Here, X is called the antecedent of the rule, and Y is called the consequent.
There are two very important concepts in ARM called: Support and Confidence. We show
the definitions of these two concepts below.

Definition 3. Support(X) describes the probability that transaction X appears in D:

Support(X) = P(X) =
count(X)

|D| (1)

Definition 4. Support(X→ Y) describes the probability that transactions X and Y appear simul-
taneously in D:

Support(X → Y) = Support(X ∪Y) = P(X ∪Y) (2)
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Definition 5. Confidence(X→ Y) describes the probability that transaction Y appears in D under
the condition that X appears in D:

Con f idence(X → Y) =
Support(X → Y)

Support(X)
= P(Y|X) (3)

In the process of mining association rules, Li f t is usually used to test the validity of
rules. The rule is effective only when the Li f t value of the rule is greater than one, and that
rule is called a strong association rule. The formula of Li f t is given below:

Li f t(X → Y) =
Support(X

⋃
Y)

Support(X) ∗ Support(Y)
=

P(Y|X)

P(Y)
(4)

In this paper, we consider a rule to be strong when its Confidence and Li f t are greater
than min_sup and one, respectively.

The a priori algorithm is one of the most classic ARM algorithms; it was first proposed
by Agrawal in 1993. The process of mining rules can be summarized in two parts as follows:

(1) Find all frequent items in the original log database by the predefined min_sup.
(2) Generate association rules in frequent items by the predefined min_conf.

3. The Proposed TSARM-UDP

In this section, a new TSARM framework is proposed to discover TSARs with gener-
ality. We divided it into one-dimensional TSARs and multidimensional TSARs to clarify
the proposed framework. In the last section, a novel algorithm named TSARM-UDP is
proposed to discover implicit knowledge in the form of TSARs.

3.1. Time Series Association Rules Mining

Understanding temporal relationships among multiple variables can help decision
making, and the discovered knowledge can be inherited and learned later. However,
traditional ARM mining frameworks cannot discover the temporal relationships from
time-series data. To mine TSARs in time-series from a temporal database, several issues
need to be solved: (1) a strict time order relationship should be considered; (2) candidate
itemsets generated by the a priori method may not satisfy the downward property; (3) a
new mining framework should be proposed to discover the rules with generality.

3.1.1. One-Dimensional TSARs

The definition of one-dimensional TSARs proposed in this paper is given below:

Definition 6. If X occurs at time t, then Y will appear at time t + T , and the TSARs’ form can be

expressed as Rule(X T−→ Y), where T is a time constant.

Definition 7. TSup(X T−→ Y) describe the probability that variable X occurs at time t and variable
Y occurs at time t + T,

TSup(X T−→ Y) =
F(X, Y, T)
|D| − T

(5)

where |D| is the total number of transactions in the log database.

Definition 8. F(X, Y, T) is the total number of transaction that satisfy the following: if X appears
at time t, then Y appears at time t + T.

The differences in the Support calculation between TSARs and traditional association
rules mainly lie in the calculation methods of the numerator and the denominator in
Formula (5). The TSAR takes the relationship among multiple variables on a time scale into
account. To further clarify the improvement, the process of calculating Support in TSAR is
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shown in Figure 2. We assume that there are n temporal transactions in the log database,
and each transaction can be expressed as Trans_i. Each temporal transaction has an equal
time interval.

Assuming that we are trying to determine whether the itemset (a, c) is frequent, we
have to calculate the Support value of this itemset. The red solid line represents the way
that the numerator in the Support formula is calculated in the traditional method, which
considers that only when the item a and c occurred at the same time can be counted. The
green dotted line represents the method of calculating the numerator in Formula (5), which
considers the lagged time T (T is considered as two here) of item a and c for time series
data in an actual industry production situation. Similarly, the total valid transactions are
changed due to considering T, because the transactions in the blue dotted circle cannot
be counted in the process of calculating TSup. Thus, the denominator in Formula (5)
is |D| − T.

Transaction_ID

Trans_1

Trans_2

Trans_3

Trans_4

Trans_n-2

Trans_n-1

Trans_n

Transaction

a       b

a       b      c

b        c

   c

b   

d            c

a            c

c

b

cc

c

b

cc

cbb cb ccc

c

b

Figure 2. The difference of calculating Support between Formula (2) and Formula (5).

Definition 9. TCon f in one-dimensional TSARs is defined as follows:

TCon f (X T−→ Y) =
TSup(X T−→ Y)

Support(X)
(6)

As mentioned above, to maintain the downward property in the process of mining
TSARs, the candidate items’ generation method must be modified. Thus, an algorithm is
presented to generate a candidate itemset in one-dimensional TSARs, which is shown in Al-
gorithm 1. A simple example is given to illustrate the algorithm. Assuming that we have a
time-series X, we apply the TSARM to X and obtain the frequent 1− itemset L1. We assume
that L1 = {a, b, c}. Traditional association rules are used to generate candidate 2− itemsets
C2 = {(a, b) (a, c) (b, c)}, for which (a, b) and (b, a) are regarded as the same situation. How-
ever, a clear time relationship should be noted between items when generating candidate
itemsets in TSARs. Thus, the meanings of 2− itemsets(a, b) and (b, a) are different. The
candidate 2− itemsets in TSARs should be C2 = {(a, b)(a, c)(b, a)(b, c)(c, a)(c, b)}. Note
that this method is only applicable to generate candidate 2− itemsets C2, and the method
of generating Ck(k > 2) will be presented in multi-dimensional TSARs.
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Algorithm 1 Generating candidate itemsets C2

1: Input:

2: Frequent 1_itemsets L1

3: Output:

4: Candidate 2_itemsets C2

5: Main:

6: k = 0

7: for i in range of (0, sizeof(L1) do

8: for j in range of (0, sizeof(L1) do

9: if L1[i] == Li[j] then

j ++

10: else

11: C2[k] = (L1[i], Li[j])

k ++

12: end if

13: end for

14: end for

15: return C2;

3.1.2. Multi-Dimensional TSARs

The multidimensional TSARs can generally be expressed as follows:

Rule : X1 ∧ X2 ∧ X3∧, ...,∧Xm

T−→ Y1 ∧Y2 ∧Y3∧, ...,∧Yn
(7)

Thus, if X1, X2, X3, ..., Xm occur at time t, then Y1, Y2, Y3, ..., Yn will occur simultaneously at
time t + T.

In terms of calculating Support and Confidence, there are some differences between mul-
tidimensional TSARs and one-dimensional TSARs. The related definitions are given below:

Definition 10. Briefly, TSup(X1 ∧X2∧, ...,∧Xm
T−→ Y1 ∧Y2∧, ...,∧Yn) describes the probability

of variables X1 ∧ X2∧, ...,∧Xm occurring at time t simultaneously and variable Y1 ∧Y2∧, ...,∧Yn
occurring at time t + T:

TSup(X1 ∧ X2∧, ...,∧Xm
T−→ Y1 ∧Y2∧, ...,∧Yn)

=
F(X1 ∧ X2∧, ...,∧Xm, Y1, Y2, ..., Yn, T)

|D| − T

(8)

Definition 11. Here, F(X1 ∧ X2∧, ...,∧Xm
T−→ Y1 ∧ Y2∧, ...,∧Yn) is the total number of trans-

actions that satisfy the following: if X1 ∧ X2∧, ...,∧Xm appear at time t, then Y1 ∧ Y2∧, ...,∧Yn
appear at time t + T.
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Definition 12. TCon f in multidimensional TSARs is defined as follows:

TCon f (X1 ∧ X2∧, ...,∧Xm
T−→ Y1 ∧Y2∧, ...,∧Yn)

=
TSup(X1 ∧ X2∧, ...,∧Xm

T−→ Y1 ∧Y2∧, ...,∧Yn)

Support(X1 ∧ X2∧, ...,∧Xm)

(9)

In many domains, the order of items is strict, especially in the process industry. We
need to consider the order of items when generating candidate k − itemsetsCk(k > 2).
To avoid being confused by the order of items with the increase of itemsets, we rewrite
the frequent itemsets and candidate itemsets in a more specific manner. For example, if
we have a frequent two-itemsets (a, c), as mentioned earlier, there is a clear order in the
itemsets: item a is the antecedent, and item c is the consequent. Thus, we rewrite the
frequent two-itemsets (a, c) as (a → c). The order of items can be clearly seen from this
form, and this form also plays an important role in generating temporal association rules.
In the remainder of the article, we use this form to represent Lk and Ck.

Next, we explain the process of generating Ck+1(k > 2). According to the representa-
tion of frequent items Lk, we classify the itemsets in Lk as two parts. The part on the left side
of the arrow is recorded as Class1, and the part on the right side of the arrow is recorded
as Class2. If we have the frequent itemsets l1, l2 ∈ Lk, it has to be ensured that p1 equals
p2. Here, p1 is the number of items in Class1 of l1, and p2 is the number of items in Class1
of l2. When the antecedents (or consequents) of two itemsets are equal and satisfy the
requirement that the first q− 1(or p− 1) items of the consequents (or antecedents) are equal,
but the q− th(or p− th) item is different, any subset of candidate itemsets can be obtained
by combining the two itemsets as frequent. However, if the antecedents and consequents
of two itemsets are not equal, there is no guarantee that all subsets of the candidate sets are
frequent. Then, we consider four situations: (1) if p1 =1 and Class1

2 = Class2
2; (2) if q1 =1

and Class1
1 = Class2

1; (3) Class1
1 = Class2

1; and (4) Class1
2 = Class2

2.
In the first case, the number of items in the antecedents of l1 and l2 is one, and the

consequents of l1 and l2 are the same. Therefore, if p1 and p2 are different, the candidate
itemsets Ck+1 can be obtained by combining two frequent itemsets l1 and l2. The second
case is similar to the first case, and we will not go into detail.

In the third case, the antecedents of l1 and l2 are the same. Then, we have to identify
whether the items in Class2 of l1 and l2 satisfy the requirement that the first q− 1 items are
equal, but the q− th item is different. If l1 and l2 satisfy the requirement, then combine
l1 and l2 to obtain Ck+1. The fourth case is similar to the third case, and we will not go
into detail. For example, if we have the frequent one-itemset L1 = {a, b, c} and frequent
two-itemsets L2 = {(a→ c), (b→ c), (a→ c)}, we would like to obtain candidate itemsets
C3. Where (a→ c) and (b→ c) satisfy the first case, the two itemsets are combined, and
we can get (a, b→ c). Similarly, (a→ c) and (a→ b) satisfy the second case, so we can get
(a → b, c). The antecedents and consequents of (a → b) and (b → c) are not equal. The
subset of combining these two itemsets cannot be guaranteed to be frequent, so this case is
pruned. Finally, the candidate three-itemsets are (a→ b, c) and (a, b→ c).

We give the pseudo code of generating candidate k− itemsets Ck(k > 2) in Algorithm
2. The rules generated in TSARs are also different from the traditional association rules.
Taking the a priori algorithm as an example, unordered items are dealt with by it, which
need not consider the order of items when generating rules. However, the order of items
must be considered in TSARs for the reason of time-series applications. Therefore, we
need to consider it when generating rules. In the step of generating rules, the order of the
antecedent and consequent in frequent itemsets cannot be changed, which means the form
of the rule is Rule = Classi

1 → Classi
2, and i means the i− th frequent itemsets in Lk(k ≥ 2).
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Algorithm 2 Generating candidate itemsets Ck+1

1: Input:

2: frequent k− itemsets Lk(k > 2)

3: Output:

4: candidate itemsets Ck+1

5: Main:

6: Classify each item in Lk as Class1 and Class2

7: for each l1 in Lk do

8: for each l2 in Lk do

9: if p1 == p2 then

10: if (p1 = 1) and (Class1
2 = Class2

2) then

11: if p1 6= p2 then

12: Ck+1 = l1
⋃

l2
13: end if

14: end if

15: if (q1 = 1) and (Class1
1 = Class2

1) then

16: if q1 6= q2 then

17: Ck+1 = l1
⋃

l2
18: end if

19: end if

20: if Class1
2 = Class2

2 then

21: if (Class1
1[1] = Class2

1[1]) ∧ (Class1
1[2] = Class2

1[2]) ∧ ... ∧ (Class1
1[p −

1] = Class2
1[p− 1]) ∧ (Class1

1[p− 1] < Class2
1[p− 1]) then

22: Ck+1 = l1
⋃

l2
23: end if

24: end if

25: if Class1
1 = Class2

1 then

26: if (Class1
2[1] = Class2

2[1]) ∧ (Class1
2[2] = Class2

2[2]) ∧ ... ∧ (Class1
2[p −

1] = Class2
2[p− 1]) ∧ (Class1

2[p− 1] < Class2
2[p− 1]) then

27: Ck+1 = l1
⋃

l2
28: end if

29: end if

30: else

31: break;

32: end if

33: end for

34: end for

35: return Ck+1;
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3.2. Up-to-Date Patterns

Mining frequent itemsets in traditional ARM exclusively relies on the Support threshold
to determine whether an item or an itemset is frequent. However, some transactions do
not occur for the whole time period. In other words, some itemsets may be frequent in a
period of time, but not for the entire database. In the real world, some cases only exist in
a certain period other than the whole time. For example, the abnormal conditions in the
process industry only occur in a period of time. The Support calculation can only be used to
mine frequent itemsets in the whole database, exhibiting a very small probability to mine
implicit rules about abnormal conditions. Actually, we should pay more attention to TSAR
with abnormal conditions, and such rules facilitate better decision-making.

In the past, Hong et al. [26] proposed the concept of up-to-date patterns (UDPs),
which were frequent patterns within their up-to-date lifetime. Lin et al. also proposed an
algorithm to derive up-to-date patterns from transactions [29–31]. One of the advantages
of the UDP method is that it can mine the implicit association rules that satisfy the current
Support threshold.

We combine Formula (10) for reference from the UDP with the a priori algorithm. The
proposed mining framework is used to mine rare patterns in the form of TSARs.

n− First_ID + 1 ≤ count(i)
min_sup

(10)

Here, n is the total number of transactions in the log database, First_ID is the first transac-
tion ID in Timelist(i), count(i) is the number of occurrences of item i in the log database,
and min_sup is the minimum Support, which is set in advance. If item i satisfies (10), then
put the pattern in the set of one-items from D; otherwise, decrease count(i) by one, and
repeat (10) until count(i) is equal to zero or (10) is satisfied.

3.3. The Proposed TSARM-UDP
3.3.1. Description

The purpose of the proposed TSARM-UDP algorithm is to mine the TSARs from
time-series. The specific steps of the proposed algorithm are elaborated in the next section.
The flowchart of TSARM-UDP is shown in Figure 3. Note that all data in this paper are
time-series data with equal intervals.
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Figure 3. The flowchart of the proposed TSARM-UDP.

3.3.2. The Construction of the Algorithm

Time series association rules mining with up-to-date patterns:
Input: A log database D with n transactions stored in the order of transaction time with
equal time intervals; each of them includes the transaction ID, transaction time, and
items. The time T, the minimum support threshold min_sup, the minimum UDP threshold
min_UDP, and the minimum confidence threshold min_con f are also included.
Output: Rules mined from the time-series.
Step 1: Scan the database D to generate the candidate 1− itemset C1, and record the count
value and the Timelist(i) of item i in the log database.
Step 2: Complete the following substeps for the items in C1:
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Substep 2.1: Calculate the Support of the i− th item in C1.
Substep 2.2: If the Support of the item is more than min_sup, then put the item in Template−
L1. Otherwise, put the item in S1.
Step 3: For the items i in S1, complete the following substeps.
Substep 3.1: Set the First_ID(i) as the first transaction ID in the Timelist(i) of the item i,
and verify if the item i satisfies Formula (10). If the item i satisfies Formula (10), then it will
be retained in S1 and then will be put in Template− L1.
Substep 3.2: Set the First_ID(i) as the next transaction ID in the Timelist(i) of the item i;
decrease the count of item i by one; and repeat this substep until count(i) is equal to zero.
If count(i) is equal to zero and the item or itemset still cannot satisfy Formula (10), then it
will be deleted from S1.
Step 4: Calculate the item or itemset as greater than or equal to min_UDP or not. If so, save
the item or itemset; else, delete it.
Step 5: Combine the set S1 and the set Template− L1 to form L1. Set r = 1, where r is used
to keep the current number of items in the itemset to be processed.
Step 6: Generate the candidate set Cr+1 from Lr in a similar manner to the a priori algorithm;
moreover, the order of items should be considered as we mentioned above.
Step 7: Generate the frequent (r + 1)-patterns (Lr+1) from Cr+1 in a similar manner to
STEPS 2 and 3.
Step 8: If the Lr+1 is null, proceed to the next step. Otherwise, jump to STEPS 5 and 6.
Step 9: Calculate the Confidence and Lift of the itemsets in the Lr(r ≥ 2) with Formulas (9) and (4).
If the Confidence of the itemsets is greater than min_con f , then generate the rules in a man-
ner similar to the a priori algorithm. Otherwise, delete the itemsets that cannot meet the
min_con f requirement in Lr.
Step 10: Output the association rules mined from the log database.

Note that in the above algorithm, transactions in the log database must be the time-
series with equal intervals.

3.3.3. Set the Algorithm Parameters

Aiming at the characteristics of an actual industrial production database, we propose
the TSARM-UDP algorithm. The parameters in our algorithm that need to be predefined are
TSupport, TConfidence, the time T, the minimum TSupport threshold min_Tsup ,the minimum
UDP threshold min_UDP, and the minimum TConfidence threshold min_Tcon f . Considering
the differences of different datasets, these parameters should be set up according to the
different situations.

3.3.4. An Example

In this section, an example is given to illustrate the proposed TSARM-UDP algorithm.
Table 1 shows the log database used in the example. The database contains 10 transactions
and six items, denoted from a to f.

Table 1. The log database in this example.

Transaction ID Transaction Time Items

1 2018/9/1 10:00 b, d, f
2 2018/9/1 10:05 b, d, f
3 2018/9/1 10:10 d, f
4 2018/9/1 10:15 a, d
5 2018/9/1 10:20 a, b, d
6 2018/9/1 10:25 d
7 2018/9/1 10:30 c
8 2018/9/1 10:35 a, b, c
9 2018/9/1 10:40 c, f, e

10 2018/9/1 10:45 b, d
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Input: T = 3, min_Tsup =0.5,min_UDP =0.1, min_Tcon f =0.4, log database D.
Output: Rules mined from D.
Step 1: Scan the database, and find the count(i) and the Timelist(i) of item i in D. Take
item a as an example. It appears in Transactions 4, 5, and 8. Thus, count(a) is three, and
Timelist(a) is {4, 5, 8}. The result of STEP 1 is shown in Table 2.

Table 2. The results of Timelist(i) and count(i) of each item in D.

Item Timelist Count

a 4, 5, 8 3
b 1, 2, 5, 8, 10 5
c 7, 8, 9 3
d 1, 2, 3, 4, 5, 6, 10 7
e 9 1
f 1, 2, 3, 9 4

Step 2: Calculate the TSupport in Table 2 using Formula (8). Using item b as an example, the
count of b is five. Thus, according to Formula (8), the TSupport of b is 0.5. The min_Tsup
given above is 0.5, so b will be placed in Template_L1. The TSupport of item c is 0.3. This
value is less than min_Tsup, so it will be placed in S1. The TSupport calculation results are
shown in Table 3, namely L1 = {b, d} and S1 = {a, c, e, f }.

Table 3. The results of Timelist(i) and TSupport of each item in D.

Item Timelist TSupport

a 4, 5, 8 0.3
b 1, 2, 5, 8, 10 0.5
c 7, 8, 9 0.3
d 1, 2, 3, 4, 5, 6, 10 0.7
e 9 0.1
f 1, 2, 3, 9 0.4

Step 3: For the items in S1, the following steps are performed. Items a and c are used as
examples. For item a, Timelist(a) = {4, 5, 8}, so First_ID(a) = 4. In addition, n = 10,
count(a) = 3, and min_Tsup = 0.5. Substitute the above parameters into Formula (10).
On the left side of the inequation is 10− 4 + 1 = 7. On the right side of the inequation is
3/0.5 = 6. The results do not satisfy the inequation, so the algorithm jumps to Substep3.2.
count(a) = 3− 1 = 2, and First_ID(a) = 5. Thus, the updated parameters are substituted
for the inequation, and recalculate. The result still cannot satisfy the inequation. Repeat
SUBSTEP 3.2. count(a) = 1, and First_ID(a) = 8. Then, substitute the updated parameters
into the inequation, and recalculate. The result still cannot satisfy the inequation. Repeat
SUBSTEP 3.2. count(a) = 0. Thus, delete item a from S1.

For item c, Timelist(c) = {7, 8, 9}, so First_ID(c) = 7, count(c) = 3, n = 10, and
min_Tsup = 0.5. The method of calculating item a above is used to calculate item c. The
left side of the inequation is six, and the right side of the inequation is also six. Thus, the
result satisfies the inequation, and c will remain in S1.

After calculating each item in S1, then delete the items that do not satisfy the inequa-
tion. The items that remain in S1 are {c, e, f }.
Step 4: Calculate the count of each item in S1, and delete the items that do not satisfy being
equal to or greater than min_UDP = 0.1. Update S1.
Step 5: Combine set S1 and set Template_L1 to form L1 = {b, c, d, e, f }. Set r = 1.
Step 6: Generate the candidate set C2 from L1 through the method mentioned above, and
the order of items should be considered. C2 is shown in Table 4.
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Table 4. The results of Timelist(i) and Count(i) of candidate 2− itemsetsT.

Itemsets Count Timelist Itemsets Count Timelist

(b→ c) 1 {5} (d→ e) 1 {6}
(b→ d) 2 {1, 2} (d→ f ) 1 {6}
(b→ e) 0 Null (e→ b) 0 Null
(b→ f ) 0 Null (e→ c) 0 Null
(c→ b) 0 Null (e→ d) 0 Null
(c→ d) 0 Null (e→ f ) 0 Null
(c→ e) 0 Null ( f → b) 1 {2}
(c→ f ) 0 Null ( f → c) 0 Null
(d→ b) 2 {2, 5} ( f → d) 3 {1, 2, 3}
(d→ c) 3 {4, 5, 6} ( f → e) 0 Null

Step 7: Generate the frequent two-patterns L2 in a way similar to STEPS 2 and 3. Template_L2
are null, and S2 = (d→ c)(d→ e)(d→ f ). Thus, L2 = (d→ c)(d→ e)(d→ f ).
Step 8: We can generate C3 from L2, according to the method we mentioned in the previous
article. We can get C3 = {(d → c, e)(d → c, f )(d → e, f )}, but each itemset in C3 cannot
satisfy the min_Tsup threshold and Formula (9). Thus, L3 are null. The algorithm runs to
STEP 8.
Step 9: In this step, we calculate the TConfidence of itemsets in L2 by Formula (9). Taking
itemsets (d → c) as an example: F(d, c, T) = 3, and F(d) = 7. According to Formula (9),
the TConfidence of itemsets (d→ c) is equal to 3/7. Then, we calculate the Lift of itemsets,
Li f t(d→ c) = 10/7, which is greater than one. Thus, Rule(d→ c) is valid. The TConfidence
and Lift of each itemset are given in Table 5.

Table 5. The results of TConfidence and Lift in L2.

Itemsets Confidence Lift

d T−→ c 3/7 10/7

d T−→ e 1/7 10/7

d T−→ f 4/7 10/7

As shown in Table 5, two itemsets satisfy the min_Tcon f and Lift requirement. The
rule generation method is similar to the a priori algorithm, but needs to consider the order
of items and the other steps. The generated rules are given below:

Rule{1} = d T−→ c, with TConfidence=3/7, Lift=10/7

Rule{2} = d T−→ f , with TConfidence=4/7, Lift=10/7
Step 9: Output the rules.

4. Simulation Experiments

To better illustrate the effectiveness of the proposed TSARM-UDP algorithm, we
performed several experiments on the public stock dataset [34] and real historical data of a
blast furnace (BF) collected from a steel plant in China. All experiments were performed in
MATLAB 2017a on a PC with a 2.5 GHz Intel Core CPU.

4.1. Experiment Results on the Stock Dataset

In stock market analysis, ARM is one of the widely used data mining tools to mine the
underlying regularities behind the phenomenon. ARM aims to dig out the association rules
(ARs) and frequent itemsets from the database. ARs reveal the relationship among different
stocks, and frequent itemsets mean multiple stocks portfolio patterns in the stock dataset.

In this section, we apply the TSARM-UDP algorithm to the public stock dataset
to mine time-series association rules. Furthermore, a performance comparison is done
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of the TSARM-UDP algorithm with other temporal algorithms presented in [35,36] and
FPgrowth [22]. The mining results are shown in Figures 4 and 5.
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Figure 4. Comparisons of mining results on the stock dataset (min_con f = 0.7, T = 7).

In Figure 4, we compare the mining results of the proposed algorithm and the other
three algorithms on the stock dataset. min_con f is 0.7, and T = 7. As shown in Figure 4,
L1, L2, Lk, and the number of rules mined from the stock dataset by the proposed method
are larger than the other state-of-the-art methods. The larger number of rules and frequent
itemset means we mine more abundant information in the finite database.

In Figure 5, we give the comparison of the number of rules and Lk produced by the
four methods at different min_sup. min_con f is 0.8, and T = 7. Although min_con f is
improved, the algorithm proposed in this paper remains superior to other recent methods
in the number of Lk and rules.
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Figure 5. Comparisons of the rule numbers and Lk on the stock dataset (min_con f = 0.8 and T = 7).

In order to verify the accuracy rate of the rules, we divided the public stock dataset
into two parts: one part was used to generate ARs, and the other one, which included the
last three months of data, was used to test the forecast accuracy rate of some extra rules
not obtained by traditional algorithms. The experiment was also implemented under the
condition of the min conf being 0.8, min sup = 0.7, and T = 7. The test results are shown in
Table 6. It can be observed that the accuracy rate of the extra rules is at a high level. The
rules are as follows:
Rule{1}={(USD BASEDISE, down)∧(TLBASED ISE, flat)∧(DAX, flat) 7−→(EM, flat)}
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Rule{2}={(USD BASED ISE, down)∧(SP, down)∧(DAX, flat) 7−→(EM, flat)}
Rule{3}={(TL BASED ISE, flat)∧(USD BASED ISE, down)∧(DAX, flat)∧(BOVESPA, down)

7−→(EM, flat)}

Rule{4}={(USD BASED ISE, down)∧(SP, down)∧(DAX, flat)∧(NIKKEI, down) 7−→(EM, flat)}

Table 6. The accuracy rate of the rules.

Rules Accuracy Rate (%)

Rule 1 75
Rule 2 100
Rule 3 100
Rule 4 100

In Table 7, the running time of the above four methods is presented. The proposed
TSARM-UDP algorithm needs a longer running time because of it mining more implicit
rules. In addition, for practical application, the above running time is still within an
acceptable range.

Table 7. Comparisons of the running time of the four algorithms on the stock dataset.

min_sup TSARM-UDP Nguyen et al. [35] Khen et al. [36] FP Tree [22]

0.3 146.6700 s 4.1460 s 3.7000 s 2.9920 s
0.4 58.5040 s 3.4150 s 3.4640 s 2.8190 s
0.5 41.7840 s 3.2090 s 3.2700 s 2.7840 s
0.6 27.6320 s 3.1430 s 3.1900 s 2.7400 s
0.7 11.3200 s 2.8100 s 2.9940 s 2.6320 s

4.2. Experiment Results on the BF Dataset

The blast furnace (BF) plays an important role in national iron making, and the
stability of the BF directly determines the quality of molten iron. The characteristics of
the BF data are the time sequence, strong correlation, and rich information. Therefore, we
are encouraged to use data mining methods to discover the potential relationships among
multiple variables and mine implicit knowledge to assist decision-making. Moreover, since
the BF is a time sensitive system, mining implicit knowledge can provide more useful
information to workers for the stabilization of the furnace condition.

We applied the proposed algorithm to mine TSARs from the authentic smelting data
of a BF in a steel plant in China. The data were discrete time-series with a 30-min sampling
time. Based on previous research on BFs, eleven variables were chosen as the input of the
algorithm. Noise was present in the BF data, so it was necessary to deal with abnormal
values first. In this paper, the box diagram method was applied to remove the abnormal
values in the BF data. Then, the data needed to be symbolized, and an intuitive method
was used to divide the range of quantitative attributes into finite intervals of assigned
symbols to form <attributes, interval>pairs. According to expert knowledge, each variable
was divided into three states: descent, normal fluctuation, and ascent. The input variables
and corresponding discretization intervals are shown in Table 8.
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Table 8. Input variables and their corresponding discretization intervals.

Input Descent Normal Fluctuation Ascent

Blast wind volume <3400 3400∼3500 ≥3500
Blast wind temperature <1170 1170∼1190 ≥1190

Blast wind pressure <335 335∼350 ≥350
Oxygen enrichment <4400 4400∼5000 ≥5000

Top temperature <100 100∼140 ≥140
Normal blast velocity <190 190∼200 ≥200
Actual blast velocity <220 220∼230 ≥230

Permeability index (PI) <23 23∼26 ≥26
Blast furnace bosh gas

volume <4400 4400∼4500 ≥4500

Theoretical combustion
temperature <2200 2200∼2300 ≥2300

Permeability coefficient <6 6∼7 ≥7

The interval division and codes are shown in Table 9, and the variable codes are shown
in Table 10. To illustrate further, a simple example is presented. Assume that the blast wind
volume is 3450. According to Tables 8 and 9, three-thousand four-hundred fifty is in the
range of normal fluctuation and should be encoded as 2. For the attribute of blast wind
volume, the encoding number is 1 in Table 10. Therefore, the final discrete pair for this
instance is < 1, 2 >. The former number represents blast wind volume, and the latter one
represents normal fluctuation. According to the above method, all blast furnace data can
be symbolized and used as the input for the proposed algorithm. In total, one-thousand
four-hundred thirty-eight data of the authentic blast furnace were selected as the sample
for time-series association rules mining. To verify the validity of this method, we compared
the proposed method with that proposed in [35,36] and FP growth [22].

Table 9. Interval division and coding.

Interval Division Descent B Ascent

Coding 1 2 3

Table 10. Variable coding.

Input Encoding Number

Blast wind volume 1
Blast wind temperature 2

Blast wind pressure 3
Oxygen enrichment 4

Top temperature 5
Normal blast velocity 6
Actual blast velocity 7

Permeability index (PI) 8
Blast furnace bosh gas volume 9

Theoretical combustion temperature 10
Permeability coefficient 11

In the first experiment, the relationships between the numbers of the frequent one-
itemset for different min_sup thresholds are shown in Figure 6a. It is clear that the number
of frequent itemsets discovered by TSARM-UDP is larger than the other methods.

The relationships between the numbers of the frequent two-itemsets for different
min_sup thresholds are shown in Figure 6b. As shown in Figure 6b, the frequent two-
itemsets without using the up-to-date method are close to zero when min_sup is 0.8, but
the proposed TSARM-UDP can still mine frequent two-itemsets. The main reason is that
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some items may appear in some time period, but not in the whole time, and it is difficult
for other methods in [35,36] and FP growth [22] to mine frequent itemsets like that. Besides,
the rules with high Support are important because these situations occur frequently.

In Figure 6c, we give the maximal frequent k-itemsets that can be mined by the four
methods. For example, when min_sup is 0.1, TSARM-UDP can mine frequent five-itemsets,
but the method proposed by [35,36] and FP growth [22] can only mine two-itemsets. The
method proposed by [35] can mine more itemsets than the other two methods when
min_sup is less than 0.5. However, when min_sup is greater than 0.5, the maximal itemsets
that can be mined by these three methods are the same. The proposed TSARM-UDP
method in this paper can mine more maximal itemsets than the other three methods when
min_sup takes different values. In ARM, the more frequent itemsets are mined, the more
relationships between variables can be found. Therefore, the method proposed in this
paper outperforms other methods in finding the relationship between multiple variables.

In Figure 6d, the number of rules produced by the four methods at different min_sup
is presented, and min_con f is 0.6, T = 6. As shown in this figure, compared with the other
three methods, more rules were mined by the TSARM-UDP method.
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Figure 6. L1, L2, Lk, and rule numbers comparison on the BF dataset (min_con f = 0.6 and T = 6).

It is essential to compare the maximal itemsets Lk and rule numbers for different
min_con f values. Therefore, we compared the rule numbers and maximal itemsets Lk that
can be mined by the four methods when the min_con f values are 0.7 and 0.8, respectively.
As shown in Figure 7a, more rules were mined by the proposed TSARM-UDP compared
with the other methods. These rules can play a better role in decision-making. In Figure 7b,
it can be clearly seen that the maximal itemsets Lk mined by the TSARM-UDP are larger
than other methods. In Figure 8, we set the min_con f = 0.8 and T = 6. Furthermore, the
numbers of rules and Lk that can be mined with different min_sup are compared. The
experiment results shown in this figure can also draw the same conclusions as discussed in
Figure 6.

Given that T is an artificially determined parameter, it is a novel parameter for the
proposed TSARM-UDP algorithm. In the experiments we discussed above, T was set to
six. Now, we explore the effect of different T values on the number of rules mined by
the proposed method. The experimental results are shown in Table 11. When we chose
different values for T, the number and content of rules were generally different. Thus, the
value of T depends on the temporal information that users want to mine.
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Figure 7. Rule numbers and Lk comparison on the BF dataset (min_con f = 0.7, T = 6).
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Figure 8. Rule numbers and Lk comparison on the BF dataset (min_con f = 0.8, T = 6).

Table 11. Rule numbers mined by the proposed algorithm with different T.

T Rule Numbers T Rule Numbers

(T = 1) 25 (T = 6) 25
(T = 2) 27 (T = 7) 29
(T = 3) 31 (T = 8) 28
(T = 4) 29 (T = 9) 27
(T = 5) 27 (T = 10) 25

In Table 12, we give a comparison of the running time of each algorithm. min_con f
is 0.6, and T = 6. Comprehensive analyses of Figure 7 and Table 12 show that although
TSARM-UDP has the longest operation time among the four methods, it can mine more
effective rules. Although other method had a faster operation time than TSARM-UDP,
it ignored the implicit knowledge. Moreover, in practical applications, the algorithm is
generally used for offline mining, which means the requirement of operation time is not
very high.
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Table 12. Comparisons of the running time of the four algorithms on the BF dataset.

min_sup TSARM-UDP Nguyen et al. [35] Khen et al. [36] FP Tree [22]

0.3 1.1809 × 103 s 7.0400 s 6.8650 s 5.7770 s
0.4 438.1290 s 5.6700 s 5.8360 s 4.5320 s
0.5 162.0220 s 4.9260 s 5.1850 s 4.0640 s
0.6 45.2970 s 4.1600 s 4.6900 s 3.7080 s
0.7 29.0880 s 3.4410 s 3.4440 s 3.6820 s

Setting min_sup = 0.6, min_con f = 0.6, and T = 6, we used the proposed TSARM-
UDP method and LTARMalgorithm [33,35] to discover knowledge from the BF data. Finally,
twenty-five rules and 11 rules were obtained, respectively. The rules mined by LTARM can
also be mined by TSARM-UDP. Given space constraints, we do not list all the rules mined
by the TSARM-UDP method. Only a few rules that cannot be mined by LTARM are listed
in Table 13, and all rules mined by the LTARM method are provided in Table 14.

Table 13. Example rules mined from the blast furnace data with TSARM-UDP.

Rules Confidence Lift T

12, 23→ 102 0.97952 1.1013 T = 6
12, 43→ 92 1 1.1395 T = 6
23, 52→ 92 0.98868 1.1266 T = 6
32, 43→ 102 0.90352 1.0766 T = 6

12, 23, 52→ 102 0.98305 1.1053 T = 6
12, 23, 63→ 92 1 1.1395 T = 6

12, 23→ 92, 102 0.97952 1.1612 T = 6
23, 43, 52→ 92 1 1.1395 T = 6

43, 52, 63→ 92, 102 0.95819 1.1359 T = 6
12, 23, 43, 52, 63→

102 0.98675 1.1094 T = 6

23, 43, 52, 63→
92, 102 0.98817 1.1715 T = 6

12, 23, 43, 63→
92, 102 0.97895 1.1605 T = 6

Table 14. Rules mined from the blast furnace data with LTARM.

Rules TConfidence Lift T

12→ 92 0.95491 1.0881 T = 6
12→ 102 0.95049 1.0686 T = 6
12→ 112 0.98489 1.0599 T = 6
32→ 92 0.93668 1.0673 T = 6
32→ 102 0.94573 1.0633 T = 6
52→ 92 0.91852 1.0466 T = 6
52→ 102 0.93654 1.053 T = 6
52→ 112 0.78473 1.0429 T = 6
63→ 92 0.95038 1.0829 T = 6
63→ 102 0.91674 1.0307 T = 6
63→ 112 0.80067 1.0641 T = 6

4.3. Rules’ Evaluation

In this subsection, we compare the rules mined by the above two methods and explain
some rules listed in Table 13. The analyses and explanations of the mined rules revealed
that the proposed algorithm can effectively mine TSARs from BF data. Furthermore, these
rules provide an effective theoretical basis for decision-making. The interval of time-series
was equal to 30 min, and T = 6. Thus, if X happens, Y will occur after 3 h.
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As shown in Table 14, the rules mined by LTARM can only assess two items, which
means the method can only obtain temporal relationships between two variables in most
cases. By comparing Tables 13 and 14, the proposed TSARM-UDP method can efficiently
mine the rules among multiple variables and discover the implicit rules. Moreover, more
rules were mined by TSARM-UDP compared with LTARM. Lift shows that the implicit
rules mined by TSARM-UDP are not redundant, but effective, which further proves the
effectiveness of our algorithm. Next, we illustrate the meaning of some rules in Table 13.

Take Rule : {12, 23, 63→ 92, TCon f idence = 1, T = 6} as an example. The antecedent
of this rule indicates that if blast wind volume exhibits normal fluctuation, but blast wind
temperature and normal blast velocity are increased, then the blast furnace bosh gas volume
will fluctuate normally after 3 h.

Rule : {23, 43, 52, 63 → 92, 102, TCon f idence = 0.98817, T = 6} serves as another
example. If blast wind temperature, oxygen enrichment, and normal blast velocity are
increased and the top temperature exhibits normal fluctuation, then the blast furnace bosh
gas volume and theoretical combustion temperature will fluctuate normally after 3 h.

The temporal relationships among variables in the BF data are very complicated.
Changing one variable may cause variations of other variables, so it is hard to predict
how the impact on the furnace condition would happen because of the early operations.
However, TSARs mined by the proposed TSARM-UDP algorithm can reveal temporal
relationships among multiple items, which can provide effective evidence to help people
make decisions. The rules obtained were confirmed to be valid by operators on site.

5. Conclusions and Further Research

In this paper, to discover the temporal relationships among multiple variables in
time-series data, a new TSARM framework and a novel algorithm named TSARM-UDP
are proposed. The TSARM mining framework is applied to mine TSARs and the up-
to-date pattern to discover rare patterns that only appear in a period. Compared with
other methods, the proposed algorithm can mine TSARs with more efficiency and better
generality. Experiments on stock and BF datasets are conducted to evaluate the effectiveness
and the generality of the proposed algorithms. From the results, it can be found that the
proposed algorithm significantly outperforms other methods in terms of the number of
frequent itemsets and the rules without depending on certain parameters. Furthermore,
the mined rules have great applicability to predict stock movements with high forecast
accuracy. In general, the results also show that this method could be applied in other
industrial areas to make decision management more objective, reliable, and powerful.

For future work, we will consider working on future advanced versions of TSARM-
UDP; e.g., updating temporal association rules according to the characteristics of a dynamic
database or improving its time efficiency. We plan to work with different real-world
applications and other industrial production problems.
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Abbreviations
The following abbreviations are used in this manuscript:

List of abbreviations
ARs association rules
ARM association rules mining
BF blast furnace
TSARM time-series association rules mining algorithm
TSARs time-series association rules
UDP up-to-date pattern
Notation
D the log database
|D| the number of transactions in the log database
i an item or an itemset
count(i) the number of an item’s occurrence in the database
min_sup the minimum Support threshold
min_con f the minimum Confidence threshold
TSup the temporal Support
TCon f the temporal Confidence

Si
the set used to keep the item or itemsets that cannot meet the
min_sup requirement in the step of generating frequent itemsets

Lk the set of frequent i-itemsets in the log database
Ck the set of candidate i-itemsets in the log database
Template− Lk the set used to save the item or itemsets satisfying min_sup
Transaction_ID the ordinal number of the transaction in which the item is located.
Timelist the set of the item’s Transaction_ID
First_ID the first Transaction_ID in the Timelist
T the length of time, which is predefined
li a frequent itemset in Lk
Classi

1 Class1 of li − itemset in Lk
Classi

2 Class2 of li − itemset in Lk
pi the number of items in Class1 of li
qi the number of items in Class2 of li
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